Integral Calculus 3D Geometry and Vector Booster with Problems and Solution

622 Pages • 457,178 Words • PDF • 67.8 MB
Uploaded at 2021-09-24 05:53

This document was submitted by our user and they confirm that they have the consent to share it. Assuming that you are writer or own the copyright of this document, report to us by using this DMCA report button.


f(x)

A

y

a

b a

b

yz-plane

y

z

f(x) dx

x xy-plane

first octant

a

b a

Integral Calculus, 3D Geometry & Vector Booster 11 March 2017 11:32:07 AM

f(x)

A

y

b

f(x) dx

Integral Calculus, 3D Geometry & Vector Booster with Problems & Solutions

JEE

Main and Advanced

About the Author REJAUL MAKSHUD (RM) Post Graduated from Calcutta University in PURE MATHEMATICS. Presently, he trains IIT Aspirants at RACE IIT Academy, Jamshedpur.

Integral Calculus, 3D Geometry & Vector Booster with Problems & Solutions

JEE

Main and Advanced

Rejaul Makshud M. Sc. (Calcutta University, Kolkata)

McGraw Hill Education (India) Private Limited chennai

McGraw Hill Education Offices Chennai New York  St Louis  San Francisco Auckland  Bogotá Caracas Kuala Lumpur  Lisbon  London  Madrid  Mexico City  Milan  Montreal San Juan  Santiago  Singapore  Sydney  Tokyo  Toronto

McGraw Hill Education (India) Private Limited Published by McGraw Hill Education (India) Private Limited, 444/1, Sri Ekambara Naicker Industrial Estate, Alapakkam, Porur, Chennai - 600 116, Tamil Nadu, India Integral Calculus, 3D Geometry & Vector Booster Copyright © 2017, McGraw Hill Education (India) Private Limited. No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication. This edition can be exported from India only by the publishers, McGraw Hill Education (India) Private Limited ISBN (13): 978-93-5260-576-7 ISBN (10): 93-5260-576-4 Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. Typeset at Bharati Composers, D-6/159, Sector-VI, Rohini, Delhi 110 085, and text and cover printed at Cover Designer: Creative Designer Visit us at: www.mheducation.co.in

Dedicated to My Beloved Mom and Dad

Preface

INTEGRAL CALCULUS, 3D GEOMETRY & VECTOR BOOSTER with Problems & Solutions for JEE Main and Advanced is meant for aspirants preparing for the entrance examinations of different technical institutions, especially NIT/IIT/BITSAT/ IISc. In writing this book, I have drawn heavily from my long teaching experience at National Level Institutes. After many years of teaching I have realised the need of designing a book that will help the readers to build their base, improve their level of mathematical concepts and enjoy the subject. This book is designed keeping in view the new pattern of questions asked in JEE Main and Advanced Exams. It has six chapters. Each chapter has the concept booster followed by a large number of exercises with the exact solutions to the problems as given below: Level - I

: Problems based on Fundamentals

Level - II

: Mixed Problems (Objective Type Questions)

Level - III

: Problems for JEE Advanced

Level - IV

: Tougher problems for JEE Advanced

(0.......9)

: Integer type Questions

Passages

: Comprehensive Link Passages

Matching

: Matrix Match

Reasoning

: Assertion and Reason

Previous years’ papers : Questions asked in Previous Years’ IIT-JEE Exams Remember friends, no problem in mathematics is difficult. Once you understand the concept, they will become easy. So please don’t jump to exercise problems before you go through the Concept Booster and the objectives. Once you are confident in the theory part, attempt the exercises. The exercise problems are arranged in a manner that they gradually require advanced thinking. I hope this book will help you to build your base, enjoy the subject and improve your confidence to tackle any type of problem easily and skillfully. My special thanks goes to Mr. M.P. Singh (IISc. Bangalore), Mr. Yogesh Sindhwani (Head of School, Lancers International School, Gurugram), Mr. Manoj Kumar (IIT, Delhi), Mr. Nazre Hussain (B. Tech.), Dr. Syed Kashan Ali (MBBS) and Mr. Shahid Iyqbal, who have helped, inspired and motivated me to accomplish this task. As a matter of fact, teaching being the best learning process, I must thank all my students who inspired me most for writing this book. I would like to convey my affectionate thanks to my wife, who helped me immensely and my children who bore with patience my neglect during the period I remained devoted to this book. I also convey my sincere thanks to Mr Biswajit Das of McGraw Hill Education for publishing this book in such a beautiful format.

viii  Preface I owe a special debt of gratitude to my father and elder brother, who taught me the first lesson of Mathematics and to all my learned teachers— Mr. Swapan Halder, Mr. Jadunandan Mishra, Mr. Mahadev Roy and Mr. Dilip Bhattacharya, who instilled the value of quality teaching in me. I have tried my best to keep this book error-free. I shall be grateful to the readers for their constructive suggestions toward the improvement of the book. Rejaul Makshud M. Sc. (Calcutta University, Kolkata)

Contents

Preface

1. Indefinite Integrals

1.1–1.161

Definition  1.1 Geometrical interpretation of Integration  1.1 Basic formulae on integration  1.1 Standard Methods of Integration  1.2 Integration by Parts  1.5 Choice of the first function and the second function  1.5 Partial Fractions  1.6 Integration of Irrational Functions  1.8 Euler’s Substitution  1.9 Integration by Reduction Formula  1.9 Inexpressible integrals  1.12 Exercises  1.12 Answers  1.39 Hints and Solutions  1.41

2. Definite Integrals

vii

What is definite Integral?  2.1 Evaluation of Definite Integrals  2.1 Evaluation of definite integrals by substitution  2.1 Geometrical interpretation of definite integral  2.1 Definite integral as the limit of sum  2.2 Evaluation of the limit of the sum using Newton-Leibnitz Formula  2.2 Properties of Definite Integrals  2.2 Mean Value of a Function over an Interval  2.7 Improper Integrals  2.7 Gamma Function  2.7 Beta Function  2.7 Walli’s Formula  2.7 Exercises  2.8 Answers  2.37 Hints and Solutions  2.38

2.1–2.131

x  Contents

3. Area Bounded by the Curves

4. Differential Equation

4.1–4.103

Introduction  4.1 Definition  4.1 Ordinary Differential Equation  4.1 Partial differential equation  4.2 Order of a differential equation  4.2 Degree of a differential equation  4.2 Linear and non-linear differential equation  4.3 Formation of a differential equation  4.3 Differential equation of first order and first degree  4.3 Orthogonal Tragectories  4.6 First Order Higher Degree Differential Equation  4.6 Higher Order Differential Equation  4.7 Applications of Differential Equation  4.8 Exercises  4.9 Answers  4.26 Hints and Solutions  4.28

5. Vectors

3.1–3.62

Rules to Draw Different Types of Curves  3.1 Area of the Cartesian Curve  3.2 area of the region bounded by a single curve and the co-ordinate axes  3.2 Area between two curves  3.3 Area of the region bounded by the several curves  3.4 Least value of a variable area  3.4 Exercises  3.4 Answers  3.17 Hints and Solutions  3.18

Introduction  5.1 Physical quantities  5.1 Representation of vectors  5.1 types of vectors  5.2 Algebra of vectors  5.3 Left and right handed orientation  5.4 Position vector of a point in a space  5.4 Linear Combination  5.4 Linearly dependent vectors  5.4 Linearly independent vectors  5.4 Section formulae  5.4 Bisector of angle between vectors A and b  5.6 straight line  5.6 Plane  5.6 Definition  5.7 Geometrical interpretation of a ◊ b  5.7 Properties of dot product of two vectors  5.7 ​__› ​__› Component of a vector B​ ​    along and perpendicular to vector A​ ​     5.8

5.1–5.80

Contents 



Physical significance of the dot prodcut of two vectors  5.8 Introduction  5.9 ​_› _ ​› Geometrical Interpretation of ​a  ​  × ​b  ​   5.9 Properties of vector product of two vectors  5.9 Introduction  5.10 Properties of scalar triple product of vectors  5.10 Introduction  5.11 Geometrical significance of a × (b × c)  5.11 Explanation of Vector Triple Product  5.11 Properties of vector triple product  5.11 Scaler product of four vectors  5.12 Vector product of four vectors  5.13 Geometrical interpretation of (a × b) × (c × d)  5.13 Reciprocal system of vectors  5.13 Exercises  5.15 Answers  5.35 Hints and Solutions  5.36

6. 3D-Co-ordinate Geometry

xi

Introduction  6.1 Rectangular co-ordinate system  6.1 Position vector of a point in a space  6.1 Distance between two points in space  6.2 Section formulae  6.2 Direction cosines and direction ratios of a vector or a line  6.3 Definition  6.4 Equation of a line passing thorugh a point and parallel to a vector  6.4 Equation of a Line Passing Through Two Points A (r1) and B (r2) is r = r1 + l(r2 – r1)  6.5 Angle between two straight lines  6.5 Skew lines  6.5 Definition  6.5 General Form  6.5 Equation of a plane passing through a point (x, y, z,)  6.6 Equation of a plane passing through three non-collinear points  6.6 Coplanarity of four points  6.6 Intercept form of a plane  6.6 Normal to a plane  6.6 Vector form  6.6 Equation of a plane in normal form  6.6 Normal form of a Plane  6.7 Theorem  6.7 Angle between two planes  6.7 Angle between a line and a plane  6.7 Equation of a plane parallel to a given plane  6.7 Equation of a plane parallel to the axes  6.7 Equation of a plane passing thorugh (x1, y1, z1), (x2, y2, z2) and parallel to the line having   direction ratios a, b, c  6.8

6.1–6.69

xii  Contents

Equation of the plane passing through a point (x 1, y1, z1) and parallel to two lines   having direction ratios (a1, b1, c1) and (a2, b2, c2) is  6.8 Equation of a plane passing through the line of intersection of planes  6.8 Distance of a point from a plane  6.9 Distance between two parallel planes  6.9 Sides of a plane  6.9 Intersection of a line and a plane  6.9 Condition for a line to lie in a plane  6.9 Condition of coplanarity of two lines  6.9 Equation of the planes bisecting the angle between the planes  6.9 Bisector of the acute and obtuse angles between two planes  6.9 Foot of perpendicular of a point w.r.t. a plane  6.10 Image of a point w.r.t. a plane  6.10 Equation of the plane containing a given line and parallel to a given line  6.10 Equation of the plane containing two given lines  6.10 Exercises  6.10 Answers  6.24 Hints and Solutions  6.25

Chapter

1

Indefinite Integrals

Concept Booster



1.  Definition The inverse process of differentiation is called integration. d Let g (x) be a differentiable function of x such that ​ ___  ​  dx (g(x) + c) = f (x). Then  (x) dx = g(x) + c. Thus g(x) is called a primitive or anti-derivative or an indefinite integral or simply integral of f (x) with respect to x, where f (x) is called the integrand, c is called the constant of integration.

2.  Geometrical interpretation

of Integration

Let f (x) be a given continuous function and g(x) one of its anti-derivatives such that y = If y =

 (x) dx = g(x) + c, then y = g(x) + c represents

3.  Basic formulae

on integration

Formula 1

xn + 1 1. Ú  xndx = _____ ​       ​ + c n+1 2. Ú  0 . dx = c

3. Ú k . dx = kx + c 1 4. Ú   ​ __ x ​ . dx = log |x| + c 5. Ú  ex  = ex + c ax 6. Ú  ax dx = ____ ​    ​ + c log a Formula 2 1 1 1. Ú  ​ __2  ​  dx = – ​ __ x ​ + c x __ 2 3/2 __ 2. Ú  ​÷x     ​  dx = ​   ​    x + c 3

 (x) dx = g(x) + c.

__ 1__ 3. Ú  ​ ___   ​  dx = 2 ​÷x    ​  + c ​ x     ​ ÷ Formula 3

1. Ú  sin x dx = – cos x + c 2. Ú  cos x dx = sin x + c 3. Ú  sec2 x dx = tan x + c 4. Ú  cosec2 x dx = – cot x + c 5. Ú  sec x ◊ tan x dx = sec x + c 6. Ú  cosec x ◊ cot dx = – cosec x + c Formula 4



dx 1. Ú  ______ ​  _____     ​ = sin– 1 x + c 2 ÷​ 1  – x  ​ 



dx 2. Ú  _____ ​       ​ = tan– 1 x + c 1 + x2



dx 3. Ú  ________ ​  _____      ​ = sec– 1 x + c 2 |x|​÷x  – 1 ​ 

Type 1:  Integrals of the form dx Ú  ​ _______     ​ 1 ± sin x sin x Ú  ​ _______ ​      ​  ​ dx, 1 ± sin x dx Ú ​ ________      ​, 1 ± cos x

( 

)

( 

)

cos x Ú  ​ ________ ​      ​  ​ dx, 1 ± cos x sec x dx Ú ​ ___________       ​, sec x ± tan x cosec x  Ú  ​ _____________      ​ dx cosec x ±  cot x

1.2  Integral Calculus, 3D Geometry & Vector Booster Rule:  Simply rationalize the denominator. f (x) Type 2:  Integrals of the form Ú  ​ ​ ____   ​  ​ dx, g (x)

(  )

where f (x) and g(x) be two polynomials such that deg of f(x) ≥ deg of g(x). Rule:  Simply divide the numerator by the denominator. Type 3:  An integral is related to inverse trigonometric functions. Rule:  Simply write the simplest form of the expression under the inverse term.

4. Standard Methods

cos x 2. Ú  cot x dx = Ú  ​ ____ ​   dx sin x = log |sin x| + c sec x(sec x  + tan x) 3. Ú  sec x dx = Ú  ​ ________________        ​  dx (sec x + tan x) = log |sec x + tan x| + c



of Integration

There is no general method to find the integral of a function. If the integral is not a derivative of some known functions, the corresponding integrals cannot be determined. In general, we use the following three types of integration: (i) Integration by substitution (ii) Integration by parts (iii) Integration by partial fractions. Now we shall discuss about the integration by the substitution method. Type 4:  Integrals of the form Ú  f  (ax + b) dx Rule:  Simply put a x + b = t. Type 5:  Integrals of the form dx ______   ______    ​. Ú  ​ _________________ ​ ax   +  b   ​  ±  ÷ ​ ax   – d   ​ ÷ Rule:  Simply rationalize the denominator. Type 6:  Integrals of the form ____

f (x)



____     dx, Ú  ​ _____  ​   dx. Ú  f (x) ​÷g(x) ​  ​ g(x) ​    

Rule:  Put

g(x) = t2

÷

f ¢(x) Type 7:  Integrals of the form Ú   ​ ____ ​ dx f(x) Rule:  Put f (x) = t Formula 5





| 

 |  | | 

|

1 + sin x = log ​ ​ ________ ​   ​+ c cos x    p  1   + cos ​ __ ​   ​  – x  ​ 2 = log ​​ ______________        ​  ​ + c p  __ sin ​ ​   ​  – x  ​ 2 p  x 2cos2 ​ __ ​   ​  – __ ​    ​  ​ 4 2 = log ​​ _____________________         ​  ​ + c p  x p  x 2 sin ​ __ ​   ​  – __ ​    ​  ​ cos ​ __ ​   ​  – __ ​    ​  ​ 4 2 4 2

( 

( 





| 

 | | 

Proof sin x 1. Ú  tan x dx = Ú  ​ ____  ​ dx cos x  = – log |cos x| + c = log |sec x| + c

|

(  ) (  ) (  ) (  ) |

|

Type 8:  Integrals of the form

Ú  (f (x))n ◊ f ¢(x) dx



(  ) |

|

1 – cos x = log ​​ _______     ​   ​+ c sin x x  2sin2 ​ __ ​   ​   ​ 2 = log ​ ______________ ​        x x  ​  ​ + c 2 sin ​ __ ​    ​  ​ cos ​ __ ​    ​  ​ 2 2 x = log ​ tan ​ __ ​    ​  ​  ​ + c 2

2. Ú  cot x dx = log |sec x| + c

)|

)

= log |cosec x – cot x| + c



( 

) ( 

)

cosec x(cosec x  –  cot x) 4. Ú  cosec x dx = Ú  ​ ____________________         ​dx (cosec x – cot x)

Rule:  Put f (x) = t Type 9:  Integrals of the form

|  | 

|

(  ) | = log ​ tan ​( __ | ​ p 2 ​  – (​ __​ p 4 ​  – __​ 2x  ​ )​ )​ |​ + c = log ​ tan ​( __ | ​ p 4 ​  + __​ 2x  ​ )​ |​ + c

1. Ú  tan x dx = log |sec x| + c

3. Ú  sec x dx = log |sec x + tan x| + c p  x = log ​ tan ​ __ ​   ​  + __ ​    ​  ​  ​ + c 4 2 4. Ú  cosec x dx = log |cosec x – cot x| + c x = log ​ tan ​ __ ​    ​  ​  ​ + c. 2

( 

)

)

p  x = log ​ cot ​ __ ​   ​  – __ ​    ​  ​  ​ + c 4 2





( 

Ú  sinm x cos nx dx, where m and n are real numbers.

Case I:   When m is odd and n is even Rule:  Put cos x = t Case II:   When m is even and n is odd Rule:  put sin x = t. Case III:   When m and n both are odd Rule:  Put either sin x = t or cos x = t Case IV:   When m and n both are even Rule:  In this case, we shall use the following formulae:

Indefinite Integrals 



1 + cos 2x = 2 cos2x 2

or 1 – cos 2x = 2 sin x. Case V:   When m is odd and n is zero Rule:  put cos x = t Case VI:   When m is zero and n is odd Rule:  Put sin x = t Case VII:   When m is even and n is zero. Rule:  In this case we shall use the following formulae: 1 + cos 2x = 2 cos2x

1 – cos 2x = 2sin2x.

Case VIII:   When m is zero and n is even Rule:  In this case, we shall use the following formulae:

1 + cos 2x = 2 cos2x

= – 2k (say), where k Œ N



Rules 1. Divide the numerator and denominator by cos2k x 2. Put tan x = t. Formula 6 dx x 1 1. Ú  ​ ______     ​ = __ ​   ​ tan– 1  ​ __ ​ a ​  ​ + c x2 + a2 a

|

x–a 1 ___ ​    ​ log ​ ​ _____   ​  ​ + c x+a 2a



dx 2. Ú  ​ ______     ​ = 2 x – a2



dx ______ 3. Ú  ​ _______     ​ = log ​ x + ÷ ​ x  2 + a2 ​   ​+ c 2 2  ​ ÷​ x  + a  



dx ______ 4. Ú  ​ ________    ​  = log ​ x  + ​÷x  2 –  a2 ​   ​ + c. 2 2 ÷​ x  – a  ​ 



| 

_______

| 

______

|

|

(  )

dx x ______ 5. Ú  ​ ________    ​  = sin– 1 ​ __ ​ a ​  ​ + C. 2 2 ÷​ a  –  x  ​  Note:  You should keep in mind that, the coefficient of x2 must be unity every time. If not, first we make the coefficient of x2 be unity.

dx Type 10:  Integrals of the form Ú  ​ ___________       ​ ax2  +  bx + c Rules 1. Make the co-efficient of 2 unity 2. Express the denominator as a sum or difference of two perfect squares. Type 11:  Integrals is of the form

Type 12:  Integrals of the form

 dx ___________      ​. Ú ​ ____________ 2 ​÷ax   + bx    +  c ​

Rules 1. Make the coefficient of x2 unity. 2. Express the term under the square root as a sum or difference of two perfect squares. dx dx ______ 3. Use Ú  ​ ______  2   ​ or Ú  ​ _______    ​  2 2 x ±a ​÷a    –  x2 ​ 



| 

_______

(  )

|

x = log ​ x + ÷ ​ x  2 ± a2 ​   ​ + c or sin–1 ​ __ ​ a ​  ​ + c

Type 13:  Integrals of the form

f ¢(x)dx

___________________         ​, Ú  ​ ____________________ 2

​÷a{f (x)}     ±     b{f (x)} ± c ​

dx ___________ i.e. reducible to Ú  ​ ____________      ​ 2     +  bx    + c ​ ÷​ ax

(  )

| 

d (Denominator) = Numerator + k 2. Then separate the Numerator into two terms and use dx     ​. Ú  ​ x______ 2 ± a2



1 – cos 2x = 2 sin2x. Case IX:   When m + n = – ve even integer

1.3

px + q      ​ dx. Ú  ​ ___________ 2 ax +  bx + c

Rules 1. Reduce the denominator in such a way that

Rules 1. Put f (x) = t 2. Apply (Type 12) Type 14: Integrals of the form

px + q

___________      ​ dx Ú ​ _____________ 2 

 ​÷ax   +  bx    +  c ​

Rules 1. Reduce the term under the square root in such a way that

d (ax2 + bx + c) = numerator + k

2. Separate the numerator into two terms and use



| 

_______

|

dx ______      ​ = log ​ x + ​÷x  2 ± a2 ​   ​+ c Ú  ​ ________ 2 2  ​ ÷​ x  ± a  

Type 15:  Integrals of the form

dx      ​, Ú  ​ ______________ 2 a sin x  +  b cos2x



 dx dx      ​, Ú  ​ _________      ​, Ú ​ a_________ ± b sin2x a ± b cos2x



dx    2   ​, Ú  ​ __________________ 2 a sin x ±  b cos x ± c

1.4  Integral Calculus, 3D Geometry & Vector Booster

dx _______________       ​, Ú  ​ (a sin x ± b cos x)2



dx          ​, Ú  ​ ____________________________ (a sin x ± b cos x)(c sin x ±  d cos x)



dx      ​. Ú  ​ __________ a  +  b sin2x

Rules

÷ a2 + b2 

sin x cos x   ​,   ​ ________     ​ Ú  ​ _______ sin 3x dx Ú cos 3x dx

Rules 1. First we cancel the common factors from the numerator and the denominator. 2. Divide the numerator and the denominator by cos2x. 3. Put tan x = t. Type 17:  Integrals of the form

dx dx      ​,   ​ _________    ​  , Ú  ​ _____________ a cos x  +  b sin x Ú a  +  b sin x



dx dx      ​,   ​ ________________        ​. Ú  ​ a_________ + b cos x Ú a cos x +  b sin x + c

Rules





| 

Type 19:  Integrals of the form

| 

( 

(  ) |

)|

a sin x +  b cos x       ​ dx. Ú  ​ _____________ c sin x + d cos x

Rules 1. Write the numerator = l (denominator) + m (denominator). 2. Compare the coefficients of sin x and cos x 3. Solve for l and m. Type 20:  Integrals of the form

a sin x +  b cos x + c     ​ dx. Ú  ​ ________________ p sin x + q cos x + r

Rules 1. Write numerator = l (denominator) + m (denominator) + n 2. Compare the coefficient of sin x, cos x and the contant term. 3. Find the values of l, m and n. Type 21:  Integrals of the form

(  ) (  )

x 2 tan ​ __ ​    ​  ​ 2 1. Replace sin x by ___________ ​      ​, x  2 __ 1  +  tan  ​ ​    ​  ​ 2

Rules

(  ) (  )

x 1  – tan  ​ __ ​    ​  ​ 2 cos x by ___________ ​     x  ​. 1 + tan2 ​ __ ​    ​  ​ 2 2

2. Reduce the denominator as sin (A ± B) or cos (A ± B) 3. use p  x ​   ​  + __ ​    ​  ​  ​ + c Ú  sec x dx = log ​ tan ​ __ 4 2 or Ú  cosec x dx = log ​ tan ​ __​ 2x  ​  ​  ​ + c  ​

Rules 1. Divide the numerator and denominator by the highest power of cos x. 2. Put tan x = t. Type 16:  Integrals of the form

1. Divide the numerator and the denominator by​ ______

(cos x ± sin x)

    ​  dx Ú  ​ ___________ f (sin2x)



1. Put sin x ± cos x = t



2. Use (sin x ± cos x)2 = 1 ± sin2 x

Type 22:  Integrals of the form 2

x x 2. Replace 1 + tan  ​ __ ​    ​  ​ in the numerator by sec2 ​ __ ​    ​  ​ 2 2 x 3. Put tan ​ __ ​    ​  ​ = t 2



x +1       ​ dx, Ú​ ___________ x4 ± l x2  +  1



dx x –1       ​ dx, Ú  ​ ___________       ​, Ú​ ___________ 4 2 4 x ± lx   +  1 x ± lx2 +  1

dx dx 4. Use Ú  ​ _______    ​  or Ú  ​ ______     ​. x2  +  a2 x2 – a2

where

l Œ R

2

(  )

(  )

Type 18:  Integrals of the form

dx      ​, Ú  ​ _____________ a cos x  +  b sin x _______

where

0 < ​÷a  2 +  b2 ​  £2

(  )

2

Rules 1. Divide the numerator and the denominator by x2. 2. Reduce the denominator in such way that 1 d ​ x ± __ ​ x ​  ​ = numerator ± k dx 3. Use Ú  ​ _______    ​  . 2 x ± a2

( 

)

1.5

Indefinite Integrals 

Type 23:  Integrals of the form

Type 24:  Integrals of the form

Ú  tan x dx, Ú  cot x dx



Ú  (tan x + cot x) dx

Type 25:  Integrals of the form

Type 26:  Integrals of the form

Rules 1. Put tan x or cot x = t2 2. Apply the form 24. by

Ú  ex {(  f  + g) + ( f ¢ + g¢ )} dx = ex (  f  + g) + c



Ú  (tan x – cot x) dx.

5. Integration

Ú  ex  {f (x) + f ¢(x)} dx = ex f (x) + c

Ú  ekx {k f (x) + f ¢(x)} dx = ekx f (x) + c



Type 27:  Integrals of the form

Parts

If u and v be two functions of x, then

{ 

}

du Ú  (u v) dx = u  Ú  v dx – Ú ​ ___ ​    ​ Ú  v. dx  ​ dx dx



Ú  eax sin bx dx, Ú  eax cos bx dx.

Rule 1

Ú  eax sin bx dx eax  = _______ ​  2  2 ​  (a sin bx – b cos bx) + c a   +  b



Proof:  We know that, d ​ ___  ​   ( f (x).g(x)) = f (x) . g¢(x) + g(x) .  f ¢(x) dx fi

Ú  [f (x) . g¢(x) + g(x) .  f ¢(x)] dx = f (x) . g(x)



Ú  ( f (x) . g¢(x)dx = f (x) g(x) – Ú  g(x) .  f ¢(x)dx

Put

d f (x) = u, and ___ ​    ​  [g(x)] = v dx

fi Thus,



of the

eax     = ​ _______   ​  (a cos bx – b sin bx) + c a2 + b2

Proof:  Let

u = Ú  eax cos bx dx

and

v = Ú  eax sin bx dx

Then

u + i v



= Ú  eax cos bx dx + i  Ú  eax sin bx dx

Ú v dx = g(x)



= Ú  eax (cos bx + i sin bx) dx

du ​    ​ Ú  v . dv }​ dx. Ú  (u v) dx = u Ú  v dx – Ú  ​{ ___ dv



= Ú  eax◊ eibxdx



= Ú  eax + ibxdx



= Ú  e(a + ib)xdx



e(a + ib)x = ______ ​     ​ + c a + ib



(a –  ib)e(a + ib)x = _____________ ​         ​ + c (a2 + b2)

i.e. the integral of the product of two function = (First function) × (Integral of the second function) – Integral of [(derivative of the first function) × (Integral of the second function)]

6. Choice

Ú  eax cos bx dx.

Rule 2

first function

and the

second function

1. We can choose the first fnction as the function which comes first in the word ILATE, where I stands for inverse trigonometric functions L stands for logarithmic functions A stands for algebraic functions T stands for trigonometric functions E stands for exponential functions. 2. If the integrand be logarithmic functions or inverse trigonometric functions alone, take the second function as unity. 3. If both the functions are trigonometric, consider the second function, whose integral being simpler and the other as the first function.

Comparing the real and imaginary part, we get the required result. Formula 7 ______

______



x a2 x 1. Ú  ​÷a  2 – x2 ​   dx = __ ​    ​ ​÷a  2 – x2 ​  + __ ​   ​  sin– 1 ​ __ ​ a ​  ​ + c 2 2



2. Ú  ​÷x  2 + a2 ​   dx

(  )

_______

_______

______

x a2 = ​ __  ​ ​÷x  2 + a2 ​  + __ ​   ​  log ​ x + ​÷x  2 –  a2 ​   ​+ c 2 2 ______ 3. Ú  ​÷x  2 – a2 ​   dx _______ ______ x a2 = ​ __  ​ ​÷x  2 – a2 ​  – __ ​   ​  log ​ x + ÷ ​ x  2 – a2 ​   ​+ c 2 2



|  | 

|

|

1.6  Integral Calculus, 3D Geometry & Vector Booster Proof:

1. Let

fi fi fi fi fi fi fi

2. Let

______

I = Ú  ​÷a  2 – x2 ​   dx ______

( 

)

1 ______ × – 2x I = ​÷a  2 – x2 ​       ​ ◊ x  ​ dx Ú  dx – Ú  ​ ​ ________ 2 ​÷a  2 – x2   ​ ______

( 

)

2 _______ I = x ​÷a  2 – x2 ​  + Ú  ​ x ​ ________    ​   ​ dx 2 ÷​ a  – x2 ​ 

______

( 

______

)

2

2

2

fi 3. Let



______

______

| 

______

| 

______

|

______

|

|

fi  2I = x ​÷x  2 – a2 ​  – a2 log ​ x + ÷ ​ x  2 –  a2   ​  ​ + c

| 

___________

(  ) (  ) (  )

I = Ú   ​÷x  2 +  a2   ​  dx

___________

_______

( 

_______

( 

)

)

( 

  2 + bx    + c ​  dx Ú  ( px + q) ÷​ ax



Rules 1. Reduce (px + q) as a derivative of (ax2 + bx + c) 2. Use ______

)

_______ (x2 + a2) – a2 ______ = x ​÷x  2 + a2 ​  – Ú  ​ ​ ____________        ​  ​ dx  ​ ÷​ x  2 + a2 

_______

dx Ú  ​÷x  2 ± a2 ​  dx. Ú  ​÷a  2 – x2 ​ 



7. Partial Fractions

A special type of Aational (proper) function is known as the partial fraction, where the degree of the numerator < degree a  dx ______ = dx + Ú  ​ _______     ​ of denominator. Ú  ​÷x  2 + a2 ​     ​ ÷​ x  2 + a2  ______ ______ f (x) h (x) = ____ ​     ​.  = x ​÷x  2 + a2   ​ – I + a2 log ​ x + ÷ ​ x  2 + a2   ​  ​ + c Let g(x) _______ x ​÷x  2 + a2 ​  –

_______

2

| 

2I =

_______ x ​÷x  2 + a2 ​   + a2 log ​ x

| 

|

______

|

+ ​÷x  2 + a2   ​  ​ + c

_______

_______

x a2 I = __ ​    ​ ​÷x  2 + a2 ​  + __ ​   ​  log |x + ÷ ​ x  2 +  a2 ​  |+c 2 2 ______



= x ​÷x  2 – a2 ​  – I – a2 log ​ x + ÷ ​ x  2 – a2   ​  ​ + c

2

x2 = x ​÷x  2 + a2 ​  – Ú  ​ _______ ​  ______     ​  ​ dx  ​ ÷​ x  2 – a2 





dx   2 + bx    + c ​  dx Ú  ​÷ax ______ I = x ​÷a  – x  ​  – Ú  ​÷a  – x  ​   dx + a Ú ​ _______    ​  2 2 ÷​ a  – x  ​ Rules ______ x 1. First we make the coefficient of x2 unity I = x ​÷a  2 – x2 ​  – I + a2 sin–1 ​ __ ​ a ​  ​ + C 2. Express the term under the square root as a sum or ______ x difference of two perfect squares. 2 2 2 – 1 __ 2I = x ​÷a  – x  ​  + a sin  ​ ​ a ​  ​ + c _______ ______ 2 2 ______ 2 3. Use   ​ x   ± a  ​     d x or   ​ a  2 – x2 ​  dx ÷ ÷ Ú Ú x a x 2 2 –1 I = __ ​    ​ ÷ ​ a  – x  ​  + __ ​   ​  sin  ​ ​ __   ​  ​ + c a 2 2 Type 29:  Integrals of the form ______ 2







Type 28:  Integrals of the form

1_______ × 2x    = ​÷x  2 + a2 ​       ​◊  x  ​ dx Ú  dx – Ú  ​ ​ _________ 2 ​÷x  2 + a2 ​ 



a2 ______ = x ​÷x  2 – a2 ​  – Ú  ​÷x  2 – a2 ​  dx – Ú  ​ ________      ​dx  ​ ÷​ x  2 – a2  

______





______



x a2 fi  I = __ ​    ​ ​÷ x2 – a2 ​  – __ ​   ​  log ​ x + ÷ ​ x  2 – a2 ​   ​+ c 2 2

(a2 – x2) – a2 ______ I = x ​÷a  2 – x2 ​  – Ú  ​ ​ ____________        ​ ​ dx  ​ ÷​ a  2 – x2  ______

______



I = Ú  ​÷x  – a  ​    dx 2

2

______

( 

)

1______ × 2x = ​÷x  2 – a2 ​       ​ ◊ x  ​ dx Ú  dx – Ú  ​ ​ ________ 2​÷x  2 – a2   ​ ______

( 

)



x2 = x ​÷x  – a  ​  – Ú  ​ _______ ​  ______      ​  ​ dx  ​ ÷​ x  2 – a2 



______ (x2 – a2)  +  a2 ______ = x ​÷x  2 – a2 ​  – Ú  ​ ​ ____________        ​  ​ dx  ​ ÷​ x  2 – a2 

2

2

( 

)

Type I:  When the denominator is expressible as the product of non-repeating linear factors. Let g(x) = (x – a1) (x – a2) (x – a3) ... (x – an) f (x) Then ____ ​     ​  g(x) A3 An A1 A2 = _______ ​      ​ + _______ ​      ​ + _______ ​      ​ + ... + _______ ​      ​ (x – a1) (x – a2) (x – a3) (x – an) where A1, A2, ..., An are constant and can be determined by equating the numerator on RHS to the numerator on LHS and then substituting x = a1, a2, a3, ..., an Type II:  When the denominator is expressible as the product of linear factors such that some of them are repeating. Let

g(x) = (x – a1)k(x – a2)(x – a3)...(x – an)

Indefinite Integrals 

A1 A1 A1 f (x) _______ Then ​ ____   ​ = ​      ​ + ​ _______     ​ + ... + _______ ​      ​ g(x) (x – a1) (x – a1)2 (x – a1)k Bn B1 B2 + ​ _______     ​ + ​ _______     ​ + ... + _______ ​      ​ (x – a2) (x – a3) (x – an) Type III:  When the denominator is expressible as the product of linear and quadratic factors but non-repeating. Let

g(x) = (x – a1)(x – a2)(x – a3) ... (ax2 – bx + c)

A3 A1 A2 f (x) _______ Then ​ ____   ​ = ​      ​ + _______ ​      ​ + _______ ​      ​ g(x) (x – a1) (x – a2) (x – a3) Type IV:  Integrals of the form

Ú  cosec2r + 1x dx = Ú  cosec2r – 1x . cosec2x dx and then integrate it by parts, where consider cosec2x as the first function. consider sec2x as the second function.

2

Rules 1. Put x2 = t 2. Donot find its derivative 3. Use the concept of partial fractions. Type V:  Integrals of the form

Rules 1. If m is even or odd integer and n is even positive integer, put cot x = t. 2. If m is odd positive integer and n Œ even positive integer, put cosec x = t. 3. If m = 0 and n = 2 r + 1, " r Œ N, write

Bx + C + ... + ​ ___________      ​ Type 3:  Integrals of the form ax2 +  bx + c dx dx      ​, Ú  ​ ____________       ​, Ú  ​ ________ (n – 1) ______ x(xn + 1) 2 n ​  n    ​  x (x + 1​)​ ​

x       ​ dx Ú  ​ ______________ 2 (x + a)(x2  +  b)

(x2 + a)(x2  +  b)        ​ dx Ú  ​ ______________ (x2 + c)(x2 + d)

Rules 1. Put x2 = t 2. Do not find its derivative 3. Reduce it into a partial fraction (degree of the numerator < Degree of denominator) 4. Use the concept of partial fractions.

dx      ​, where n Œ N Ú  ​ ___________ n x (1  + xn)1/n



Rules 1. Take common xn from the denominator.

1 + x– n = t.

2. Put

Type 4:  Integrals of the form m



x    ​  dx, where m, n ŒN Ú  ​ ________ (ax  +  b)n

Rule  put

ax + b = t.

Type 5:  Integrals of the form dx Ú  ​ __________      ​, where m, n ŒN xm(ax  +  b)n

( 

)

ax +  b Rule  put ​ ______ ​  x    ​  ​ = t

Advanced Level

Type 6:  Integrals of the form

Type 1:  Integrals of the form





Ú  tanmx . secnx dx

Rules 1. If is even or odd integer and n is even positive integer, put tan x = t 2. If m is odd positive integer and n Œ even positive integer, put sec x = t. 3. If m = 0 and n = 2 r + 1, " r Œ N, write

Ú  sec2r + 1x dx = Ú  sec2r – 1x . sec2x dx

and then integrate it by parts, where Type 2:  Integrals of the form

Ú  cotmx . cosecnx dx

1.7

Rules

(  ( 

dx      ​, where m, n ŒN Ú  ​ (x_____________ – a)n(x –  b)n

) )

x–a 1. ​ _____ ​   ​  ​ = t, when m < n x–b x –  b 2. ​ _____ ​ x – a ​  ​ = t, when m > n

Type 7:  Integrals of the form dx      ​, where n ŒN Ú  ​ _________ x(a + bx n) 1 xn = __ ​   ​  t Type 8:  Integrals of the form Rule:  put



2m + 1

x ________     ​dx Ú  ​ (ax 2 + b)n

1.8  Integral Calculus, 3D Geometry & Vector Booster Rule  Put

(a x2 + b) = t

Rule  Put (ax + b) = t p, where p is the LCM of m and n.

Type 9:  Integrals of the form

Type 3:  Integrals of the form

(a sin x  + b)

      ​  dx Ú  ​ ___________ (a +  b sin x)2



1

Rules 1. Divide the numerator and the denominator by cos2x 2. Put a sec x + b tan x = t. Type 10: Integrals of the form

Rule  Put

dx ___________       ​ Ú  ​ (a + b sin x)2

Rule  Put

L(x) = t2



dx_____      ​ Ú ​ __________ L (x)​  Q (x) ​    

Rule Put

1 L (x) = __ ​   ​  t

( 

)



)

______ n

 ​ )​​ ​ }​ dx Ú  ​{ f  ​​( x ± ​÷x  2 + a2 

Type 8:  Integrals of the form

Functions

(  ( 



dx      ​, where m + p = N Ú  ​ __________ xm(a +  bx)p

and

m+p>1

Rule  Put

a + bx = t x.

Type 9:  Integrals of the form

Type 1:  Integrals of the form

))



a  ​ n ​  ax +  b __ ______  f  ​ x , ​​ ​   ​    ​​ ​  ​ dx,   Ú cx + d

where

a, b, c, d, a ,

Œ R

)

ax +  b Rule  Put ​ ______ ​   ​   ​ = t n cx + d Type 2:  Integrals of the form Ú  f  ​( x, (ax + b)

Q2(x) 1 x = __ ​   ​  or t2 = _____ ​   ​  t Q1(x)

______

Rules 1. Express the numerator = l (Denominator) + m × derivative of (Denominator) 2. Compare the coefficients of ex and e– x 3. Find l and m.

( 

2 

Rule Put ​( x ± ​÷x  2 + a2   ​ )​ = t

a e +  b e ​  x       ​  ​ dx Ú ​ __________ p e + q e– x

of Irrational

÷

Type 7:  Integrals of the form

Type 13:  Integrals of the form

8. Integration

dx_____      ​ Ú ​ ___________ Q (x)​  Q   (x) ​  1

a cos x  +  b t = ​ __________ ​     ​   ​ a + b cos x – x

÷

Type 6:  Integrals of the form

Rule  Put

x

÷

Type 5:  Integrals of the form

Type 12:  Integrals of the form dx ___________       ​ Ú  ​ (a + b cos x)2

( 

L2(x) = t 2 dx_____      ​ Ú  ​ _________ Q(x)​  L (x) ​    





2



a sin x  +  b Rule  Put ​ _________ ​  =t a + b sin x

Rule  put

÷

Type 4:  Integrals of the form

 (a cos x + b)

      ​  dx Ú ​ ____________ (a +  b cos x)2

Rules 1. Divide the numerator and the denominator by sin2x 2. Put a cosec x + b cot x = t. Type 11:  Integrals of the form

dx_____      ​ Ú  ​ __________ L (x)​ L   (x) ​ 

a /n

, (ax + b)

where m, n are positive integers.

 )​ dx,

b /m

dx      ​, where m, n ŒR Ú  ​ _____________ L (x))m(L  (x))n 1

2

Rules

L1(x) 1. If n > m, Put ​ _____ ​ = t L2(x)



L 2 (x)  2. If m > n, Put ​ _____ ​  =t L 1(x)

dx ______ Type 10:  Integrals of the form Ú  ​ ________      ​ x ​÷ax   n + b   ​ Rule  Put

axn + b = t2

Indefinite Integrals 

Type 11:  Integrals of the form dx       ​ where a, b Œ R – {0} Ú  ​ (a__________ + bx2)3/2 Rule  Put

1 x = __ ​   ​  t



dx ___________        ​, Ú  ​ __________________ r (x – k)  ​÷ax   2 + bx    + c ​

where

r Œ N and k Œ R – {0}

1 Rule Put x – k = __ ​   ​  t Type 13:  Integrals of the form

___________

  2 + bx   +  c ​ )​ dx Ú  R ​( x, ​÷ax 

Rules

___________

__



1. Put ​÷ax    2 + bx    + c ​ = t ± x ​÷a    ​,  if a > 0



2. Put ​÷ax    2 + bx   + c ​ = t x ± ​÷c    ​,  if c > 0,



3. Put (x – a) t, or (x – b) t, where a and b are the real roots of ax 2 + bx + c.

___________

Type 12:  Integrals of the form

(ax + b)

___________         ​  dx Ú ​ ___________________ 2

(cx + d) ​÷px   + qx    + r ​

Rules 1. Put (ax + b) = A(cx + d) + B 2. Find the values of A and B 3. Reduce the given integral into two separate integrals. Type 14:  Integrals of the form (ax2 + bx + c) ___________         ​  dx Ú ​  ___________________ (dx +  e) ​÷px   2 + qx   +  r ​

1.9

__

___________ ​÷a x    2 + bx   + c ​ =

10. Integration

by

Reduction Formula

A reduction formula is defined as a formula or a connection by means of which the power of the integrand is reduced, therefore, making the integration easier. The basic technique of obtaining a reduction formula is the integration by parts. In some cases the method of differentiation or other special devices is adopted. Type I:  Reduction formula for Ú  sinnx dx Soln.  Let In = Ú  sinnx dx

= Ú  sinn – 1x ◊ sin x dx = sinn – 1x Ú  sin x dx – Ú   (n – 1)sinn – 2x (– cos2x) dx = sinn – 1x(– cos x) + (n – 1) Ú  sinn – 2x (1 – sin2x) dx = sinn – 1x(– cos x) + (n – 1) I n – 2 – In

Rules 1. Put (ax2 + bx + c) = L (dx + e) (2px + q) + M(dx + e) + N 2. Compare the co-efficents of the like terms of both the sides and find L, M and N. 3. Integrate the given integral.

Thus, (1 + n – 1) In = – cos x ◊ sinn – 1x + (n – 1)In – 2

Type 15: Integrals of the form

Type 2:  Reduction formula for Ú  cosnx dx



Ú  xb  (a + bx g  )a  dx

Rules 1. If a Œ I  +, expand the integral by the concept of binomial expansion. 2. If a Œ I  –, we put x = t p, where p is the LCM of the denominator of b and g.



b+1 3. If ​ _____       ​ Œ I and a is a fraction, put (a + bxg ) = t p,   where p is the denominator of a . b + 1 4. If ​ _____     ​ + a Œ I, put (a + bxg ) = t  pxg, where p is   the denominator of a .

9. Euler’s Substitution Type 16:  Integrals of the form



nIn = – cos x ◊ sinn – 1x + (n – 1) In – 2



cos x ◊ sinn – 1x n–1 In = ___________ ​  ​ + ​ _____ ​  n    ​  ​ In – 2 n      

(  )

which is the required reduction formula.

Soln.  Let In = Ú  cosnx dx = Ú  cosn – 1x ◊ cos x dx = cosn – 1x Ú  cos x dx + (n + 1) Ú  cosn – 2x ◊ sinnx dx = cosn – 1x ◊ sin x + (n + 1) Ú  cosn – 2x ◊ (1 – cos2x) dx = cosn – 1x ◊ sin x + (n + 1) I n – 2 – In Thus, (1 + n + 1)In = cosn – 1x ◊ sin x + (n + 1) I n – 2 + C

( 

)

cosn – 1x ◊ sin x n+1 fi  In = ___________ ​      ​   + ​ _____ ​     ​  ​ I  + C (n + 2) n + 2 n – 2 which is the required reduction formula. Type 3:  Reduction formula for Ú  tann x dx Soln.  Let

In = Ú  tann x dx

1.10  Integral Calculus, 3D Geometry & Vector Booster 2 sin(n –  1) x = ___________ ​      ​  + In – 2 (n – 1)



= Ú  tann – 2x ◊ tan2 x dx





= Ú  tann – 2x ◊ (sec2 x – 1)dx

which is the required reduction formula.



= Ú  tann – 2x ◊ sec2 x dx –  Ú  tann – 2x dx

dx Type 7:  Reduction formula for Ú  ​ ________      ​ 2 (x +  k)n



tann – 1x = ​ ______ ​   ​    ​ –  In – 2 + C n–1

dx Soln. Let In = Ú  ​ ________      ​ (x2  + k)n

( 

)

which is the required reduction formula.

dx Then In – 2 = Ú  ​ __________      ​ 2 (x   +  k)n – 1

Type 4:  Reduction formula for Ú  cot x dx n

Soln.  Let

( 

In = Ú  cotnx dx

)

1 = Ú  ​ ___________ ​  2     ​  ​ dx (x   +  k)n – 1 ◊1



= Ú  cotn – 2x ◊ cot2 x dx



= Ú  cotn – 2x ◊ (cosec2 x – 1) dx

– (n – 1) 1 = _________ ​  2  n – 1   ​ Ú  1 ◊ dx – Ú  ​ ​ ________      ​ ◊ 2x ◊ x  ​ dx (x + k) (x2 +  k)n



= Ú  cotn – 2x ◊ cosec2 x dx –  Ú  cotn – 2x dx

x x2 = __________ ​  2      ​ + 2(n – 1) Ú ​ _______ ​  2   n   ​  ​ dx n – 1 (x + k) (x + k)



( 

( 

)

( 

n – 1

cot x = – ______ ​   ​    – I n – 2 + C n–1

)

)

(x2 + k) –  k x ___________ = ​ _________      ​ + 2 (n – 1)    ​ ​         ​  ​ dx Ú (x2 + k)n – 1 (x2 + k)n

which is the required reduction formula.

( 

)

x k 1 = _________ ​  2  n – 1   ​ + 2 (n – 1) Ú ​ __________ ​  2  n – 1    ​ – ​ ________    ​   ​ dx 2 (x + k) (x + k) (x + k)n

Type 5:  Reduction formula for Ú  secnx dx Soln.  Let In = Ú  sec x dx n



= Ú  secn – 2x ◊ sec2 x dx



= secn – 2x Ú  sec2 x dx – Ú  (n – 2)secn – 2x ◊ tan2 x dx



= secn – 2x tan x – (n – 2) Ú  secn – 2x ◊ (sec2 x – 1)dx



= secn – 2x tan x – (n – 2) Ú  (secnx – secn – 2 x)dx



= secn – 2x tan x – (n – 2) In + (n – 2) In – 2

x = _________ ​       ​ + 2 (n – 1) (In – 1 – k In) (x2 + k)n – 1 x = _________ ​       ​ + 2(n – 1)In – 1 – 2(n – 1)k In (x2 + k)n – 1 fi  2 (n – 1) k In

x = _________ ​       ​ + 2(n – 1) In – 1 – In – 1 (x2 + k)n – 1

secn – 2x tan x n–2 fi  In = __________ ​      ​   + ​ _____ ​     ​  ​ I +C n–1 n – 1 n – 2



x = _________ ​  2  n – 1   ​ + (2n – 3) In – 1 (x + k)

which is the required reduction formula.

x fi  In = __________________ ​     2     ​ + 2(n – 1) k (x + k)n – 1

fi  (n – 2) In = secn – 2x  tan x – (n – 2) In – 2

( 

)

sin nx Type 6:  Reduction formula for Ú  ​ _____ ​    dx sin x sin nx Soln.  Let In = Ú  ​ _____ ​    dx sin x

( 

]

dx x = _________ ​  2  n – 1   ​ + 2 (n – 1) In – 1 – In – 1  –   ​ k Ú  ​ _______      ​  ​ 2 (x + k) (x + k)n ​

( 

)

1 2n – 3 __ ​   ​ ​ ______ ​   ​   ​ I k 2n – 2 n – 1

which is the required reduction formula. Type 8:  Reduction formula for Ú  x m(log x)n dx

)

sin(n – 2)x = Ú  ​ 2cos(n – 1)x + __________ ​      ​   ​ dx sin x

Soln. Let Im, n = Ú  x m(log x)n dx

[   sin nx – sin (n – 2)x = 2 cos (n – 1) x sin x

]

( 

(  )

)

1 x m + 1 = (log x)n Ú  x m dx – Ú  ​ n(log x)n – 1 ​ __ ​ x ​  ​ ​ _____     ​  ​ dx m+1

sin(n –  2)x sin n x fi ​ _____    ​ = ​ 2 cos (n – 1)x + __________ ​      ​   ​ = (log x)n, sin x sin x ​

x m + 1 n _____ ​       ​ – _____ ​       ​   ​( x m(log x)n – 1 )​ dx m+1 m+1 Ú

Indefinite Integrals 

1.11

x m + 1 n = (log x)n, _____ ​       ​ – ​ _____     ​ I m + 1 m + 1 m, n – 1

m m – 1   – ​ __ n ​  Ú  – cos  x(sin nx cos x – sin(n – 1)x) dx

x m + 1 n fi  Im, n – 1 = (log x)n, _____ ​       ​ – _____ ​       ​ I m + 1 m + 1 m, n – 1 which is the required reduction formula.

cosmx ◊ cos nx __ m = – ​ ___________ – ​ n ​  Ú  cos mx sin nx dx n     ​  m m – 1   + ​ __ n ​  Ú  cos  x sin (n – 1) x dx

Type 9:  Reduction formula for

Ú  x m(1 – x)n



cosmx ◊ cos nx __ m m = – ​ ___________ – ​ n ​  Im, n + __ ​ n ​  Im – 1, n – 1 n     ​ 

Im, n = Ú  x m(1 – x)n dx

Soln. Let = (1 – x)

n

( 

Ú  x   dx + Ú  ​ n(1 – x) m

m + 1

( 

m fi ​ 1 + __ ​ n ​   ​ Im, n

)

x  ◊ _____ ​       ​  ​ dx m+1

n – 1

x m + 1 n = (1 – x)n ​ _____     ​ + ​ _____     ​    [x m + 1 ◊ (1 – x)n – 1] dx m + 1 m + 1Ú x m + 1 n = (1 – x)n  ​ _____     ​ + _____ ​       ​    x m + 1 . (1 – x)n – 1dx m + 1 m + 1Ú

cosmx ◊ cos nx __ m = – ​ ___________ + ​ n ​   Im – 1, n – 1 n     ​ 



cosmx cos nx _______ m Im, n = – ​ ___________     ​  + ​       ​ I (m + n) (m + n) m – 1, n – 1

Note: Similarly, we can easily formulate the reduction formula for m x sin nx m __________        ​ + _______ ​       ​  I Ú  cosmx cos nx dx = ​ cos m+n (m + n) m – 1, n – 1

x m + 1 _____ n = (1 – x)n  ​ _____     ​ + ​       ​ m+1 m+1

Type 11:  Reduction formula for

Ú  [x m ◊ (1 – x)n – 1 ◊ {– 1(1 – x)}] dx



x m + 1 n = (1 – x) _____ ​       ​ + _____ ​       ​ [I – Im, n] m + 1 m + 1 m, n – 1 n

m + 1

x  n n = (1 – x)n _____ ​       ​ + _____ ​       ​ I – _____ ​       ​ –  Im, n m + 1 m + 1 m, n – 1 m + 1 n fi ​ 1 + _____ ​       ​  ​ I m + 1 m, n

( 



which is the required reduction formula.

x m + 1 n = (1 – x)n ​ _____     ​ + _____ ​       ​    [x m . (1 – x)n – 1 ◊ x] dx m + 1 m + 1Ú



)

)

m + 1

x  n _____

n = (1 – x)  ​       ​ + _____ ​       ​ I m + 1 m + 1 m, n – 1

Ú  sinmx sin nx dx

Soln. Let Im, n = Ú  sinmx sin nx dx

= sinmx  Ú  sin nx dx

( 

)

cos n x   –  Ú  ​ m sinm – 1x ◊ cos x ◊ – ​ ______ ​  ​ dx n   

sinmx ◊ cos nx = – ​ ___________ n     ​ 

x m + 1 (1  –  x)n n fi  Im, n = ____________ ​        ​ + ​ _________      ​  I (m + n + 1) m + n  +  1 m, n – 1

m m – 1   + ​ __ n ​  Ú  sin  x cos x cos nx dx

hich is the required reduction formula. w Type 10:  Reduction formula for



Ú  cosmx sin nx dx Soln. Let Im, n = Ú  cosmx  sin nx dx

m m – 1   + ​ __ n ​ Ú  sin  x (cos(n – 1)x – sin nx sin x)dx







= cosmx  Ú  sin nx dx

( 

)

cos nx   – Ú  ​ – ​ _____ ​  ◊ m ◊ cosm – 1x◊ – sinx  ​ dx n    cos nx = cosmx ​ – ​ _____ ​  ​ n   

( 

)

m m – 1   –  ​ __ n ​   Ú  – cos  x (cos nx sin x) dx

cosmx ◊ cos nx = – ​ ___________ n     ​ 

sinmx ◊ cos nx = – ​ ___________ n     ​ 

sinmx ◊ cos nx = – ​ ___________ n     ​ 

m m – 1   + ​ __ n ​  Ú  sin  x (cos(n – 1) x dx m m   – ​ __ n ​  Ú  sin  x sin nx dx sinmx ◊ cos nx m fi ​ 1 + __ ​ n ​   ​ Im, n = – ​ ___________ n     ​ 

( 



)

m + ​ __ n ​   Im – 1, n – 1

1.12  Integral Calculus, 3D Geometry & Vector Booster fi

sinmx ◊ cos nx _______ m Im, n = – ​ ___________     ​  + ​       ​ I (m + n) (m + n) m – 1, n – 1

Note: Similarly, we can easily formulate the reduction formula for sin nx m      ​ + _______ ​       ​ I   Ú  sinmx cos nx dx = sinmx ​ _______ (m + n) (m + n) m – 1, n – 1 Type 12:  Reduction formula for

which is the required reduction formula.

11. Inexpressible integrals functions, the integral is known as computable. But if an

n + 1

Soln. Let P = sin x cos x dp fi ​ ___  ​ = (m – 1) sinm – 2 x cos n + 2x dx   – (n + 1) sinm x cos nx 

sinm – 1x cosn + 1x  ______ m–1 = – Ú  ​ _____________        ​ + ​     ​ I m+n m + n m – 2, n



If an integral  Ú  f (x) dx as expressible in terms of elementary

Ú  sinmx cos nx dx m – 1

Ú  sinmx cosnx dx



integral  Ú  f (x) dx is not expressible in terms of elementary functions, the integral is known as inexpressible or ‘cannot be found’. Some inexpressible integrals are

= (m – 1) sinm – 2x cosnx ◊ cos 2x 

(i) Ú  ​ex​ ​ dx 2

​ ​  dx   – (n + 1) sinmx cos nx  (ii) Ú  ​e– x 2

____

(iii) Ú  ​÷sin x    ​ dx



= (m – 1) sinm – 2 x cosnx ◊ (1 – sin 2x )



  – (n + 1) sinmx cos nx  (iv)   ​÷_____     ​ dx Ú cos x  m – 2 n 2 = (m – 1) sin x cos x ◊ (1 – sin  x ) (v) Ú  x tan x dx



  – (n + 1) sinmx cos nx 

sin x (vi) Ú  ​ ____ ​   dx x    = (m – 1) sin x cos x  cos x (vii) Ú  ​ ____ ​   dx x      – (m – 1) sinmx cosnx – (n + 1) sinmx cos nx  dx (viii) Ú  ​ ____  ​  = (m – 1) sinm – 2 x cosnx log x _____   – (m – 1 + n + 1) sinmx cosnx (ix) Ú  ​÷1  + x3   ​ m – 2 n = (m – 1) sin x cos x ______ 3 ​ 1 + x3  (x) Ú  ÷   ​  dx   – (m + n) sinmx cosnx (xi) Ú  sin (x2) dx On integration, we get m – 2



(xii) Ú  cos (x2) dx

P = (m – 1) Ú  sinm – 2x cosnx dx – (m – n) Ú  sinmx cosnx dx



n

(m – n) Ú  sinmx cosnx dx

__________

= – P + (m – 1) Ú  sinm – 2x cosnx dx



x2 (xiii) Ú  ​ _____     ​dx 1 + x5

2 (xiv) Ú  ​÷1  – k2sin    x ​ dx

__

__

(xv) Ú  ​÷x    ​    cos ​÷x    ​  dx.

Exercises

(Problems based on Fundamentals) ABC of Integration



1. Evaluate: Ú  logx x dx



2. Evaluate: Ú  ​( ​3log ​ x2​ – 2​ log ​ x3​ )​

( 



m 3. Evaluate: Ú  ​ xm + mx + mm + __ ​ x ​   ​ dx



4. Evaluate: Ú  2  ◊ 3  ◊ dx



5. Evaluate: Ú  tan2x dx



6. Evaluate: Ú  cot2x dx



dx 7. Evaluate: Ú  ​ _________    ​  2 sin x cos2x

x

)

x

Indefinite Integrals 



( 

( 

) ) ( 

( 

))

3p  p  8. Evaluate: Ú  ​ 1+ tan ​ x + ___ ​   ​  ​  ​  ​ 1 + tan ​ __ ​   ​  – x  ​  ​ dx 8 8 9. Evaluate: Ú  (tan x + cot x)2dx



dx 10. Evaluate: Ú  ​ _________      ​ 1 +  cos2x

dx 31. Evaluate: Ú  ​ ________________________         ​ (tan x + cot x + sec x  +  cos x)

11. Evaluate: Ú ​( ​3log ​ 5x​ – 2​ log ​ 5x​ )​ dx

( 

) ) ( 

( 

( 

Type 2

))

p  p  12. Evaluate: Ú  ​ 1+ tan ​ __ ​   ​  – x  ​  ​ ​ 1+ tan ​ __ ​   ​  + x  ​  ​ dx 8 8

( 

)

81 + x  +  41 + x 13. Evaluate: Ú  ​ __________ ​         ​  ​ dx 22x x m 14. Evaluate: Ú  ​ __ ​ m  ​  + __ ​ x ​  + xm + mx  ​ dx

( 

)

(ax + b x)2 15. Evaluate: Ú  ​ ________     ​  dx axbx (2x + 3 x)2 16. Evaluate: Ú ​ ________      ​ 2x ◊ 3xdx p  1 1 17. If f ¢(x) = __ ​ x ​ + ______ ​  ______      ​ and f (1) = __ ​   ​ , find f (x). 2 2 ÷​ 1  – x  ​  18. If f ¢(x) = a cos x + b sin x and

(  )

p  f ¢(0) = 4, f ¢(0) = 3, f  ​ __ ​   ​   ​ = 5, find f (x). 2 dx 19. Evaluate: Ú  ​ _______     ​ 1 – sin x

) )

sin4x +  cos4x 20. Evaluate: Ú ​ ____________ ​          ​  ​ dx sin2x cos2x 6

6

sin x +  cos x 21. Evaluate:  ​ ____________ ​  2         ​  ​ dx sin x cos2x

( 

)

cos 2x –  cosa  22. Evaluate: Ú  ​ ____________ ​        ​  ​ dx cosx – cosa

(  Ú ( 

)

cos4x  –  sin4x 23. Evaluate: Ú  ​ ___________ ​  _________       ​  ​ dx ​ 1  +  cos4x   ​ ÷

)

1 +  tan2x 24. Evaluate:   ​ ________ ​     ​  ​ dx 1 + cot2x

( 

(1 + x)2 33. Evaluate: Ú  ​ ________      ​  dx x (1 + x2) x2  –  2 34. Evaluate: Ú  ​ ______    ​ dx x2 + 1 x–1 35. Evaluate: Ú​ _____________       ​  dx (x2/3  +  x1/3 + 1)

(  Ú (  Ú (  Ú (  Ú (  Ú (  Ú ( 

) ) )

x4 +  2 36. Evaluate: Ú  ​ ______ ​  2  ​   ​ dx x +2 x4 –  3 37. Evaluate:   ​ ______ ​  2  ​   ​ dx x +1 x6 – 1 38. Evaluate:   ​ ______ ​  2    ​  ​ dx x +1

)



___________

)

x4 40. Evaluate:   ​ _____ ​  2      ​  ​ dx x +1

)

x4 +  x2  + 1 41. Evaluate:   ​ ​ __________       ​  ​ dx x2 +  x + 1

)

x6 +  1 42. Evaluate:   ​ ______ ​  2    ​  ​ dx x   +  1 Type 3 43. Evaluate: Ú  sin– 1(sin x) dx 44. Evaluate: Ú  sin– 1(cos x) dx

( ÷ 

_________

)

cos x –  cos 2x 25. Evaluate: Ú  ​ ​ ___________         ​  ​ dx 1 – cos x

( 

x 32. Evaluate: Ú  ​ _____     ​ dx x+1

x8 +  x4 + 1 39. Evaluate:   ​ __________ ​  4       ​  ​ dx x + x2 + 1

Type 1

(  Ú ( 

(  ) cos x  –  cos2x 30. Evaluate: Ú  ​( ____________ ​          ​ ​ dx 1 – cosx )

cos 5x +  cos 4x 29. Evaluate: Ú  ​ _____________ ​          ​  ​ dx 1 + 2 cos3x

)

)

1 –  cos 2x 45. Evaluate: Ú  tan  ​ ​ _________ ​   ​ ​     ​ dx 1 + cos 2x – 1

( 

)

   + 2 ​ ÷​ x  4 + x– 4 ​  26. Evaluate: Ú  ​ ​ ____________      ​ dx 3 x

sin 2x 46. Evaluate: Ú  tan– 1 ​ _________ ​       ​  ​ dx 1 +  cos 2x

5cos3x + 3sin3x 27. Evaluate: Ú  ​ ______________ ​          ​  ​ dx cos2x sin2x

1 –  cos 2x 47. Evaluate: Ú  tan– 1 ​ ​ _________ ​       ​ ​  ​ dx 1 +  cos 2x

( 

( 

)

)

cos x –  sin x 28. Evaluate: Ú ​ ___________ ​       ​  ​ (1 + sin2x) dx cos x + sin x

( ÷ 

_________

( 

)

)

sin x 48. Evaluate: Ú  tan– 1 ​ ________ ​      ​  ​ dx 1  –  cos x

1.13

1.14  Integral Calculus, 3D Geometry & Vector Booster

( ÷ 

________

)

dx _________ _________ 71. Evaluate: Ú  ​ ______________________         ​ ​ 2x   + 2014 ​   + ​÷2x   + 3013 ​  ÷ Type 6

1  – sin x 49. Evaluate: Ú  tan  ​ ​ ________ ​     ​ ​   ​ dx 1  +  sin x –1

( 

)

sin x 50. Evaluate: Ú  tan–1 ​ ________ ​    ​   ​ dx 1 +  cos x

x _____ 72. Evaluate: Ú  ​ ______      ​ dx ​ x  – 1 ​  ÷

(  ) 1 – sin x  ​( ________ ​  cos x    ​   )​ dx

cos x 51. Evaluate: Ú  tan–1 ​ ________ ​    ​   ​ dx 1 –  sin x 52. Evaluate: Ú  tan– 1 53. Evaluate: Ú

( 

__

​ x     ​ ÷ 73. Evaluate: Ú  ​ _____     ​ dx x+1

_________ _________ ​÷(1   + sin x) ​  + ​÷(1   – sin x) ​  – 1 ______________________ _________  ​  ​ dx tan  ​ ​  _________         ​÷(1   + sin x) ​  – ​÷(1   + sin x) ​ 

)

54. Evaluate: Ú  tan– 1 (sec x + tan x) dx

( 

)

sin 2 x 55. Evaluate: Ú  tan– 1 ​ __________ ​       ​  ​ dx 1 +  cos 2 x Type 4 56. Evaluate: Ú  (3x + 2) dx dx 57. Evaluate: Ú  ​ ______     ​ 2x – 3 dx 58. Evaluate: Ú  ​ ______      ​ 5 – 2x 59. Evaluate: Ú  eax + b  dx 60. Evaluate: Ú  34x + 5  dx 61. Evaluate: Ú  cos (5x + 3) dx 62. Evaluate: Ú  sin 2x dx ______

63. Evaluate: Ú  ​÷3x   +  2 ​    dx dx ______ 64. Evaluate: Ú  ​ _______     ​ ​ 3x   + 4 ​   ÷

x ______ 74. Evaluate: Ú  ​ _______      ​ dx ​ 3x   + 1 ​   ÷ x______ +1 75. Evaluate: Ú  ​ _______     ​  dx ​ 2x   – 1 ​   ÷ x_____ –1 76. Evaluate: Ú  ​ ______      ​ dx ​ x  + 4 ​   ÷ x 77. Evaluate: Ú  ​ _____      ​ dx x2 + 1 Type 7 cos x –  sin x 78. Evaluate: Ú  ​ ___________     ​ dx sin x + cos x 3 cos x  79. Evaluate: Ú  ​ _________    ​    dx 2 sin x  +  5 cos x  –  sin x 80. Evaluate: Ú  ​ __________      ​dx 2 + sin 2x xe x + ex 81. Evaluate: Ú  ​ ________      ​  dx cos2(xex)  dx 82. Evaluate: Ú ​ _________       ​ x(1 + ln x)2 cos x  –  sin x + 1 – x 83. Evaluate: Ú  ​ _________________         ​dx ex + sin x + x dx 84. Evaluate: Ú  ​ _____     ​ 1 + ex

Type 5

dx 85. Evaluate: Ú  ​ ________      ​ 3 x(x + 1)

dx _____ _____   65. Evaluate: Ú  ​ ______________     ​ ​ x  + 2 ​   – ​÷x  + 1 ​  ÷

dx 86. Evaluate: Ú  ​ ________      ​ 4 x(x + 1)

dx ______ 66. Evaluate: Ú  ​ _________________    ______     ​ (​÷2x   + 5 ​   – ​÷2x   + 3 ​  ) dx ______   ______ 67. Evaluate: Ú  ​ ________________     ​ ​ 3x   +  4 ​   – ​÷3x   + 1 ​  ÷ dx ______ ______   68. Evaluate: Ú  ​ ________________     ​ ​ 2x   + 3 ​   + ​÷2x   – 3 ​  ÷ dx _____   69. Evaluate: Ú  ​ ___________    __ ​ ​ x  + 1 ​   + ​÷x     ​ ÷ dx _____ 70. Evaluate: Ú  ​ _______________    ​ _____   ​ x  +  a   ​  + ​÷x    +  b   ​ ÷

 dx 87. Evaluate: Ú ​ _______     ​ 5 x(x – 1) sin 2x 88. Evaluate: Ú  ​ __________      ​  dx sin 5 x sin 3x dx 89. Evaluate: Ú  ​ _________________        ​ sin(x –  a) sin (x – b) e x –  e– x   90. Evaluate: Ú  ​ ________  ​  dx e x + e– x

Indefinite Integrals 

dx 91. Evaluate: Ú  ​ ______     ​ 1 + e– x

dx 112. Evaluate: Ú  ​ ____________      __ __ 2 ​ ​ x     ​ (4  +  3​÷x     ​) ÷

dx 92. Evaluate: Ú  ​ _____     ​ 1 + e x

113. Evaluate: Ú  ​3​3​ ​ ​​ ◊ ​33​ ​ dx

sin 2 x 93. Evaluate: Ú  ​ ______________       ​ dx 2 a sin x +  b cos2x

114. Evaluate: Ú  tan3 x ◊ sec2xdx

sin(x –  a) 94. Evaluate: Ú  ​ _________     ​   dx sin x sin x 95. Evaluate: Ú  ​ ________     ​ dx sin (x – a) sin(x  +  a) 96. Evaluate: Ú  ​ _________ ​   dx sin(x + b)

3x

x

115. Evaluate: Ú  sin3 x ◊ cos xdx (log x)3 116. Evaluate: Ú  ​ ______ ​   dx x    sin x _________ 117. Evaluate: Ú  ​ ___________      ​   dx ​ 3    +  2 cos x    ​ ÷ ________

dx 97. Evaluate: Ú  ​ _________  ​ __ __     ​ x     ​(÷ ​ x     ​ + 1) ÷

​÷2  + log x ​  118. Evaluate: Ú  ​ _________   ​    dx x  dx 119. Evaluate: Ú  ​ ______  __ ​  1  + ​÷x     ​

1 + tan x 98. Evaluate: Ú ​ ___________       ​  dx x +  log sec x

120. Evaluate: Ú  x3sin x4 dx

 sin 2x 99. Evaluate: Ú ​ ___________      ​ dx sin 5x . sin 3x

121. Evaluate: Ú  ​5​5​ ​ ​​ ◊ ​55​ ​ ◊ 5x dx

cos x  –  sin x 100. Evaluate: Ú  ​ ___________        ​ dx 1 + sin 2x dx 101. Evaluate: Ú  ​ _________      ​ sin x . cos2x dx 102. Evaluate: Ú  ​ __________      ​. sin2x . cos2x dx 103. Evaluate: Ú  ​ _________________        ​ sin (x – a) sin (x – b)  dx 104. Evaluate: Ú  ​ __________________        ​ cos (x –  a) cos (x – b) dx 105. Evaluate: Ú  ​ _________________        ​ sin (x –  a) sin (x – b)  x x(1 + ln x) 106. Evaluate: Ú ​ __________     ​   dx xx + 1 cos x –  sin x + 1  –  x 107. Evaluate: Ú  ​ _________________         ​dx ex + sin x + x 108. Evaluate: sin3x Ú  ​ _________________________________           ​ dx 4 2 (cos x  +  3cos x + 1)tan– 1(sec x + cos x) Type 8 109. Evaluate: Ú  3x2 sin (x3) dx  (1  +  ln x)3 110. Evaluate: Ú ​ _________     ​  dx x  dx 111. Evaluate: Ú  ​ __________       ​ 2 x (1 + x4)3/4

5x

x

sin x – cos x 122. Evaluate: Ú  ​ __________       ​ dx ex + sin x dx 123. Evaluate: Ú  ​ _________    ​  x (1  + x 3) Type 9 case I: 124. Evaluate: Ú  sin3 x ◊ cos4x dx 125. Evaluate: Ú  sin x ◊ cos6x dx 126. Evaluate: Ú  sin5x ◊ cos9x dx case II: 127. Evaluate: Ú  sin2x ◊ cos3x dx 128. Evaluate: Ú  sin4x ◊ cos3x dx 129. Evaluate: Ú  sin6x ◊ cos5x dx case III: 130. Evaluate: Ú  sin3x ◊ cos3x dx 131. Evaluate: Ú  sin5x ◊ cos5x dx 132. Evaluate: Ú  sin5x ◊ cos7x dx case IV: 133. Evaluate: Ú  sin2x ◊ cos2x dx 134. Evaluate: Ú  sin2x ◊ cos4x dx

1.15

1.16  Integral Calculus, 3D Geometry & Vector Booster 135. Evaluate: Ú  sin4x ◊ cos2x dx case V: 136. Evaluate: Ú  sin3x dx 137. Evaluate: Ú  sin5x dx 138. Evaluate: Ú  sin7x dx case VI: 139. Evaluate: Ú  cos5x dx 140. Evaluate: Ú  cos3x dx 141. Evaluate: Ú  cos7x dx case VII: 142. Evaluate: Ú  sin4x dx 143. Evaluate: Ú  sin2x dx 144. Evaluate: Ú  sin6x dx case VIII: 145. Evaluate: Ú  cos x dx 6

146. Evaluate: Ú  cos2x dx 147. Evaluate: Ú  cos4x dx case IX: dx 148. Evaluate: Ú  ​ ____________      ​ 1/2 sin  x cos3/2x dx 149. Evaluate: Ú  ​ ____________      ​ 3/2 sin  x cos5/2x ____ ​÷tan x    ​  ________

150. Evaluate: Ú  ​      ​  dx sin x cos x sin x 151. Evaluate: Ú  ​ _____      ​  dx. cos5x dx 152. Evaluate: Ú  ​ _________      ​ 3 sin x cos5x

dx 156. Evaluate: Ú  ​ ___________       ​ 7 1 __ __ ​   ​  ​   ​  2 2 ​sin​ ​ x ◊ ​cos​ ​ x dx __________ 157. Evaluate: Ú ​ ___________      ​ 3 5   x ◊ cos   x ​ ÷​ sin ABC of Formula 6 dx 158. Evaluate: Ú  ​ ______     ​ x 2 + 4 dx 159. Evaluate: Ú  ​ _______     ​ 9x 2  +  1 dx 160. Evaluate: Ú  ​ ______     ​ 2 x    –  4 x 4 – 1 161. Evaluate: Ú ​ _______      ​ x2 + 5dx dx _____ 162. Evaluate: Ú  ​ _______     ​ 4 ÷​ x  + 4 ​  dx ______ 163. Evaluate: Ú  ​ ________      ​   2 + 1 ​  ÷​ 4x

( 

)

x+4 164. Evaluate: Ú  ​ ​ _______   ​   ​ dx x3 +  4x

(  )

x4 +  1 165. Evaluate: Ú ​ ______  ​  2  ​   ​ dx x +1 dx __________ 166. Evaluate: Ú  ​ ___________       ​   – x)2    +  1 ​ ÷​ (2 x+9 167. Evaluate: Ú  ​ _______     ​  dx x3 +  9x 1 + x    168. Evaluate: Ú  ​ _____2     ​dx 1+x 1+x 169. Evaluate: Ú  ​ _____      ​ dx x3 + x dx 170. Evaluate: Ú  ​ _____     ​ x4 + 1 dx 171. Evaluate: Ú  ​ _____     ​ 3 x +x Type 10

sin2x dx 153. Evaluate: Ú  ​ _______    ​  cos6x

dx 172. Evaluate: Ú  ​ __________       ​ 3 x + 4x +  4

dx 154. Evaluate: Ú  ​ _________    ​  sin x cos3x

dx 173. Evaluate: Ú  ​ ___________       ​ 2 x + 6x +  10

dx 155. Evaluate: Ú  ​ _________      ​ 2 sin x cos4x

dx 174. Evaluate: Ú  ​ ___________       ​ 2 2x +  5x  +  6

Indefinite Integrals 

dx 175. Evaluate: Ú  ​ _________      ​ x2 +  x  +  1 dx 176. Evaluate: Ú  ​ _________      ​ 1 + x  +  x2 dx 177. Evaluate: Ú  ​ __________       ​ 2 x +  4x  +  3

3x + 2 195. Evaluate: Ú  ​ __________      ​  dx x2  –  3x + 4 x 195. Evaluate: Ú  ​ _________      ​  dx 2 x + x  +  1 4x + 1 196. Evaluate: Ú  ​ __________      ​  dx x2 + 3x  +  2

dx 178. Evaluate: Ú  ​ ____________       ​ 2 4x +  7x  +  10

dx 197. Evaluate: Ú  ​ ____________       ​ 2e2x + 3ex  +  1

dx 179. Evaluate: Ú  ​ _______     ​ x2 – 2ax

(3 sin x  –  2) cos x dx 198. Evaluate: Ú  ​ _________________        ​ (5 – cos2x – 4sin x)

dx 180. Evaluate: Ú  ​ _______     ​ 2 x + 2ax

ax3  +  bx   199. Evaluate: Ú  ​ ________  ​    dx. x4 + c2

dx 181. Evaluate: Ú  ​ ________      ​ 2 a   +  2a x

cos x –  sin x 200. Evaluate: Ú  ​ ___________ ​     ​  ​ × (2 + 2 sin 2 x) dx cos x + sin x

dx 182. Evaluate: Ú  ​ _______     ​ 2a x – x2

sin x  +  cos x 201. Evaluate: Ú  ​ ___________        ​ dx 5 + 3sin2x

dx 183. Evaluate: Ú  ​ ______________       ​ 2 (x +  1) (x2 + 4)

sin x  –  cos x 202. Evaluate: Ú  ​ ___________        ​dx 3 + 5sin 2x

x2 184. Evaluate: Ú  ​ ________    ​  6 x +  1dx

Type 12

cos x dx 185. Evaluate: Ú  ​ _______________       ​ 2 sin x + 3sin x  +  2 x

x  (1 +  log x) 186. Evaluate: Ú  ​ ___________       ​ dx x2x + x x + 1 dx 187. Evaluate: Ú  ​ ________      ​ 4 x(x + 1) x dx 188. Evaluate: Ú  ​ __________       ​ 4 x   +  x2 + 1 ex dx 189. Evaluate: Ú  ​ ___________       ​ e2x  +  6ex + 5 5

x 190. Evaluate: Ú  ​ _______    ​  dx 1 +  x12 dx 191. Evaluate: Ú  ​ ________      ​ 4 x(x + 1) dx 192. Evaluate: Ú  ​ ________      ​ x(x3 + 1)

( 

dx _________ 203. Evaluate: Ú  ​ ___________      ​ 2 ÷​ x  +  x  +  1 ​  dx ________ 204. Evaluate: Ú ​ _________    ​  2 ​ ÷​ x  –  2ax   dx _______ 205. Evaluate: Ú ​ ________    ​    –  x2 ​  ÷​ 4x  dx _________ 206. Evaluate: Ú  ​ __________       ​  ​ ÷​ 6  – x –  x2  dx _________ 207. Evaluate: Ú  ​ __________       ​  ​ ÷​ 1  +  x  +  x2  dx _________ 208. Evaluate: Ú  ​ __________      ​  ​ ÷​ 1  + x –  x2  dx ________ 209. Evaluate: Ú  ​ _________    ​  2 ​ ÷​ x    +  2ax   dx ________ 210. Evaluate: Ú  ​ _________    ​    –  x2 ​  ÷​ 2ax Type 13

dx 193. Evaluate: Ú  ​ ________      ​ x(xn + 1)

x dx __________ 211. Evaluate: Ú  ​ ___________       ​ 4 +  1 ​ ÷​ x  –  x2    

Type 11

212. Evaluate: Ú  ​÷sec x   – 1 ​   dx

2x + 3 194. Evaluate: Ú  ​ __________      ​ dx 2 x   +  4x + 5

)

________

dx _______ 213. Evaluate: Ú  ​ ___________      ​ 3/4   1/2 x ÷ ​ x  –  1 ​ 

1.17

1.18  Integral Calculus, 3D Geometry & Vector Booster

÷ 

_________

sin (x  –  a) 214. Evaluate: Ú  ​ _________ ​       ​ ​ dx sin (x + a)

dx 233. Evaluate: Ú  ​ ______________       ​. 3 sin2x +  4 cos2x

ex ______ 215. Evaluate: Ú  ​ _______      ​ dx  ​ ÷​ 4  – e2x 

dx 234. Evaluate: Ú  ​ ______________       ​ (2sin x + 3 cos x)2

sec2x     _________ 216. Evaluate: Ú  ​ __________      ​dx ​÷16   +  tan x   ​ ________

217. Evaluate: Ú  ​÷sec x   + 1 ​    dx _________

218. Evaluate: Ú  ​÷cosec x   – 1 ​     dx dx ______ 219. Evaluate: Ú  ​ ________    ​  ​ ÷​ 1  – e2x  

÷ 

_________

sin (x –  a) 220. Evaluate: Ú  ​ _________ ​        ​ ​     dx sin(x + a) dx ______ 221. Evaluate: Ú  ​ ___________       ​ 2/3 x   ​÷x  2/3 – 4 ​ 

÷ 

______

x 222. Evaluate: Ú  ​ ______ ​         ​ ​dx x 3 – x3

sin x cos x 235. Evaluate: Ú  ​ ____________       ​  dx sin4x +  cos4x dx 236. Evaluate: Ú  ​ _____________       ​ (sin x + 2 cos x)2 dx 237. Evaluate: Ú  ​ _____________       ​   (sin x + 2sec x)2 sin 2 x dx 238. Evaluate: Ú​  ____________       ​ sin4x  +  cos4x dx 239. Evaluate: Ú  ​ _______________       ​ (2 sin x  +  3 cos x)2 dx 240. Evaluate: Ú  ​ _________      ​ 2 +  cos2 x Type 16

sinq  –  cosq  _________ 224. Evaluate: Ú  ​ ___________       ​ dq ​÷2  – sin 2q    ​

sin x 241. Evaluate: Ú  ​ _____     ​  dx sin 3 x cosec 3x 242. Evaluate: Ú  ​ _______   dx cosec x ​  sec 3x 243. Evaluate: Ú  ​ _____   dx sec x ​ 

Type 14

Type 17

x–1 __________ 225. Evaluate: Ú  ​ ___________       ​ dx 2 +  2 ​ ÷​ x  – 3x   

dx 244. Evaluate: Ú  ​ _________      ​ 1 + 2 sin x

( 

)

cosq  +  sinq  223. Evaluate: Ú  ​ ___________ ​  _________       ​  ​ dq ​÷5  + sin 2q    ​

 3x + 4 __________ 226. Evaluate: Ú ​ ___________      ​ dx 2 +  2 ​ ÷​ x  + 5x    x+2 __________ 227. Evaluate: Ú​ ___________       ​ dx 2 + 6 ​ ÷​ x    +  5x    6x – 5 ___________ 228. Evaluate: Ú  ​ ____________       ​ dx   2 – 5x    +  1 ​ ÷​ 3x _____ a  –  x 229. Evaluate: Ú  ​ _____ ​     ​ ​ dx a+x

÷ 

dx 245. Evaluate: Ú  ​ _________      ​ 3 cos x + 4 dx 246. Evaluate: Ú  ​ ______________       ​ 1 +  sin x + cos x 1 + sin x 247. Evaluate: Ú​ _____________       ​ dx sin x (1 + cos x) dx 248. Evaluate: Ú  ​ _________      ​ 1 +  2 sin x

a2  –  x2   230. Evaluate: Ú  x2 ​ _______ ​  2    ​ ​dx a + x2

dx 249. Evaluate: Ú  ​ ________________        ​ 3 sin x + 4 cos x  +  5 dx 250. Evaluate: Ú  ​ ____________      ​ cos x  +  cos a

4  –  x3 231. Evaluate: Ú  x2 ​ ______ ​     ​ ​ dx 4 + x3

dx 251. Evaluate: Ú  ​ _______________       ​ tan x + 4 cot x  +  4

Type 15

Type 18

dx 232. Evaluate: Ú  ​ _________      ​ 3  +  4 sin2x

dx 252. Evaluate: Ú  ​ __________       ​ sin x + cos x

÷  ÷ 

_______

______

Indefinite Integrals 

dx __ 253. Evaluate: Ú  ​ _____________      ​ ​ 3 ​     sin x + cos x ÷ dx__ 254. Evaluate: Ú  ​ _____________      ​ sin x  + ​÷3 ​     cos x dx __ 255. Evaluate: Ú  ​ _____________      ​ ​ 3 ​     sin x +  cos x ÷ dx __ 256. Evaluate: Ú  ​ _____________      ​. ​ 3 ​     sin x  –  cos x ÷ Type 19 2 sin x + cos x 257. Evaluate: Ú  ​ _____________       ​  dx 3 sin x +  2 cos x sin x 258. Evaluate: Ú  ​ ___________      ​  dx sin x  +  cos x 2 sin x  +  3 cos x 259. Evaluate: Ú  ​ _____________       ​ dx 3 sin x + 4 cos x

( 

)

sin x 260. Evaluate: Ú ​  ​ __________      ​  ​ dx sin x + cos x

(  ) 2 cos x  –  sin x 276. Evaluate: Ú  ​( ____________ ​        ​  ​ dx 9 + 16 sin 2x ) cos x –  sin x 275. Evaluate: Ú  ​ ___________ ​         ​  ​ dx 5 – 7sin 2x

Type 22 x2 +  1 277. Evaluate: Ú  ​ ______  ​   dx x4 + 1 x2  –  1 278. Evaluate: Ú  ​ ______    ​ dx x4 + 1 x4 + 1 279. Evaluate: Ú  ​ ______    ​  dx x6 + 1 x4 +  3x  +  1 280. Evaluate: Ú  ​ __________       ​dx x4 + x2 + 1

(  )

dx 1 – x2 ____________ 281. Evaluate: Ú  ​ ______ ​     ​  ​  ​  _________      ​ 2 1+x ÷ ​ 1  + x2  +    x4 ​

(  )

cos x 261. Evaluate: Ú  ​ __________       ​ dx sin x + cos x 1 262. Evaluate: Ú  ​ _______      ​  dx 1 + tan x

dx x–1 282. Evaluate: Ú  ​ _____ ​     ​  ​ × ___________ ​  __________      ​ 3 x+1 +  x ​ ÷​ x  + x2    2 dx x – 1 _______ 283. Evaluate: Ú  ​ ______  ​  × ​  _____     ​ x2 + 1 ​÷x  4 + 1 ​  

1 263. Evaluate: Ú  ​ _______      ​  dx 1 – tan x

x2 – 1 ___________ 284. Evaluate: Ú  ​ ______________        ​  dx x3 ÷ ​ x  4 –  2x2    + 1 ​

1 264. Evaluate: Ú  ​ _______      ​  dx 1 + tan x

x4 – 1 __________ 285. Evaluate: Ú  ​ ​ _____________      ​  ​ dx x2 ÷ ​ x  4 + x2    +  1 ​

( 

Type 20 3 sin x +  2 cos x  +  4 265. Evaluate: Ú  ​ _________________       ​dx 3 cos x + 4 sin x + 5 3 cos x + 2 266. Evaluate: Ú  ​ _______________        ​  dx sin x +  2 cos x + 3 2 cos x + 3 sin x 267. Evaluate: Ú  ​ ________________        ​  dx 2sin x + 3 cos x  +  5 Type 21

( 

)

sin x +  2 cos x 268. Evaluate: Ú  ​ ____________ ​         ​ ​ dx 9 + 16 sin 2x 269. Evaluate: Ú  (cos x – sin x) (2 + 3 sin 2x) dx sin x  +  cos x 270. Evaluate: Ú  ​ ___________     ​ dx 9 + 16 sin 2x dx 271. Evaluate: Ú  ​ ____________       ​ cos x + cosec x 272. Evaluate: Ú  (sin x + cos x) (2 + 3 sin 2x) dx 273. Evaluate: Ú  (sin x – cos x) (3 – 4 sin 2x) dx

( 

)

cos x  –  sin x 274. Evaluate: Ú  ​ ___________ ​        ​  ​ dx 3 + 2 sin 2x

)

dx______ 286. Evaluate: Ú  ​ _____________       ​ 2 x (x + ÷ ​ 1    +  x2   ​) x2  –  3x – 1 287. Evaluate: Ú  ​ __________        ​dx x4 + x2 + 1 dx 288. Evaluate: Ú  ​ ___________      ​ 4 sin x  +  cos4x dx 289. Evaluate: Ú  ​ _____     ​ x4 + 1 x2dx 290. Evaluate: Ú  ​ _____     ​ x4 + 1 2dx 291. Evaluate: Ú  ​ _____     ​. 4 x +1

(  )

x4  +  1 292. Evaluate: Ú  ​ ______ ​  6  ​   ​  dx x +1 dx 293. Evaluate: Ú  ​ __________       ​ x2 (1 + x4)3/4

( 

)

x4 – 1 __________ 294. Evaluate: Ú  ​​ ______________       ​  ​ dx x2  ​÷x  4 + x2     +  1 ​

1.19

1.20  Integral Calculus, 3D Geometry & Vector Booster dx 295. Evaluate: Ú  ​ __________       ​  dx x2(1 + x5)4/5

( 

315. Evaluate: Ú  x2 sin x dx 316. Evaluate: Ú  log x dx

)

x2_____ –1 296. Evaluate: Ú  ​ ​ ________      ​  ​  dx x ​÷1  + x4   ​

317. Evaluate: Ú  (log x)2dx

dx ___________ 297. Evaluate: Ú  ​ _____________       ​ 4 x ​÷x  + 3x2    +  1 ​

318. Evaluate: Ú  log(x2 + 1) dx

(  )

dx x2  +  1 298. Evaluate: Ú  ​ ______ ​   ​  ​ × ___________ ​  __________       ​ 4 1 – x2 +  1 ​ ÷​ x  +  x2   

( 

)

dx x2 + 1 299. Evaluate: Ú  ​ ______ ​  x    ​  ​ × ____________ ​  ___________       ​ 4 + 1 ​ ÷​ x  + 3x2   

319. Evaluate: Ú  tan– 1x dx

(  )

1  –  x2 320. Evaluate: Ú  cos– 1 ​ ______ ​   ​  ​ dx 1 + x2 __

321. Evaluate: Ú  ​e​÷​ x   ​ ​  dx

( 

)

xx(x2x +  1) (ln x + 1) 300. Evaluate: Ú  ​ _________________     ​ dx    (x4x + 1)

x +  sin x 322. Evaluate: Ú  ​ ________ ​     ​  ​ dx 1 + cos x

x2 – 1 ___________ 301. Evaluate: Ú​ _____________       ​ dx x3 ​÷x  4 – 2x2    + 1 ​

1  –  x 323. Evaluate: Ú  tan– 1 ​ ​ ​ _____   ​ ​  ​ dx 1+x

( 

)

x2009 302. Evaluate: Ú  ​ __________ ​       ​  ​ dx (1 +  x2)1006

x tan– 1x    326. Evaluate: Ú  ​ _________    ​  dx (1 +  x2)3/2

Type 23

( 

____

)

​÷cot x      ​  – ​÷tan x ​     304. Evaluate: Ú  ​ _____________ ​          ​  ​ dx 1 + 3 sin 2x ____

305. Evaluate: Ú  ​÷tan x    ​   dx ____ ____   (÷ ​ tan x    ​ – ​÷cot x    ​)  dx

306. Evaluate: Ú

______

307. Evaluate: Ú  ​÷cot x dx    ​ 

(  ) 1 309. Evaluate: Ú  ​( ​ cot x ​ + _____ ​     ​   ​ dx ​ cot x ​) 1 310. Evaluate: Ú  ​( ​ tan x ​ + _____ ​     ​   ​ dx ​ tan x ​) ____ 1 308. Evaluate: Ú  ​ ​÷cot x    ​ – _____ ​  ____    ​   ​ dx ​ cot x    ​   ÷ ____   ÷ 

____   ÷ 

____   ÷ 

____   ÷  4 ____ 4 ____ 2  311. Evaluate:   ( ​÷tan x    ​ + ​÷cot x      ​) dx

Ú

dx 312. Evaluate: Ú  ​ _______________     4 ​dx ____ _____ (​÷sin x    ​+ ÷   ​ cos x      ​)

Integration by Parts ABC of integration by parts 313. Evaluate: Ú  x ex dx 314. Evaluate: Ú  x sin x dx

__

__

– 1 sin– 1 ​÷x     ​  –  cos  ​÷x ​    324. Evaluate: Ú  ​ ________________     ​ dx __ – 1 – 1 __ sin  ​÷x     ​ + cos  ​÷x     ​

x2 325. Evaluate: Ú  ​ _____________       ​ dx (x sin x + cos x)2

(2x + 1) dx 303. Evaluate: Ú​  _____________        ​ 2 (x + 4x  +  1)3/2 ____

( ÷  ) _____

_____

( ÷ 

)

x 327. Evaluate: Ú  sin– 1 ​ ​ _____ ​         ​ ​  ​ dx a+x 328. Evaluate: Ú  log(1 + x) dx x –  sin x 329. Evaluate: Ú  ​ ________   ​ dx 1 – cos x ____

330. Evaluate: Ú  sin ​÷x dx    ​  331. Evaluate: Ú  x log (1 + x) dx 332. Evaluate: Ú  (sin– 1x)2 dx x  –  sin x 333. Evaluate: Ú  ​ ________   ​ dx 1 – cos x 334. Evaluate: Ú  x sin3x dx

( 

)

sec 2 x  –  1 335. Evaluate: Ú  x ​ _________ ​     ​   ​ dx sec 2 x + 1

(  ) (  )

2x 336. Evaluate: Ú  sin–1 ​ _____ ​   2   ​  ​ dx 1+x 2x 337. Evaluate: Ú  tan–1 ​ _____ ​   2   ​  ​ dx 1–x x3sin– 1(x2) _____  ​ dx 338. Evaluate: Ú  ​ _________      ​ ÷​ 1  – x4 

Indefinite Integrals 

sec x (2  +  sec x)   339. Evaluate: Ú  ​ ______________        ​dx (1 + 2sec x)2

359. Evaluate: Ú  ex(2sec2x – 1) tan x dx 360. Evaluate: Ú  ex (log (sec x + tan x) + sec x) dx

1–x 340. Evaluate: Ú  ​ ______    ​  dx. ex  +  x

( 

Type 24

Type 25

341. Evaluate: Ú  ex(sin x + cos x) dx

( 

{ 

)

(  ( 

)

)

( 

} )

{  } 2  +  sin 2x 349. Evaluate: Ú  e  ​{ _________ ​     ​  ​ dx 1 + cos 2x }

367. Evaluate: Ú  e3x(3sin x + cos x) dx 368. Evaluate: Ú  e2x(sec2x + 2 tan x) dx

x

( 

)

370. Evaluate: Ú  e2x (– sin x + 2 cos x) dx

( 

log x 351. Evaluate: Ú  ​ __________     2 ​  dx (1 + log x)

)

)

373. Evaluate: Ú  e2x(2 × log (sec x + tan x) + sec x) dx Type 27

}

(  )

374. Evaluate: Ú  ex sin 3x dx 375. Evaluate: Ú  e4x cos 3x dx

1  –  x 2 355. Evaluate: Ú  e  ​​ _____ ​       ​  ​​ ​ dx 1 + x2

( 

376. Evaluate: Ú  e2x sin 3x dx

)

377. Evaluate: Ú  e–x cos x dx

1 –  x 2 356. Evaluate: Ú  ex ​​ ​ _____   ​  ​​ ​ dx 1+x

( 

)

378. Evaluate: Ú  e2xcos (3x + 4) dx

x2 +  1 357. Evaluate: Ú  e  ​ _______ ​       ​  ​ dx (x + 1)2 x

( 

)

1  –  sin x 372. Evaluate: Ú  e– x/2 ​ ​ ________ ​     ​ ​  ​ dx 1 + cosx

1 1 354. Evaluate: Ú  ​ ____ ​     ​ – ​ ______    ​   ​ dx log x (log x)2 x

( ÷ 

________

x–1 353. Evaluate: Ú  ex ​ ​ _______     ​  ​ dx (x + 1)3

{ 

)

1  +  sin 2x 371. Evaluate: Ú  e2x ​ _________ ​     ​  ​ dx 1 + cos 2x

1 352. Evaluate: Ú  ex ​ log x + __ ​ x ​  ​  dx

( 

)

2 sin 4x  –  4 369. Evaluate: Ú  e2x ​ __________ ​     ​   ​ dx 1 – cos 4x

x2 + 1 350. Evaluate: Ú  e  ​ ​ _______    ​   ​ dx (x +  1)2

( 

)

Type 26

1  – sin x 348. Evaluate: Ú  ex ​ ________ ​     ​  ​ dx 1 – cos x

( 

)

x3  –  x + 2 366. Evaluate: Ú  ex ​ _________ ​  2  ​     ​ dx (x – 1)2

1 1 346. Evaluate: Ú  ex ​ __ ​ x ​ – __ ​  2  ​   ​ dx x x  347. Evaluate: Ú  ex ​ _______ ​       ​  ​ dx (x + 1)2

x

( 

esin x(x cos3x  –  sin x) 365. Evaluate: Ú  ​ _________________        ​ dx cos2x

x2 + 1 345. Evaluate: Ú  e  ​ ​ _______    ​   ​ dx (x  +  1)2

{  ( 

}

x4 + 2 364. Evaluate: Ú  ex ​​ _________   ​   ​ dx (1 +  x2)5/2

1 + x  +  x  ​   ​ dx 344. Evaluate: Ú  e  ​ ​ _________ (1 + x2)3/2 x

)

1 363. Evaluate: Ú ​ log (log x) + ______ ​    2 ​   ​ dx (log x)

2  +  sin 2x 343. Evaluate: Ú  ex ​ _________ ​     ​  ​ dx 1 + cos 2x 3

( 

1 362. Evaluate: Ú  ex ​ log x + ​ __2  ​   ​ dx x

x ex    342. Evaluate: Ú  ​ _______     ​dx (x + 1)2

x

)

x cos3x – sin x 361. Evaluate: Ú  esin x  ​ ____________ ​      ​   ​ dx cos2x

_____

)

(x + 1) + ​÷1  – x2   ​ _____ 358. Evaluate: Ú  ex ​ _______________ ​        ​  ​ dx 2 2 (x + 1)  ​÷1  – x    ​

379. Evaluate: Ú  excos2x dx 1 380. Evaluate: Ú  ​ __3  ​  sin(log x) dx. x

1.21

1.22  Integral Calculus, 3D Geometry & Vector Booster ______

2x 404. Evaluate: Ú  ​ _____________       ​ dx (x2 + 1)(x2  +  2)

_______

cosq  405. Evaluate: Ú  ​ __________________         ​ dq (2 + cosq )(3  +  cosq )

Type 28 381. Evaluate: Ú  ​÷4  –  x2   ​  dx 382. Evaluate: Ú  ​÷1  – 9x2 ​    dx _____

383. Evaluate: Ú  ​÷x  2 + 1 ​     dx ______

384. Evaluate: Ú  ​÷3x   2 + 1 ​     dx ______

dx 407. Evaluate: Ú  ​ ___________       ​ sin x  –  sin 2 x

_______

Type 2

385. Evaluate: Ú  ​÷x  2 –  9 ​     dx 386. Evaluate: Ú  ​÷4x   2 – 1 ​    dx

__________   ​÷x  2 + 2x    + 3 ​  dx __________   ​÷3  – 4x –     x2 ​  dx ________   ​÷2ax    –  x2 ​    dx ________   ​÷2ax   +  x2 ​    dx

387. Evaluate: Ú 388. Evaluate: Ú 389. Evaluate: Ú 390. Evaluate: Ú

(1 – cos x) 406. Evaluate: Ú​ _____________        ​dx cos x (1 + cos x)

_______

391. Evaluate: Ú  ​÷x  –  4x2 ​    dx Type 29 392. Evaluate: Ú  (2x +

__________ 1) ​÷x  2 + 3x    + 4 ​ dx ______

393. Evaluate: Ú  (x – 5) ​÷x  2 + x   ​  dx

_________

394. Evaluate: Ú  (3x – 2) ​÷x  2 + x + 1 ​    dx _________   (4x + 1) ​÷x  2 – x – 2 ​    dx _________   x ​÷1  + x  – x2   ​  dx.

395. Evaluate: Ú 396. Evaluate: Ú

Partial Fractions Type 1 (2x + 1) dx 397. Evaluate: Ú  ​ ____________        ​ (x + 2)(x  +  3) dx 398. Evaluate: Ú  ​ ____________       ​ (x –  1)(x – 2) dx 399. Evaluate: Ú  ​ __________________        ​ (x + 1)(x +  2)(x + 3) dx 400. Evaluate: Ú  ​ ________________________         ​ (x + 1) (x  +  2) (x + 3) (x  +  4) x–1 401. Evaluate: Ú  ​ ____________       ​ dx (x +  1)(x – 2)

dx 408. Evaluate: Ú  ​ _____________       ​ (x +  1)(x + 1)2 2x + 1 409. Evaluate: Ú  ​ ____________       ​  dx (x +  2)(x  –  3)2 3x + 1 410. Evaluate: Ú​ ____________       ​  dx (x  –  2)2(x + 2) x2 + 1 411. Evaluate: Ú  ​ _____________       ​ dx (x  –  1)2 (x + 3) x2 412. Evaluate: Ú  ​ ____________       ​  dx (x – 1)3 (x  +  1)  (x – 1) 413. Evaluate: Ú ​ ________      ​ dx x2(x + 4) (2x – 1) 414. Evaluate: Ú  ​ _______      ​ dx x3(x – 2) Type 3 (2x + 3) dx 415. Evaluate: Ú ​ _____________        ​ (x  +  1)(x2 + 4) (3x – 2) dx 416. Evaluate: Ú​  ____________        ​ (x  –  1)(x2 + 9) 2x – 1 417. Evaluate: Ú  ​ _____________       ​ dx (x  +  1)(x2 + 2) x 418. Evaluate: Ú  ​ _____________      ​ dx (x +  1) (x2  +  4) 8 419. Evaluate: Ú  ​ _____________      ​ dx (x +  2) (x2 + 9) x 420. Evaluate: Ú  ​ ____________      ​ dx (x + 1)(x2 + 1) Type 4

2x – 1 402. Evaluate: Ú​ ___________________         ​  dx (x +  1) (x +  2) (x + 3)

x2 421. Evaluate: Ú  ​ _____________       ​ dx (x2  –  1) (x2 + 1)

x3 403. Evaluate: Ú  ​ ____________       ​  dx (x – 1)(x  –  2)

x2 422. Evaluate: Ú  ​ _____________       ​ dx (x2  – 3) (x2 + 4)

Indefinite Integrals 

(x2 + 4) 423. Evaluate: Ú  ​ _____________       ​ dx (x2  +  5)(x2 + 7) x2 424. Evaluate: Ú  ​ _____________       ​ dx (x2  –  1)(x2 – 2) x2 425. Evaluate: Ú  ​ ___________________         ​ dx (x2 – 1)(x2 – 2)(x2  –  3) Type 5

( 

)

(x2 +  3)(x2 + 1) 426. Evaluate: Ú  ​ ​ _____________     ​  ​ dx (x2 –  1)(x2 + 2) 2

2

(x +  1)(x + 2) 427. Evaluate: Ú  ​ _____________     ​ dx (x2  +  3)(x2 + 4) (x2 –  1)(x2 + 3) 428. Evaluate: Ú  ​ _____________     ​  dx. (x2  + 2)(x2 + 1)

Type 3 dx 17. Evaluate: Ú  ________ ​  7      ​ x(x + 1) dx 18. Evaluate: Ú  __________ ​  2  4       ​ x (x + 1)3/4 dx 19. Evaluate: Ú  ________ ​  5      ​ x (x + 1) dx 20. Evaluate: Ú  ________ ​  4      ​ x (x + 1) dx 21. Evaluate: Ú  __________ ​  2  7       ​ x (x + 1)6/7 dx 22. Evaluate: Ú  __________ ​  3        ​ x (1 + x3)1/3 Type 4 x2   23. Evaluate: Ú  _______ ​      ​dx (x + 3)2 x3 dx 24. Evaluate: Ú  ________ ​      ​ (2x + 3)2

Type 1

x2   25. Evaluate: Ú  _______ ​      ​dx (x + 2)3



1. Evaluate: Ú  tan x ◊ sec x dx



2. Evaluate: Ú  sec3x dx



3. Evaluate: Ú  sec5x dx



4. Evaluate: Ú  tan2x ◊ sec4x dx

dx 27. Evaluate: Ú  _________ ​       ​ x (1 + x3)2



5. Evaluate: Ú  tan3x ◊ sec6x dx



6. Evaluate: Ú  tan3x ◊ sec5x dx

x4 28. Evaluate: Ú  ________ ​       ​ dx (3x – 2)3



7. Evaluate: Ú  sec7x dx



4

2

8. Evaluate: Ú  sec9 x dx

Type 2

9. Evaluate: Ú  cosec2 x ◊ cot2 x dx

10. Evaluate: Ú  cot3 x ◊ cosec3  x dx 11. Evaluate: Ú  cosec3 x dx 12. Evaluate: Ú  cot2 x ◊ cosec4 x dx 13. Evaluate: Ú  tan–5x ◊ sec6 x dx 14. Evaluate: Ú  cot3 x ◊ cosec–8 x dx

x2 26. Evaluate: Ú  ________ ​       ​ dx (ax + b)2

Type 5 dx 29. Evaluate: Ú  _________ ​  2      ​ x (3x + 2)3 dx 30. Evaluate: Ú  _________ ​  3        ​ x (b + ax)2 dx 31. Evaluate: Ú  ________ ​  2    3   ​ x (x + 2) dx 32. Evaluate: Ú  _________ ​  3        ​ x (a + bx)2 dx 33. Evaluate: Ú  _________ ​  2       ​ x (1 + x2)3

15. Evaluate: Ú  cosec x dx

dx 34. Evaluate: Ú  _________ ​  2        ​ x (a – bx)2

16. Evaluate: Ú  cosec7 x dx

dx 35. Evaluate: Ú  _________ ​  4        ​ x (2x + 1)3

5 

1.23

1.24  Integral Calculus, 3D Geometry & Vector Booster Type 6 dx 36. Evaluate: Ú  _____________ ​        ​ (x – 1)3 (x – 2)4 dx 37. Evaluate: Ú  _______________ ​ 4 _____________       ​   – 1)3 (x    + 2)5 ​ ÷​ (x dx 38. Evaluate: Ú  _____________ ​        ​ (x – 1)3 (x – 2)2 dx 39. Evaluate: Ú  ​ ______________       ​ (x – 3)4 (x –  2)5 dx 40. Evaluate: Ú  ​ ________________       ​ 3/2 (x – 3)  (x  –  2)7/2 dx ______________ 41. Evaluate: Ú  ​ _______________       ​ 5   + 1)4 (x  +     3)6 ​ ÷​ (x dx ______________ 42. Evaluate: Ú  ​ _______________       ​ 5 ​÷(x   + 1)4 (x  +   3)7 ​ Type 7 dx 43. Evaluate: Ú  _________ ​       ​ x (2 + 3x3) dx 44. Evaluate: Ú  _________ ​       ​ x (3 + 5x5) dx 45. Evaluate: Ú  ​ _________      ​ x (2 + 3x2) dx 46. Evaluate: Ú  _________ ​       ​ x (3 + 4x3) dx 47. Evaluate: Ú  _________ ​       ​ x (2 – 5x3) dx 48. Evaluate: Ú  _________ ​       ​ x (1 – 4x4) dx 49. Evaluate: Ú  _________ ​       ​ x (3x4 + 1) Type 8 x5    50. Evaluate: Ú  _______ ​  2   4   ​dx (x – 1) x9 51. Evaluate: Ú  ​ _________   5 ​    dx 2 (2x + 3) x3 52. Evaluate: Ú  _______ ​  2   4   ​ dx (x + 1) 5

8x9    55. Evaluate: Ú  ________ ​  2  5   ​dx (3x – 2) 10x11    56. Evaluate: Ú  ________ ​  2     ​dx (3x + 5)4 Type 9 2 sin x + 3   57. Evaluate: Ú  ​ __________        ​dx (3sin x + 2)2 (2 sin x + 5)   58. Evaluate: Ú  ​ ___________        ​dx (2 + 5 sin x)2 (3 sin x – 2)   59. Evaluate: Ú  ​ ___________        ​dx (2 – 3 sin x)2 Type 10

( 

)

4 cos x + 3 60. Evaluate: Ú  ​ ​ ___________        ​ ​ dx (3 cos x + 4)2 (cos x + 2)   61. Evaluate: Ú​ ___________        ​dx (1 + 2 cos x)2 3 cos x + 4   62. Evaluate: Ú​ ___________        ​dx (3 + 4 cos x)2 Type 11 dx 63. Evaluate: Ú  ___________ ​        ​ (3 + 4 sin x)2 dx 64. Evaluate: Ú  ___________ ​         ​ (5 + 4 sin x)2 dx 65. Evaluate: Ú  __________ ​         ​ (1 – 2 sin x)2 Type 12 dx 66. Evaluate: Ú  ​ ___________       ​ (2  +  3 cos x)2 dx 67. Evaluate: Ú  _____________ ​         ​ (12 + 13 cos x)2 dx 68. Evaluate: Ú  ___________ ​         ​ (3 – 4 cos x)2 Type 13

( 

)

4ex +  6e–x 69. Evaluate: Ú  ​ _________ ​  x  ​    ​ dx. 9e – 4e–x

x 53. Evaluate: Ú  _______ ​  2   4   ​ dx (x – 3)

3ex –  2e–x 70. Evaluate: Ú  ​ _________  ​   dx 2ex + 5e–x

x7 54. Evaluate: Ú  ________ ​  2   4   ​ dx (3x – 2)

4ex + 3e–x   71. Evaluate: Ú  ​ _________  ​  dx 3ex + 7e–x

Indefinite Integrals 

Integration of Irrational Functions Type 1 dx ______________ 72. Evaluate: Ú  ​ _______________       ​   +  2)5 (x +   1)3 ​ ÷​ (x 

( 

)

dx x + 2 1/2 ___    ​  ​​ ​ ◊ ​  x ​  73. Evaluate: Ú  ​​​ ______  2x + 3 (x + 1) 74. Evaluate: Ú​ ______________        ​ dx (x + 2) (x  +  3)3/2

÷ 

_____

32 – x 2 75. Evaluate: Ú  _______ ​    2   ​ ​ ​ _____     ​ ​ dx (2 – x) 2 + x

Type 2 dx 76. Evaluate: Ú  ​ ______________       ​ _____ _____ ​3 x + 1 ​ ​ x  + 1 ​  +  ÷    ÷ dx 77. Evaluate: Ú  ​ _________________ _____       ​ 1/4 ​ x  + 1 ​  –  (x  + 1) ÷ 1  +  x1/2 – x1/3 78. Evaluate: Ú  ​ ____________     ​   dx 1 + x1/3

dx 90. Evaluate: Ú  _________ ​  2   __   ​ (x + 1) ​÷x     ​ x dx 91. Evaluate: Ú  ​ _________________       _____  ​ 2 (x   +  2x  +  2)  ​÷x  + 1 ​   dx 92. Evaluate: Ú  _________ ​  2   __   ​ (x – 1) ​÷x     ​ x dx 93. Evaluate: Ú  ​ _________________       _____  ​ (x2  –  2x  +  2) ​÷x  – 1 ​  Type 5 dx _____ 94. Evaluate: Ú  ____________ ​        ​ (x + 1) ​÷x  2 + 1 ​   dx __________ 95. Evaluate: Ú  ​ _________________        ​ (x + 1) ​÷x  2 + 2x     +  2 ​ dx 96. Evaluate: Ú  ________ ​  _____      ​ x ​÷x  2 + 4 ​   dx _____ 97. Evaluate: Ú  ____________ ​        ​ (x – 1) ​÷x  2 + 4 ​  

dx 79. Evaluate: Ú  ________ ​  1/2  1/3   ​ x +x

dx _____ 98. Evaluate: Ú  _____________ ​        ​ (2x – 1)​÷x  2 + 1 ​  

​ x     ​ ÷ 80. Evaluate: Ú  4_______ ​  _____     ​ dx 3  ​÷x  + 1 ​  

dx _____ 99. Evaluate: Ú  _____________ ​        ​ (3x + 2) ​÷x  2 – 4 ​ 

​ x     ​ ÷ 81. Evaluate: Ú  _______ ​  __    ​ dx __  ​ x     ​ + ÷ ​3  x     ​ ÷

Type 6

__

__

Type 3

dx 100. Evaluate: Ú  ________ ​  _____      ​ 2  2 x ÷ ​ x  – 1 ​  

dx _____ 82. Evaluate: Ú  ___________ ​        ​ (x – 1) ​÷x  + 3 ​ 

dx _____ 101. Evaluate: Ú  ​ ______________       ​ 2 (x + 1)  ​÷x  2 + 2 ​  

dx _____ 83. Evaluate: Ú  ___________ ​        ​ (x + 3) ​÷x  + 2 ​  

dx _____ 102. Evaluate: Ú  _____________ ​        ​ 2 (x – 1) ​÷x  2 + 2 ​ 

__

​ x     ​ ÷ 84. Evaluate: Ú  _____ ​      ​ dx x+1 dx 85 .Evaluate: Ú  _______ ​  _____     ​ x​÷x  – 2 ​  dx 86. Evaluate: Ú  ________ ​    __   ​ (x + 3) ​÷x     ​

dx ______ 87. Evaluate: Ú  ____________ ​        ​ (x + 3) ​÷2x   + 1 ​   Type 4 dx 88. Evaluate: Ú  ________ ​  2   _____      ​ x ÷ ​ x  – 1 ​  dx _____ 89. Evaluate: Ú  ____________ ​  2       ​ (x – 4) ​÷x  + 1 ​ 

dx _____ 103. Evaluate: Ú  _____________ ​        ​ 2 (1 + x ) ​÷1  – x2   ​ x dx_____ 104. Evaluate: Ú  _____________ ​        ​ 4 (x – 1) ​÷x  4 + 3 ​  dx __________ 105. Evaluate: Ú  ​ __________________        ​ 2 (x – 1) ​÷x  2 + 4x     +  5 ​ Type 7 _____

106. Evaluate: Ú  (x + ÷ ​ x  2 + 1 ​  )10 dx _____

107. Evaluate: Ú  (x – ​÷x  2 + 4 ​   )5 dx _____

108. Evaluate: Ú  (x + ÷ ​ 1  + x2   ​)n dx

1.25

1.26  Integral Calculus, 3D Geometry & Vector Booster dx _____ 109. Evaluate: Ú  ​ _____________       ​ (x  + ​÷x  2 – 4 ​  )5/3

dx 127. Evaluate: Ú  ________ ​  ______      ​ x ​÷3x   – 2 ​  

dx _____ 110. Evaluate: Ú  ​ _____________       ​ (x  – ​÷x  2 + 9 ​   )10

dx 128. Evaluate: Ú  _________ ​  ______      ​ x ​÷3x   9 – 2 ​ 

dx_____ 111. Evaluate: Ú  ____________ ​        ​ 2 x (x – ÷ ​ x  2 + 9 ​  )

dx 129. Evaluate: Ú  __________ ​  _______       ​ x ​÷2 x   10 – 3 ​ 

Type 8

Type 11

dx 112. Evaluate: Ú  ​ ____________      ​ x1/2 (2  +  3x)3/2

dx 130. Evaluate: Ú  __________ ​        ​ (2 + 3x2)3/2

dx 113. Evaluate: Ú  ____________ ​        ​ x2/3 (2 + 3x)4/3

dx 131. Evaluate: Ú  _________ ​        ​ (c + dx2)3/2

dx 114. Evaluate: Ú  ____________ ​  3/4        ​ x (3x – 1)5/4

dx 132. Evaluate: Ú  __________ ​        ​ (3 + 5x2)3/2

dx 115. Evaluate: Ú  ____________ ​  1/3        ​ x (2x + 1)5/3

dx 133. Evaluate: Ú  _________ ​        ​ (3 – 4x2)3/2

dx 116. Evaluate: Ú  ​ ____________      ​ 1/2  x (2  +  3x)5/2

x dx 134. Evaluate: Ú  _________ ​        ​ (2 – 5x4)3/2

dx 117. Evaluate: Ú  ___________ ​        ​ x2(2 + 3x2)5/2

x2 dx 135. Evaluate: Ú  _________ ​        ​ (1 – 4x6)3/2

Type 9

Type 12

dx 118. Evaluate: Ú ​ _____________       ​ (x – 1)3 (x  +  2)4

dx _________ 136. Evaluate: Ú  _________________ ​         ​ 2  2 (x – 2) ÷ ​ x  – 4x + 7 ​  

dx 119. Evaluate: Ú  ​ _____________       ​ (x – 1)3 (x –  2)2

dx _________ 137. Evaluate: Ú  _________________ ​         ​ 3  2 (x + 1)  ÷ ​ x  + 2x    + 4 ​

dx 120. Evaluate: Ú  ​ _____________       ​ (x  – 1)2 (x – 2)3

dx ____________ 138. Evaluate: Ú  ____________________ ​          ​ 3 (x – 2)  ​÷4x   2 – 16x    + 20 ​

dx ______________ 121. Evaluate: Ú  ​ 4_______________       ​ ​÷ (x   – 1)3 (x +     2)5 ​

dx _____________  ​ 139. Evaluate: Ú  ​ _________________________        2 (x – 6x + 9) ​÷4x   2 – 24 x    +  20 ​

dx 122. Evaluate: Ú  ________ ​  2      ​ x (x + 5)4

dx ___________ 140. Evaluate: Ú  ​ ________________________         ​ 2 (4x + 4x + 1) ​÷4x   2 + 4x    + 7 ​

dx 123. Evaluate: Ú  ​ ________________       ​ 3/2  (x – 1) (x +  1)5/2

dx __________ 141. Evaluate: Ú  ​ __________________        ​ 3 (x + 1)  ​÷x  2 + 2x    – 4 ​

Type 10

Type 13

dx 124. Evaluate: Ú  _________ ​  ______      ​ x ​÷3x   3 + 4 ​ 

(2x + 3) __________ 142. Evaluate: Ú  ​ __________________         ​ dx (3x +  4)​÷x  2 +  2x    + 4 ​

dx 125. Evaluate: Ú  _________ ​  ______      ​ x ​÷5x   4 + 3 ​ 

(2x + 3) __________ 143. Evaluate: Ú  ​ _________________        ​ dx (x + 1) ​÷x  2 +  2x    + 9 ​

dx 126. Evaluate: Ú  _________ ​  ______      ​ x ​÷2  – 5x6   ​

(4x + 7) __________ 144. Evaluate: Ú  ​ _________________        ​ dx (x  +  2) ​÷x  2 +  4x    + 7 ​

Indefinite Integrals 

Type 14 2

x + __________ 4x   +    2 145. Evaluate: Ú​  _________________  ​ dx 2 (x + 1) ​÷x  + 2x     +  3 ​ x2 + __________ 5x   +    6 146. Evaluate: Ú​  _________________  ​ dx 2 (x + 2) ​÷x  + 5x     +  4 ​ x2 + 10x +6 __________ 147. Evaluate: Ú​  _________________        ​  dx 2 (x +  2) ​÷x  + 4x     + 9 ​

dx __________ 164. Evaluate: Ú  ​ ____________       ​ 2 x ​÷x  – 3x    +  2 ​ dx ______ 165. Evaluate: Ú  ​ __________       ​ x+÷ ​ x  2  – 1 ​  x dx _____ 166. Evaluate: Ú  _________ ​        ​ x+÷ ​ x  2 – 1 ​ 

Reduction Formulae Type 1

Type 15 __

167. Evaluate: Ú  sin5 x dx

__

3 3   148. Evaluate: Ú  ​÷ x    ​  (1 + ÷ ​ x    ​)  dx

__

149. Evaluate: Ú  ​÷x  2 ​  (3 + x–2/3)–2 dx 3

( 

______ __

)

x      ​ ​ ÷​ 1  +__​÷4 ​  150. Evaluate: Ú  ​ ​ _______     ​ dx 3 4 ÷​ x   ​  dx 151. Evaluate: Ú  ________ ​  2 _____      ​ 7  x ÷ ​ 1  + x4   ​

170. Evaluate: Ú  cos8 x dx Type 3 171. Evaluate: Ú  tan5 x dx

153. Evaluate: Ú  x–1/2 (2 + 3x1/3)–2  dx 154. Evaluate: Ú

________ __ 3 ​ 1 + ​÷x  4 ​    ​ ​  

​÷(    7

)

155. Evaluate: Ú  x–6 (1 + 2x3)2/3 dx dx 156. Evaluate: Ú  ________ ​  3 _____      ​ x ÷ ​ 1  + x5   ​ dx 157. Evaluate: Ú  _________ ​  2 _____      ​ 11  x ÷ ​ 1  + x4   ​

( 

)

________ __ ​_________ (1 + 4​÷x    ​)   ​    ​ ​  4 __ ​     ​ dx ​÷x  3 ​ 

158. Evaluate: Ú

÷ 

3

Type 2 169. Evaluate: Ú  cos7 x dx

dx 152. Evaluate: Ú  ___________ ​  __ __       ​ 4 10 ​ x     ​ (​  ÷ ​ x     ​ + 1 )​ ÷

__   3​÷x    ​  ×

168. Evaluate: Ú  sin6 x dx

Type 16 dx _________ 159. Evaluate: Ú  ​ _______________       ​ 2 (1  + ÷ ​ x  + x +  1 ​  ) dx _________ 160. Evaluate: Ú  ​ _____________       ​ x+÷ ​ x  2 – x + 1 ​   x dx ___________ 161. Evaluate: Ú  ​ ____________       ​   – 10     –  x2 ​ ÷​ 7x dx _________ 162. Evaluate: Ú  ​ _____________       ​ 2 x – ​÷x  – x + 2 ​   dx __________ 163. Evaluate: Ú  ​ ______________       ​ 2 x–÷ ​ x  – 2x    +  4 ​

172. Evaluate: Ú  tan6 x dx Type 4 173. Evaluate: Ú  cot7 x dx 174. Evaluate: Ú  cot6 x dx Type 5 175. Evaluate: Ú  sec3 x dx 176. Evaluate: Ú  sec4 x dx 177. Evaluate: Ú  sec5 x dx 178. Evaluate: Ú  sec7 x dx Type 6 sin 3 x 179. Evaluate: Ú  _____ ​     ​ dx sin x sin 5 x 180. Evaluate: Ú  _____ ​     ​ dx sin x sin 6 x 181. Evaluate: Ú  _____ ​     ​ dx sin x sin 8 x 182. Evaluate: Ú  _____ ​     ​ dx sin x Type 7 dx 183. Evaluate: Ú  _______ ​  2   2   ​ (x + 2)

1.27

1.28  Integral Calculus, 3D Geometry & Vector Booster dx 184. Evaluate: Ú  _______ ​      ​ (x2 + 3)3



x +  1    185. Evaluate: Ú​ ____________    ​dx 2 2 (x   +  3x  +  2)



Type 8 186. Evaluate: Ú  x2 log x dx 187. Evaluate: Ú  x2 (log x)2 dx



188. Evaluate: Ú  x3 (log x)2 dx 189. Evaluate: Ú  x2 (1– x)3 dx

Mixed Problems



190. Evaluate: Ú  sin8 x dx

sin x 3. Ú _____ ​     ​   dx = sin 3 x

|  | 

|

__

​ 3 ​     + tan x ÷ 1__ __ (a) ​ ___   ​   log ​ ​ _________    ​  ​ + c ​ 3 ​    ​÷3 ​     – tan x ÷ __

|

​ 3 ​     + tan x ÷ 1__ __ (b) ​ ____    ​   log ​ ​ _________    ​  ​ + c 2​÷3 ​    ​÷3 ​     – tan x

| 

__

|

​ 3 ​     + tan x ÷ __ (c) log ​ ​ _________    ​  ​ + c ​ 3 ​     – tan x ÷

| 

__

|

​ 3 ​     + tan x ÷ 1__ __ (d) ​ ___   ​  log ​ ​ _________    ​  ​ + c ​ 3 ​    ​÷3 ​     – tan x ÷ dx 4. Ú  ​ __________________        ​ = sin (x  –  a) cos (x – b)

191. Evaluate: Ú  cos10 x dx



1 (a) ​ _________      ​ (log |sin (x – a)| + log |sec (x – b)|) + c cos (a – b)

192. Evaluate: Ú  tan8 x dx



(b) ​( log ​| sin (x – a) |​ + log ​| sec (x – b) |​ )​ + c



(c) (log |sin (x – a)| + c)



(d) (log |sec (x – b )| + c)

193. Evaluate: Ú  cot8 x dx 194. Evaluate: Ú  cot  x dx



195. Evaluate: Ú  sec9 x dx



196. Evaluate: Ú  xn ex dx



9

dx 197. Evaluate: Ú  _______ ​      ​ (x2 + 2)2





1.

Ú x2 cos x dx =

5. Ú  tan3 2 x ◊ sec 2x dx = 1 1 (a) ​ __ ​    sec3 2 x – __ ​   ​  sec 2 x + c 3 2 1 1 3  (b) – ​ __ ​  sec 2 x – __ ​   ​  sec 2 x + c 2 6 1 1 (c) ​ __ ​  sec3 2 x – __ ​   ​  sec 2 x + c 2 6 1 1 3  (d) ​ __ ​  sec 2 x + ​ __  ​ sec 2 x + c 3 2 1 6. If Ú  f (x) sin x ◊ cos x dx = _______ ​  2   2    ​ log ( f (x)) + k, then (b – a ) f (x) is



1 (a) ​ ________________     ​ + c 2  2  a sin x +  b2 cos2 x



1 (b) ​ _______________      ​ + c a2 sin2 x – b2 cos2 x

Ú  ex cos2 x dx =





1 (a) ex + ___ ​    ​  ex (cos 2 x + 2 sin 2 x) + c 10 

1 (c) ​ _______________      ​ + c a2 cos2 x + b2 sin2 x





1 (b) ​ __ ​    ex + ex (cos 2 x + 2 sin 2 x) + c 2

1 (d) ​ _______________      ​ + c a2 cos2 x – b2 sin2 x

(a) x2 sin x (b) x2 sin x (c) x2 sin x (d) x2 sin x



2.

+ + + +

2 x cos x – 2 sin x + c 2 x cos x + 2 sin x + c 2 x cos x + sin x + c 2 cos x + sin x + c.





1 (c) ​ __ ​    ex + (cos 2 x + 2 sin 2 x) + c 2





1 1 (d) ​ __ ​  ex + ___ ​    ​  ex (cos 2 x + 2 sin 2 x) + c 2 10



7. If

cos 4 x + 1 __________        ​  ​ dx = k cos 4 x + c, then Ú ​( ​ cot x – tan x )

1 (a) k = – ​ __  ​ 2 1 (c) k = – ​ __  ​ 4

1 (b) k = – ​ __  ​ 8 1 (d) k = ​ __  ​ 6



dx 8. Ú  ​ ______     ​ = 6 x + x4



1 1 (a) – ​ ___ 2 ​ + __ ​ x ​ + cosec–1x + c 3x 1 1 (b) – ​ ____  2 ​ + __ ​ x ​ + cot–1 x + c 3 x 1 1 (c) – ​ ___ 3 ​ + ​ __  ​ + tan–1 x + c x 3x 1 1 (d) ​ ____  2 ​ – __ ​ x ​ + sin–1 x + c 3 x



| 

|

sin x  –  (x + 1) cos x – 1 1 (a) ​ __ ​  log ​ _____________________ ​          ​  ​ + c 2 sin x – (x + 1)cos x + 1 1 (b) ​ __ ​  tan–1 {sin x – (x + 1) cos x} + c 2 1 (c) ​ __ ​  sin–1 {sin x – (x + 1) cos x} + c 2 1 (d) ​ __ ​  sin–1 (sin x + cos x) + c 2

{ 



cos x (a) ​ _________     ​  +  c 2 + 5 sin x

– cos x (b) ​ _________     ​  + c 2 + 5 sin x



1 (c) ​ _________      ​ + c 2 + 5 sin x

sin x (d) ​ _________     ​ + c 2 + 5 sin x

}

(log x – 1) 10. Ú ​ ​ __________      ​  ​ dx = 1 + (log x)2

x ex (a) ​ _____     ​ + c 1 + x2

x ex (b) ​ __________       ​ + c 1 + (log x)2



log x (c) ​ __________       ​ + c 1 + (log x)2

x (d) ​ _____      ​ + c 1 + x2

}

(  (  (  ( 

) ) )



x 1 (a) ex ​ _______ ​  _____      ​ + _________ ​  _______      ​  ​ + c 2  ​ ​÷(1   + x2)3   ​ ÷​ 1  + x  



x 1 (b) ex ​ _______ ​  _____      ​ – _________ ​  _______      ​  ​ + c 2  ​ ​÷(1   + x2)3   ​ ÷​ 1  + x  



x 1 (c) ex ​ _______ ​  _____      ​ + _________ ​  _______      ​  ​ + c 2  ​ ÷ ÷​ 1  + x   ​ (1   + x2)5   ​



x 1 (d) ex ​ ______ ​  _____      ​ – ________ ​  _______      ​  ​ + c 2  ​ ​÷(1   + x2) ​  ÷​ 1  – x  

)

x cos x + 1   ___________ 15. Ú ​ ____________        ​dx =   3 e sin x +   x2 ​ ÷​ 2x

(  (  (  ( 

_________

) ) ) )



2x e   sin x + 1 ​   –  1 ÷​ __________ (a) log ​ ​ ______________     ​  ​ + c sin x      + 1 ​ + 1 ÷​ 2 xe 

2 

cosec x – 2005 11. Ú ​ _____________       ​  dx = cos2005 x

_________



cot x (a) ​ _______     ​ + c cos2005 x

tan x (b) ​ _______     ​+ c cos2005 x



  sin x – 1 ​   +  1 ÷​ 2x e (b) log ​ ______________ ​  __________    ​  ​ + c sin x      + 1 ​ + 1 ÷​ 2 xe 



– tan x (c) ​ _______      ​ + c cos2005 x

– cot x (d) ​ _______      ​+ c cos2005 x



2x e   sin x + 1 ​      +1 ÷​ _________ (c) log ​ ​ ______________  ​  ​ + c sin x      – 1 ​ + 1 ÷​ 2 xe 



sin x  _________ + 1 ​   +  1 ÷​ 2x e (d) log ​ ​ ______________        ​  ​ + c sin x      – 1 ​ – 1 ÷​ 2 xe 

sin 2 x + 2 tan x 12. Ú​ __________________        ​ dx = (​  cos6x + 6 cos2 x + 4 )​

÷ 

1.29

2x2 1 14. Ú  ex ​ _______ ​  _____      ​ + 1 – _________ ​  ________     ​  ​ dx =  ​ ÷​ 1  + x2  ​÷ (1   + x2)5   ​

2 sin x + 5 9. Ú​ ___________        ​ dx = (2 + 5 sin x)2 

{ 

Indefinite Integrals 

________

_________

_________



1 + cos2 x (a) 2 ​ ​ ________     ​ ​    +c cos7x

16. Let f (x) be a function such that f (0) = f ¢(0) = 0, f ¢¢(x)



1 + cos2 x 1 (b) tan  ​ ___ ​  __  ​  ​ × ​ ​ ________     ​ ​  +c ​ 2 ​    ÷ cos7x





1 + cos2 x 1 (c) ​ ___  ​  log ​ ​ ________     ​   ​+ c 12 cos7x



6 1 4 (d) ​ ___  ​  log ​ 1 + _____ ​  4       ​ + _____ ​  6     ​  ​ + c 12 cos x cos  x

–1

(  ) ÷ 

= sec4 x + 4, the function is

________

( 

( 

)

)

(1 + x) sin x 13. Ú​ __________________________         ​  dx = 2 (x + 2x) cos2 x – (1  +  x) sin 2 x



1 (a) log (sin x) + __ ​   ​  tan3 x + cx 3 2 1 (b) ​ __ ​  log (sec) + __ ​   ​  tan2 x + 2x2 3 6 x2 1 (c) log (cos x) + __ ​   ​  cos2 x + __ ​   ​  6 5 (d) none.

17. The value of the integral I = where p x Œ​ 0, __ ​   ​   ​ 2

(  )

____

____

  ​ + ​÷cot x    ​)  dx, Ú (​÷tan x 

1.30  Integral Calculus, 3D Geometry & Vector Booster

__

(a) ​÷2 ​     sin–1 (cos x – sin x) + c



(b) ​÷ 2 ​  sin (sin x – cos x) + c

ln |x| _______ 23. Ú  ​ ____________       ​ dx = x  × ​÷1  + ln |x| ​  



(c) ​÷2 ​     sin–1 (sin x + cos x) + c





(d) – ​÷2 ​     sin–1 (sin x + cos x) + c

__

–1 

__

__

____

____

18. The value of the integral I = Ú  ​( ​÷tan x    ​ + ​÷cot x      ​ )​ dx,



3p where x  Œ ​ p, ___ ​   ​   ​ 2

(  )





(a) ​÷2 ​     sin–1 (cos x – sin x) + c





(b) ​÷2 ​     sin–1 (sin x – cos x) + c



__ __ __

(c) ​÷2 ​     sin (sin x + cos x) + c (d) – ​÷2 ​     sin–1 (sin x + cos x) + c ____

____

)

p 3p where x Œ ​ 0, ​ __ ​   ​ » ​ p, ___ ​   ​   ​ 2 2



____ ____ __ tan x    ​ – ​÷cot x    ​  –1 ​÷ ____________ __ ​  (a) ​÷2 ​     tan  ​ ​       ​+ c ​÷2 ​    ____ ____ __ ​÷tan x    ​  + ​÷cot x    ​  –1 _____________ __ ​  (b) ​÷2 ​     tan  ​ ​       ​+ c ​÷2 ​    ____ ____ __ ​÷tan x    ​  – ​÷cot x    ​  –1 _____________ __ ​  (c) – ​÷2 ​     tan  ​ ​       ​+ c ​÷2 ​    ____ ____ __ ​÷tan x    ​  + ​÷cot x    ​  __ ​  (d) – ​÷2 ​     tan–1 ​ ​ _____________      ​+ c ​÷2 ​   

) )

(  ( 

+ 2) + c

(a) – 1/9 (b) – 1/3 (c) 1/3 (d) Non existent. 25. The number of values of x satisfying the equation 3 __ x ​   ​  x + 1 28 2 2 ___ _______________ ______ ​Ú  ​ ​  ​ 8t   + ​   ​  t + 4  ​ dt = ​         ​, 3 log(x + 1) ​( ​÷(x   + 1) ​   )​ –1

( 

)

is (a) 0 (c) 2

(b) 1 (d) 3.

________________________

26. Ú  ​÷(1   + 2 cot x (cot x      +  cosec x)) ​ dx =

) )

( 

– 2) + c

0

__

(  ( 

+ 2) + c

24. If Ú​  ​   ​ ​  t2 dt = x cos (p x), the value of f ¢(9) is

19. The value of the integral I = Ú   (​÷tan x    ​ + ÷ ​ cot x      ​)dx,



– 2) + c

f (x)

–1 

(  ) ( 

2 _______ (a) ​ __ ​  ​÷1  + ln |x| ​   × (ln |x| 3 2 _______ (b) ​ __ ​  ÷ ​ 1  + ln |x| ​   × (ln |x| 3 1 _______ (c) ​ __ ​  ÷ ​ 1  + ln |x| ​   × (ln |x| 3 1 _______ (d) ​ __ ​  ÷ ​ 1  + ln |x| ​   × (ln |x| 3



)

x4 cos3 x  –  x sin x + cos x 20. Ú  e(x sin x + cos x) ​ ​ ____________________         ​  ​ dx x2 cos2 x

(  ) 1  ​( ______ ​ x cos x      ​ )​ + c 1  ​( ______ ​ x cos x      ​ – x )​ + c 1  ​( ______ ​ x cos x      ​ + x )​ + c



(  (  ( 

(  ) ) (  ) ) (  ) )

x (a) 2 ln ​ cos ​ __ ​    ​  ​  ​ + c 2 x (b) 2 ln ​ sin ​ __ ​    ​  ​  ​ + c 2 x 1 (c) ​ __ ​  ln ​ sin ​ __ ​    ​  ​  ​ + c 2 2 (d) None.



1 (a) e(x sin x + cos x) ​ x – ______ ​ x cos x      ​  ​ + c

27. A differentiable function satisfies 3f 2(x) f ¢(x) = 2x. Given f (2) = 1, the value of f (3) is



(b) e(x sin x + cos x)



(a) ​÷24 ​    

(b) ​÷6 ​   



(c) e(x sin x + cos x)



(c) 6

(d) 2.



(d) e(x sin x + cos x)

1 x 28. Ú  ​ __ ​ x ​ log ​ __ ​  x  ​   ​  ​ dx = e

x

dt _____ 21. Let f (x) = Ú​  ​  ​  ​ _______     ​and g be the inverse of f. Then 2 ÷ ​ 1  + t4   ​

the value of g¢(0) (a) 1 ___ (c) ​÷17 ​    

(b) 17 (d) None.



3 ___

3

(  (  ) )

1 (a) ​ __ ​  ex – ln x + c 2 1 (c) ​ __ ​  ln 2 x – ex + c 2

29.

Ú  x × 2 l​n(x​  + 1)​ dx =

t dt 22. If f (x) = eg(x) and g (x) = Ú​  ​  ​  ​ _____  4   ​, then f ¢(2) is 21 + t



2 ln  ​ (x ​ + !)​ (a) ​ ________      ​ + c 2 2(x + 1)





(x2 + 1) ​2 ​ln (x  + !)​ (b) ​ _____________        ​ + c 2 (x2 + 1)

x

(a) 2/17 (c) 1

(b) 0 (d) cannot be determined.

2

2 

  2

__

1 (b) ​ __ ​  ln x – ex + c 2 (d) None.

Indefinite Integrals 

( 

)



(x2 + 1) 2 ln2 + 1 (c) ​ ​ ____________       ​  ​ + c 2 (ln 2 + 1)



(d) None.

( 



)



( 

)

x (a) ​ __________ ​  _________       ​  ​ + c 2   ÷​ x  + rx + 1 ​ x (b) ​ __________ ​  _________      ​  ​ + c   ÷​ x  2 + rx + 1 ​

( 

)

( 

)

1 (d) cos–1 ​ __ ​   ​  (sin x + cos x)  ​ + c. 3

}

(b) B = cos a



(c) A = cos a

(d) B = sin a

36.

Ú  x log (x2 + 1) dx = f (x) log (x2 + 1) + g (x) + c, then





(a) ex tan x + c

(b) ex cot x + c





(c) ex cosec2 x + c

(d) ex sec2 x + c.



{ 

( 

_____

)}

2 ​etan ​ x​ ( –1  1 – x2 32. Ú  ​ _______2     ​ ​ ​​  sec ​÷1  + x2   ​ )​​ ​ + cos–1 ​ ​ _____2   ​  ​  ​ dx (1 + x ) 1+x



(a) etan–1 x ◊ tan–1 x + c



etan–1 x ◊ (tan–1 x)2 (b) ​ ______________  ​      +c 2

(  (  ) x ◊ ​​( cosec ​( ​÷1  + x  ​ )​ )​​ ​ + c 2



(c) etan–1 x ◊ ​​ sec–1 ​ ​÷1  + x2   ​ )​  ​​ ​ + c



(d) etan–1 

_____

2



(  (  ( 

__

)



(1 + ​÷x     ​) (b) ​ ​ ________  ​   ​+ c (1 – x)2

__

__

) )



(1  – ​÷x    ​)  (c) ​ ​ ________2   ​  ​ + c (1 – x)



2 (1 – ÷ ​ x     ​) _____  ​  (d) ​ ​ ________   ​+ c – ​÷1  – x   ​

( 

( 

__

)

(a) A = 1/2 (c) f (x) = tan x

(b) A = 1/3 (d) f (x) = tan 2 x.

dx 38. If Ú  ​ __________________        ​ cos (x –  a) cos (x – b)

2



(a) A = sin (a – b) (b) f (x) = cos (x – a) (c) g (x) = cos (x – b) (d) A = sin (b – a).

Ú tan4 x dx = k tan3 x + L tan x + f (x), then



(a) k = 1/3

(b) L = –1



(c) f (x) = x + c

(d) k = 2/3.

(More than one options are correct)

( 

)

x + sin x 40. If Ú  ​ ​ ________     ​  ​ dx = f (x) tan (g (x)) + c, then 1 + cos x

)



(a) f (x) = x2

(b) f (x) = x



x2 (c) g (x) = __ ​   ​   2

x (d) g (x) = __ ​    ​ 2

( 

)

x–1 ex 41. If Ú  ex ​​ _______      ​  ​ dx = ______ ​       ​ + c, then 3 (g (x))m (x + 1)

)

cos x – sin x ________ 34. Ú  ​ ​ __________     ​  ​ dx = ​ 8  – sin 2 x   ​ ÷

(a) sin–1 (sin x + cos x) + c



1 (b) sin–1 ​ __ ​   ​  (sin x + cos x)  ​ + c 3

( 

( 

39. If

dx _____ 33. Ú  ​ _____________       ​ = __ (1 + ÷ ​ x     ​ )​÷x   – x2   ​ 2 (1  + ​÷x    ​)  (a) ​ _________ ​   ​     ​+ c 2 (1 – x)

1+ x2 (a) f (x) = ​ _____  ​     2 1 + x2 (b) g (x) = ​ _____  ​    2 1 + x2 (c) g (x) = – ​ _____  ​    2 x2 – 1 (d) f (x) = ​ _____  ​    . 2 1 + sin 2 x 37. If Ú  e2x ​ ​ _________   ​  ​  dx = Ae2x ◊ f (x) + c, then 1 – sin 2 x

1 = __ ​    ​ (log |f (x)| + log |g (x)| + c, then A

_____

–1 

)

(a) A = sin a



cos x (2 sin x  +  1) 2 sin2 x  –  1 ______________ 31. Ú  ex ​ ​ _________   ​   + ​         ​  ​ dx = cos x   1 + sin x

–1 

( 





)

{ 





x2 (c) ​ __________ ​  _________       ​  ​ + c   ÷​ x  2 + rx + 1 ​ 1 _________ (d) ​ ​ __________      ​  ​ + c 2   ÷​ x  + rx + 1 ​

( 

(c) cos–1 ((sin x + cos x)) + c

sin x 35. If Ú  ​ _________     ​  dx = Ax + B log |sin (x – a)| + c, then sin (x – a)

2x + 1 30. Ú  ​​ _____________        ​  ​ dx = (x2 + 4x  + 1)3/2 3



1.31

)



(a) g (x) = x (c) m = 1

(b) g (x) = x + 1 (d) m = 2.

1.32  Integral Calculus, 3D Geometry & Vector Booster

( 

)

dx 1 B __ 42. If Ú  ​ __________       ​ = A ​​ 1 + ​    ​   ​​ ​ + c, then x2 (x4 + 1)3/4 x4





cos4 x 50. If Ú  ​ ___________________ ​  3          ​  ​ dx sin x {sin5 x + cos5 x}3/5 m __ 1 = – ​ __  ​ (B + cot5 x​)​ ​n ​ ​ + c, then A (a) A + B = 3 (b) m + n = 7

(a) A = –1 (c) A = 1/2

(b) B = 1/4 (d) B = 1/2.

( 

)

logx e  +  logex e + lo​g​ 2 ​ e ex 43. If Ú  ​ _____________________  ​        ​  ​ dx x  = A (log (loge x)) + B loge (1 + loge x)   + C log (2 + loge x) + K, then

(a) A + B = 2 (c) A – B = 0

( 

____



( 

(b) L – M = 6 (d) L + M – N = 14.

)

(c) m + n = 8

(d) A + B = 4.

(b) A – C = 0 (d) A + B + C = 3

)

​ tan x    ​   ÷ 44. If Ú  ​ ________ ​       ​  ​ dx = A (f (x))1/m + c, then sin x cos x





(a) A = 2

(b) m = 2





(c) f (x) = tan x

(d) A + m = 5

( 

(a) L + M = 18 (c) L + M + N = 22

cos 2 x – cos x 1. Evaluate: Ú  ​ ____________         ​ dx 1 – cos x cos 5 x + cos 4 x 2. Evaluate: Ú  ​ _____________         ​ dx 1 – 2 cos 3 x

____ ​ cot x    ​  ÷ 45. If Ú  ​ ________ ​       ​  ​ dx = A ​( – ​÷f (x) ​     )​ + c, then sin x cos x



sin6 x + cos6 x 3. Evaluate: Ú  ​ ___________       ​ dx sin2 x ◊ cos2 x



(a) A = 2

(b) f (x) = cot x





(c) f (x) = tan x

(d) A = 4.

cos 2 x 4. Evaluate: Ú  ​ __________      ​ dx cos2 x ◊ sin2 x



sin 2 x 5. Evaluate: Ú  ​ ___________      ​ dx sin 5 x ◊ sin 3 x



sin x 6. Evaluate: Ú  ​ __________       ​ dx sin x + cos x



dx 7. Evaluate: Ú  ​ ____________       ​ sec x + cosec x



8. Evaluate: Ú  tan 3 x ◊ tan 2 x ◊ tan x dx



b   9. Evaluate: Ú  ​ ______      ​dx a + c ex

____

( 

)

)

(  )

______

x9/2 L 46. If Ú  ​ _______ ​  ______     ​  ​ dx = ​ __ ​    ​   ​ log ​ xN/P  + ​÷1  + x11   ​  ​ + c, 11 M  ​ ÷​ 1  + x   then

(a) L (b) L (c) L (d) L

( 

+ – + +

M M M M

= = + +

)

÷ 

_________

L P __ ​    ​  ​ N + __ ​  4  ​  + c    ​, then M x

dx 10. Evaluate: Ú  ​ _____     ​ 1 + ex

(a) L = 1 (b) M = 2 (c) L + M + N + P = 5 (d) L + M + N – P = 3.

(  )

tan–1 x 48. If Ú  ​ ______ ​  4 ​    ​ dx = x

(a) A = 3 (c) C = 6

( 

x+9 11. Evaluate: Ú  ​ _______      ​ dx x3 + 9 x sin x – cos x 12. Evaluate: Ú  ​ __________       ​ dx ex + sin x

|  |

tan–1 x __ x2 + 1 1 1 –  ​ ______  ​   + ​     ​log ​ ​ _____  ​    ​ + ____ ​   2 ​ + k, 3 B A x x2 C x

then

|

13 9 N + P = 26 N = 15.

dx 47. If Ú  ​ ________ ​  _____      ​  ​ = 3  x ÷ ​ 1  + x4   ​

| 

(b) B = 6 (d) A + B + C = 15.

)

2 (cos x +  sec x) sin x 49. If Ú  ​ _________________ ​  6       ​  ​ dx cos x + 6 cos2 x + 4 N 1 M = __ ​   ​  ​ log ​ 1 + _____ ​  4      ​ + _____ ​  6      ​  ​  ​ + c, L cos x cos x then

(  ( 

))

cos x – sin x + 1 – x 13. Evaluate: Ú  ​  ________________         ​ dx ex + sin x + x sin (x + a) 14. Evaluate: Ú  ​ _________   ​ dx sin (x + b) dx 15. Evaluate: Ú  ​ _________________        ​ sin (x – a) sin (x – b) dx 16. Evaluate: Ú  ​ _________________        ​ sin (x – a) cos (x – b) ____

​ tan x    ​   ÷ 17. Evaluate: Ú  ​ ___________      ​ sin x ◊ cos x dx

Indefinite Integrals  3 ____

dx _____ 18. Evaluate: Ú  ​ ________      ​ x ​÷x  4 – 1 ​ 

40. Evaluate: Ú  ​÷tan x    ​   dx dx 41. Evaluate: Ú  ​ _______     ​ (ex – 1)2

dx 19. Evaluate: Ú  ​ _______     ​ (x2 + 1)2

tan–1 x   42. Evaluate: Ú  ​ ______  ​    dx x4 dx ____ 43. Evaluate: Ú  ​ _______________   4 ​ _____   (​  ÷​ cos x    ​+ ÷   ​ sin x    ​ )​  

÷ 

_________

sin (x – a) 20. Evaluate: Ú  ​ ​ _________     ​ ​ dx sin (x + a) x 21. Evaluate: Ú  ​ _________      ​ dx x4 + x2 + 1

1 + x– 2/3 44. Evaluate: Ú  ​ _______      ​ dx 1+x

22. Evaluate: Ú  sec3 x dx 23. Evaluate: Ú  cosec3 x dx

dx 45. Evaluate: Ú  ​ ___________       ​ 2 sin x + sec x

x2 – 1 __________ 24. Evaluate: Ú​ ____________       ​ dx x ​÷x  4 + 3x2   + 1 ​

x4  +  1 46. Evaluate: Ú  ​ ______    ​ dx x6 + 1

dx 25. Evaluate: Ú  ​ ____________       ​ x4 + 18x2 + 81

dx 47. Evaluate: Ú  ​ _______     ​ (ex – 1)2

( 

)

x + sin x 26. Evaluate: Ú  ​ ​ ________     ​  ​ dx 1 + cos x

dx _____ 48. Evaluate: Ú  ​ ____________       ​ (x  –  1) ​÷x  + 2 ​  

27. Evaluate: Ú sin 4 x etan2 x dx

dx _____ 49. Evaluate: Ú  ​ ________      ​ x2 ÷ ​ x  + 1 ​  

( 

)

2x + 2 ____________ 28. Evaluate: Ú  sin–1 ​​ _____________        ​  ​ dx 2   + 8x +     13 ​ ÷​ 4x

x4 – 1 _________ 50. Evaluate: Ú​ ____________       ​ dx x2÷ ​ x  4 + x2 + 1 ​  

x2 29. Evaluate: Ú  ​ _____________       ​  dx (x sin x + cos x)2

x2 – 1 ___________ 51. Evaluate: Ú​ ______________        ​ dx x3 ​÷2x   4 – 2x2   + 1 ​

x2 (x sec2 x  +  tan x   30. Evaluate: Ú  ​ _______________        ​dx (x tan x + 1)2

______

​  cos 2 x      ​ ÷ 52. Evaluate: Ú  ​ _______     ​   dx sin x

secx (2  + sec x)   31. Evaluate: Ú  ​ _____________        ​dx (1 + 2 sec x)2

( 

)

cos q +  sin q 32. Evaluate: Ú  cos (2 q) × log ​ ___________ ​        ​  ​ dq cos q – sin q

( 

)

x4 + 2 33. Evaluate: Ú ex  ​​ _________     ​  ​ dx (1 + 2)5/2

( 

sec2 x 54. Evaluate: Ú  ​_____________         ​ dx (sec x + tan x)9/2 tan 2 q ____________ 55. Evaluate: Ú  ​ ______________       ​ dq 6 6    q + cos     q ​  ÷​ sin

)

x cos3 x  –  sin x 34. Evaluate: Ú  esinx  ​ _____________ ​     ​   ​ dx cos2 x dx 35. Evaluate: Ú  ​ ____________       ​ cos x + cosec x

Q.  Evaluate the following integrals.

36. Evaluate: Ú  cot  (1 + x + x ) dx –1

cos q + sin q ___________ 53. Evaluate: Ú​ ____________        ​ dq    ​ ÷​ 5  + sin q (2q) 

2

37. Evaluate: Ú  tan–1 (1 + x + x2) dx sin x 38. Evaluate: Ú  ​ ________     ​ sin 4 x dx



x2 + 6 1. Ú ​_______________          ​dx (x sin x + 3 cos x)6



log (1  + sin2 x) 2. Ú  ​ _____________       ​ dx cos2 x



3. Ú  ​x​ 3 ​ ​ 1 + ​x​3 ​  ​ ​ dx

39. For any natural number m, evaluate Ú  (x

3m

2m

+x

m

2m

+ x ) (2x

m

1/m 

+ 3x + 6)

dx.

2 – ​ __ ​

( 

)

2 –1 ​ __ ​

1.33

1.34  Integral Calculus, 3D Geometry & Vector Booster

( 

( 

) ) ( ( 

( 

)))



5p p 4. Ú  ​ 1  +  tan ​ ___ ​    ​ – x  ​  ​ ​ ​ 1 + tan ​ – ​___     ​ + x  ​  ​  ​ dx 16 16



5. Ú  tan (x – a) ◊ tan (x + a) ◊ tan2 x dx

(  ( ÷  ) ) _____



1–x 6. Ú  cos ​ 2 cot  ​ ​ ​ _____     ​  ​  ​ dx 1+x



(x  –  1) ​÷x  4 + 2x3 –     x2 + 2x +  1 ​ 7. Ú  ​ __________________________          ​ dx x2 (x + 1)



p tan ​ __ ​   ​ – 4  ​ 4 __________________ 8. Ú  ​ ________________________         ​ dx 2  3 cos x ​÷tan    x + tan2 x +   tan x ​



tan–1 x    9. Ú  ​______   4    ​ dx x

–1

( 

)

x +  2 2 25. Ú  ex ​​ _____ ​   ​    ​ ​ dx x+4 ______ ​÷1  +  x8 ​  _______

___________________

( 

dx 24. Ú  ​____________________   __________________         ​ 3    + a) cos     (x – b ) ​ ÷​  sin (x

)

26. Ú  ​ 

 ​ dx     x13 dx 27. Ú  ​___________   3        ​ sin x + cos3 x _____

(x  + ​÷1  + x2   ​)3 _____   28. Ú  ​ ____________     ​dx  ​ ÷​ 1  + x2  (x + 1) 29. Ú  ​ __________      ​ dx x (1 + x ex)2

÷ 

_____________

(1 – x sin x) 10. Ú  ​ ____________        ​ dx x (1 – x3 e3cosx)

sin x 30. Ú  ​ _____________ ​        ​ ​ dx 2 sin x + 3 cos x

(1 + x cos x) 11. Ú  ​ ____________        ​ dx x (1 – x2 e2sinx)

cos 4 x + 1 31. Ú  ​ __________        ​ dx cot x – tan x

dx 12. Ú  ​ ____________      ​  2 sin x +  sec x

cos3 x  + cos5 x 32. Ú  ​ ____________         ​dx sin2 x + sin4 x

13.

dx

dx 33. Ú  ​ ____________      ​ 6  sin x  +  cos6 x

_____________________ ________________ ​           ​ Ú cos x ​  sin (2x   + a) +   sin a ​

÷

( 

(  )

(  ) )

f (x) 34. Evaluate Ú  ​_____   3     ​ dx, where f (x) is a polynomial of x – 1 degree 2 in x such that f (0) = f (1) = – 3 = 3 f (2).

1 1 14. Ú  ​ 3 2 tan ​ __ ​ x ​ ​ – x sec2 ​ __ ​ x ​ ​  ​ dx __________

​ 3 cos 2 x      – 1 ​ ÷ 15. Ú  ​ ____________ dx cos x    ​   

( 

) (  ( 

)

(  ) )

Integer Type Questions

1 2x 2x 16. Ú  ​ _____ ​    8   ​ ​ ​ cos–1 ​ _____ ​   2   ​ ​ + tan–1 ​ _____ ​   2   ​ ​  ​ dx 1–x 1+x 1–x x2 – x3 17. Ú​ ___________________        ​ dx (x + 1) (x3 +  x2 + x)3/2



cos x  +  cos 2 x 1. If of Ú  ​____________          ​ dx = A sin x + Bx + c, find the 2 cos x – 1 value of A + B + 3.

4 

cos x 18. Ú  ​___________________           ​ sin3x (sin5 x + cos5 x)3/5



sin3 x dx 19. Ú  ​_________________________________   4            ​ (cos x + 3 cos2 x + 1) tan–1 (sec x  +  cos x)

​ 2 ​    ÷ p x = ___ ​   ​  log ​ tan ​ __ ​    ​ + __ ​    ​  ​  ​ L M N

____ ____ ​÷cot x    ​  –  ​÷tan x    ​  _____________

20. Ú  ​ 

        ​ dx 4 + 3 sin2 x

x2 (x sec2 x  +  tan x   21. Ú  ​ _______________         ​dx (x tan x + 1)2 ___________

3    –  sin   x ​ ÷​ sin x 22. Ú  ​ ____________         ​dx 3  1 – sin x x 

__

| 

( 

)|

P   + __ ​   ​  tan–1 (sin x – cos x) + c, 3 then find the value of L + M – N – P.

dx 3. If Ú  ​ ____________      ​ sin6 x  +  cos6 x

= tan–1 (L tan x + M cot x) + c, find the value of L + M + N + 4.

2

e (2 – x )   _____   23. Ú ​ ____________       ​dx (1 – x) ​÷1  – x2     ​

dx 2. If Ú  ​___________   3        ​ sin x + cos3 x



x+1 4. Let Ú ​ ______   ​    dx x3  +  x



(  )

|  |

xM 1 = tan–1 x + __ ​   ​ log ​ ______ ​  N      ​  ​ + c. L x +1

)

L + M +  N Find the value of ​ ​ __________  ​       ​ 3 sin x 5. Let Ú  ​ __________ ​        ​  ​ dx sin x + cos x = Ax + B log |sin x + cos x| + c Find the value of A + B + 1

( 



( 

)

x2 6. Let Ú  ​ ________ ​       ​  ​ dx (2x + 3)2

(3 + 2x) __ 9 1 = ​ _______     ​ + ​    ​   log |3 + 2x| – ​ ________      ​ + C. L M 8(2x + 3) Find the value of L + M + 4

( 

2

)

( 

)

(b) x (ln x) + c



x (c) ​ ___   ​ + c ln x

(d) x + ln x + c



x ex dx 2. Ú  ​ _______     ​ = (1 + x)2



(a) x ex + c

ex (b) ​ __________       ​ (1 + x)2 + c



1 (c) ex – _____ ​       ​ + c 1+x

ex (d) ​ _____     ​ + c 1+x



find the value of L + M + N + P + Q.

( 

)

cos4 x 8. If Ú  ​ ___________________ ​  3          ​  ​ dx sin x (sin5 x + cos5 x)3/5



=



( 

)

M __ 1 1 + tan x ​ N ​  – ​ __ ​  ​​ ​ ________       ​  ​​ ​+ 5  L 5 

tan x

c,

9. If Ú  x13/2 (1 + x5/2)1/2 dx

8M L = ___ ​    ​  (1 + x5/2)7/2 – ___ ​   ​  (1 + x5/2)5/2 35 25 N     + ​ ___  ​  (1 + x5/2)3/2 + c, 15 find the value of L + M + N. 10. If Ú  cos4 x dx = L x + M sin 2 x + N sin 4 x + c, find the value of 8L + 4M + 32 N.

Comprehensive Link Passages Passage I In some of the cases we can split the integrand into the sum of the two functions such that the integration for which one of them integrate by parts and other one be fixed.

(  ( 



) )

) (  ) ( 

) )

x4 – 2 _________ 1. Ú​ ____________       ​ dx = x2 ​÷x  4 + x2 + 2 ​  

÷  2 (b) ​ x  + __ ​    ​  + 1  ​+ c ÷ x 1 (c) ​ x  + __ ​    ​   ​ + c ÷ x 2 (d) ​ x  + __ ÷ ​ x   ​ ​  + c. 1 (a) ​ x2 + __ ​  2  ​    + 1 ​ + c x __________



2

  

2

_______

= Ú  e f (x) dx + Ú e  f ¢(x) dx





= ex f (x) – Ú  ex f ¢(x) dx + Ú  ex  f ¢(x) dx + c = e f (x) + c

)

_________





)

) (  ) ( 

(  ( 

Ú  ex {f (x) + f ¢(x)} dx

x

(  ( 

) )

a a a Ú  f ​ x – __ ​ x ​  ​ ​ 1 + __ ​  2  ​   ​ dx, put x – __ ​ x ​ = t, x a a a __ __ Ú  f ​ x + ​ x ​  ​ ​ 1 – ​  2  ​   ​ dx, put x + __ ​ x ​ = t, x a a a Ú  f ​ x2 – __ ​  2  ​   ​ ​ x + __ ​  3  ​   ​ dx, put x2 – __ ​  2  ​  = t x x x a a a Ú  f ​ x2 + __ ​  2  ​   ​ ​ x – __ ​  3  ​   ​ dx, put x2 + __ ​  2  ​  = t x x x The following integrands can be brought into above forms by suitable transformations.

Consider

x

)

(  ( 

For integrals



x 

( 

1 3. Ú  ex ​ log x – __ ​  2  ​   ​ dx x 1 x (a) e  ​ log x – __ ​ x ​  ​ + c 1 (b) ex ​ log x + __ ​ x ​  ​ + c 1 (c) ex ​ log x + __ ​  2  ​   ​ + c x 1 (d) ex ​ log x + ____ ​     ​  ​ + c log x

Passage II

find the value of L + M + N.

)

(a) ln (ln x) + c



xM + xN + P 1 = ​ __ ​ tan–1 ​ ​ ___________        ​  ​ + k, L Q

( 

1.35

1 1 1. Ú  ​ ___ ​     ​ – _____ ​     ​   ​ dx = ln x (ln x)2





3x + 2x 7. If Ú  ​​  _________________________         ​  ​ dx 6 5 x + 2x + x4 + 2x3 + 2x2 + 5





Indefinite Integrals 

2

2



______



2



2

(x – 1) dx __________ 2. Ú​ _________________       ​ = (x + 1) ​÷x  3 + x2    +  x ​

1.36  Integral Calculus, 3D Geometry & Vector Booster

( 

)

1 (a) tan–1 ​ x + __ ​ x ​ + 1  ​ + c __________

÷(   



)



1 (b) tan–1 ​ ​ x + __ ​ x ​ +    1  ​ ​ + c



1 (c) 2 tan ​ ​ x + __ ​ x ​ +    1  ​ ​ + c



(d) tan–1 



__________

) ÷(    1 ​÷​(   x – __ ​ x ​ + 1 )​ ​ + c –1 

__________

( 



  

4

5



)



5x + 4x 3. Ú ​ ​ __________       ​  ​ dx = (x5 + x + 1)2



(a) x5 + x + 1 + c



x5 (b) ​ ________ ​  5      ​  ​ + c x +x+1

(  (  ( 



__

__

)

Matrix Match (For JEE-Advanced Examination only)

) ) )

4

( 

3

x  + ​÷x  2 ​ + ​÷4 x     ​ __ 3. Ú  ​ ​ ___________     ​   ​ dx 3 4 x+÷ ​ x   ​  3 6 __ (a) __ ​   ​  x2/3 + 6 tan–1 (​÷ x    ​)  + C 2 __ 3 (b) ​ __ ​  x2/3 – 6 tan–1 (÷ ​6 x     ​) + C 2 __ 3 (c) – ​ __ ​  x2/3 – 6 tan–1 (÷ ​6 x     ​) + C 2 __ 3 6 (d) – ​ __ ​  x2/3 + 6 tan–1 ( ​÷6 ​    ) + C 2

Q1. Match the following columns: Column I

Column II x 1 (P) ___ ​  __  ​  tan–1 ​ ___ ​  __  ​  ​ + c ​ 2 ​    ​÷2 ​    ÷

dx



x (c) ​ ________ ​  5      ​  ​ + c x +x+1

(A)

  __   ​ Ú  ​ ________ (x + 2)​÷x     ​



x4 (d) ​ ________ ​  5      ​  ​ + c x +x–1

(B)

dx __   __   ​ Ú  ​ _________ (​÷x     ​ + 2)​÷x     ​

(C)

    ​ Ú  ​ _______ x (x + 2)

(D)

​  2      ​ Ú  _______ (x + 2)

Passage III Let us consider the integrals of the form

( 

Ú  R ​ x,

b __ ​   ​ ​x​q ​,

a __ ​   ​  ​x​p ​,

)

__g ​x​ ​r ​​  ​ dx

In this case, we shall put x = t m, where m is the LCM of (p, q, r). __



​÷x     ​ __     1. Ú  ​ _______  ​ dx = 4 3 ÷​ x   ​ + 1 __



___

( 

__

__

)

__



2 2 12 (b) ​ ___  ​ 4Rx9 – ___ ​    ​   ​÷x  13 ​ + C 27 13



13 2 12 (c) ​ ___ ​ 4Rx9 – ___ ​    ​    ​÷x  13 ​ + C 27 13 

___

( 

___ 2 ___ ​    ​    ​÷x   ​ +

2 (d) – ​ ___  ​ 4Rx9 – 27 13

12 13

)

x 1 (S) __ ​       ​  ​ + c ​    ​ log ​ _____ 2 x+2

( 

)

(B)

Ú sin4 x dx

3 3 (Q) – __ ​    ​ (tanx)– 8/3 + ​ __ ​  (tan x)4/3 8 4 3 –  ​ __ ​  (tan x)–2/3 + c 2

(C)

Ú sin7 x cos3 x dx

sin5 x _____ sin7 x (R) _____ ​   ​   – ​   ​   + c 7 5

(D)

Ú cosec11/3 x ◊

sin8 x _____ sin10x (S) _____ ​   ​   – ​   ​   + c 8 10

Q.3 Match the following columns: (Write the suitable substitutions)

___



(R) 2 log (2 + ÷ ​ x    ​)  + c

dx

sec7/3 x dx

2 4 2 12 (a) ​ ___  ​  ​÷x  9 ​ + ​ ___  ​   ​÷x  13 ​ + C 27 13



Column II sin 4 x 1 _____ (A)   sin4 x ◊ cos3 x dx (P) __    ​  ​ 3 x + ​   ​   – 2 sin 2 x  ​ ​  Ú 8 4 + c,

___



__

Q.2 Match the following columns:



  ​  ÷​ x  3 ​ – ​÷3 x  2. Ú  ​ ​ ________     ​ dx = __ ​  6 – 4​÷x     ​

__

(Q) ​÷2 ​     tan–1

__

dx

Column I

4 3 4 4 (a) ​ __ ​ ​ ( ​÷x  3 ​ – ln ​( ​÷ x    ​ + 1 )​ )​ + C 3 __ ___ 2 3 4 2 3 (b) ​ __ ​   ​( ÷ ​ x   ​ – ln ​( ​÷ x    ​ + 1 )​ )​ + C 3 __ ___ 2 3 5 2 3 (c) ​ __ ​  ​( ÷ ​ x   ​ – ln ​( ÷ ​  x    ​ + 1 )​ )​ + C 3 __ ___ 4 3 8 4 (d) ​ __ ​   ​( ​÷x  3 ​ – ln ​( ​÷ x    ​ + 1 )​ )​ + C 3

(  ) x  ​( ​ __ ÷​  2  ​ ​ )​ + c

C

Column I (A)

sin x cos x

      ​  dx Ú  ​ ____________ sin2 x  +  cos2 x

Column II (P) put sin x = t

Indefinite Integrals 

(B)

sin x◊cos x ​          ​  dx Ú ___________________ 2  2   

(Q) put sin x = t

dx

(C)

      ​ Ú  ​ 3___________ + sin x cos x

(D)

cos  x – sin  x  ​ dx       Ú​ _____________ 2  2 

2

(R) put cos x = t

2

(S) put sin x cos x=t

1 –  sin x cos x 

Q.4 Match the following columns: Column I

( 

Column II p (P) __ ​   ​  2

)

x +  sin x (A) If f (x) =   ​ ​ ________    ​  ​ dx and Ú 1 + cos x  p f (0) = 0, then f ​ __ ​   ​   ​ 2

(  )

(B) Let

( 

Q.6 Match the following columns: Column I

sin x + 2 cos x + cos x

Column II x 1 __ _____ dx (A)   ​ _____ Ú x2 + x  ​ (P) – ​ x ​ – log ​ ​ x + 1  ​  ​ + c x _____ dx (B)   ​ ______  ​  ​ + c  ​ (Q) log ​ ​ x + 1  Ú x3 +  x2  x 1 1 __ 1 ___ ___ _____ dx (C)   ​ ______  ​  ​ + c  ​ (R) – ​   3 ​ + ​   2 ​ – ​ x ​ – log ​ ​ x + 1  Ú x4 +  x3  3x 2x (D)

)

x ​  _____      ​  ​ dx f (x) = Ú  esin–1 x  ​ 1 – ______  ​ ÷​ 1  – x__2  k ​÷3 ​    ep/6 1 and f (0) = 1, if f  ​ __ ​   ​   ​ = ​ _______ ​,  p    2

(  )

p dx (C) Let f (x) = Ú ​ _____________ (R) __ ​   ​        ​ and 4 (x2  + 1) (x2 + 9) __ 5 f (0) = 0, if f (​÷3 ​    ) = ​ ___  ​  k, then k 56 is

x 1 1 – ​ ____  2 ​ + __ ​ x ​ + log ​ _____ ​       ​  ​ + c x +1 2 x

dx

    ​ (S) Ú  ​ ______ x5 + x4

|  | |  | |  | |  |

(S) p.  ​ )​ dx and (  sin x cos x  

Let f (x) = Ú  ​ ​ 

(  )

p 2k f (0) = 0, if f ​ __ ​   ​   ​ = ___ ​ p ​ , then k is 4

Column II 1 dx _____ (P) – ​ ______ _____ (A)  ​ ___________      ​     ​ Ú (x – 1)​÷  ​ x  – 1 ​   ÷ _____ x  + 4 ​  –1 1__ –1 x_____ ___ – ​    ​  tan  ​ ​ ​   ​ ​       ​ + c 2 ​ 2 ​    ÷

| ( 

( ÷  ) )

1 1 dx ___ __ (B)  ​ ____________ _____     ​ (Q) – ​  __  ​  log ​ ​ t – ​ 3 ​   ​ ​ Ú (x2 – 1)​÷  ​ ​ 3 ​     ÷ x  – 1 ​   __________ 2 1 __ ​ ​ t2  – ​ __ ​  t +  +    ​    ​ ​ ​ + c, 3 3 ​ 1 _____ t = ​       ​ x+2

÷ 

_____

( 

_____

)

dx

x3 1 __ _____  ​  ​ + c (Q) ​   ​  log ​ ​  3     3 x +1

     ​ Ú ​ ________ x (x5 + 1)

dx

x2013 1    ​   log ​ _______ ​  2013     ​  ​ + c (R) ​ _____ 2013 x +1

Ú dx/x (x2013 + 1)

x2 1 ​   ​  log ​ _____ ​  2      ​  ​ + c (S) __ 2 x +1

     ​ Ú ​ ________ x (x3 + 1)

(C) (D)

Q.8 Match the following columns: Column I 3

Column II

2

x   – 3x

(A)

   ​   dx Ú  ​ _______ ex + x3

(B)

     ​ dx Ú  ​ _____ ex + x

(C)

      ​ dx Ú  ​ __________ ex + sin x

(D)

        ​ dx Ú  ​ ___________ ex + tan x

(P) x – log |x + ex| + c

x–1

x (Q) log |sin x + e | – x + c

cos x – sin x

tan x  –  sec2 x

x (R) x – log |tan x + e | + c

3 x (S) x – log |x + e | + c

Q.9 Match the following columns:

(A)

dx _____ (R) __ ​÷x  + 4 ​  – 3 1 (C)  ​ ____________       ​ _____ ​   ​  log ​ ​  _________    ​  ​ + c Ú 3 ​÷x  + 4 ​  + 3 (x + 2) ​÷x  2 – 1 ​  dx ______ (S) ___ (D)  ​ _____________ ​÷x  2 + 4 ​  1      ​ __ ​   Ú 2 – ​  __  ​ tan–1 ​ ​ _______   ​+ c 2 ​÷3  ​     x ​÷3 ​    (x + 1) ​÷ x   + 4 ​ 

x5 1 ​   ​  log ​ _____ ​  5      ​  ​ + c (P) __ 5 x +1

(B)

|

|

dx

     ​ Ú ​ ________ x (x2 + 1)

Q.5 Match the following columns: Column I

Column II

(A)

____ ​÷ tan x   ​ ________

| 

|  | |  |

Q.7 Match the following columns:

then k is

(D)

|  | |  |

Column I p (Q) __ ​   ​  3

1.37

(B)

( 

Column I

5p ​   ​ – x )​  ​ Ú ​ 1 – tan ​( ___ 4

( 

( 

( 

( 

)

))

(P)

2x + c

))

(Q)

3x + c

3p ​ 1 + tan ​ ___ ​   ​ – x  ​  ​ dx 2

Ú ​( 1 + tan ​( __​ p8 ​  – x )​ )​

Column II

p ​ 1 + tan ​ __ ​   ​  + x  ​  ​ dx 8

1.38  Integral Calculus, 3D Geometry & Vector Booster

(C)

( 

5p ​   ​ – x )​  ​ Ú  ​ 1 + tan ​( ___ 4

16. The value of the integral

)

(R)

( 

( 

))

( 

( 

(S)

))

5x + c



Questions asked in Previous Years’ JEE-Advanced Examinations

dx 1. Ú  ​ _______      ​ 1 – cot x x dx 2. Ú  ​ _____     ​ 1 + x4

[IIT-JEE, 1978] [IIT-JEE, 1979]

÷ 

(  )

[IIT-JEE, 1980]



6. Ú  (elogx + sin x) cos x dx

[IIT-JEE, 1981]



x–1     ​  ​ dx 7. Ú  ex ​ ​ _______ (x + 1)3

[IIT-JEE, 1983]



dx 8. Ú  ​ __________       ​ 2  4 x (x + 1)3/4

[IIT-JEE, 1984]



( 

÷ 

  ​  1 – ​÷x     ​ ​ dx 9. Ú  ​ ​ ______   __  1+÷ ​  x     ​

( 

__

dx ____________ 18. Ú  ​ ______________       ​is equal to   – p)3 (x   – q) ​ ÷​ (x

__

)

–1  sin–1 ​÷x    ​  – cos ​÷x    ​  10. Ú  ​ ​ _______________     ​  ​ dx __ –1  –1 __ sin ​÷x    ​  + cos ​÷x    ​ 

______

____

12. Ú  (​÷tan x    ​ + ÷ ​ cot x    ​)  dx

( 

1 ___________ (c) ​ _____________      ​ + c   – p) (x    – q) ​ ÷​ (x



(d) none. [IIT-JEE, 1996]

dx 19. If Ú  ​ _________________        ​ (sin x  +  4) (sin x – 1)

(  (  ) )



4 tan x  +  1 1 2___ (a) A = __ ​   ​ , B = – ​ _____    ​  , f (x) = ​ _________  ​    5 5 5​÷15 ​    

[IIT-JEE, 1986]



4 tan (x/2) + 1 1 2___ ___ ​ (b) A = – ​ __ ​ , B = – ​ _____    ​  , f (x) = ​ ____________      5 5​÷15 ​     ​÷15 ​    

[IIT-JEE, 1987]



4 tan x + 1 2 2___ (c) A = __ ​   ​ , B = – ​ _____    ​  , f (x) = ​ _________  ​    5 5 5​÷15 ​    

[IIT-JEE, 1988]



4 tan (x/2) + 1 2 2___ ___ ​ (d) A = __ ​   ​ , B = – ​ _____    ​  , f (x) = ​ ____________      5 5​÷15 ​     ​÷15 ​    

)

then A = ..., B = ... and C = ...

[IIT-JEE, 1990]

log (1 + x1/6) 1 14. Ú  ​ ________ ​  1/3   1/4   ​  + ​ ___________     ​   ​ dx __ 1/3 x +x ​ x     ​ + x ÷

[IIT-JEE, 1992]

( 

)

)

cosq + sinq 15. Ú  cos 2q log ​ ​ __________     ​  ​ dq cosq – sinq

A = ___________ ​      ​ + B tan–1 (f (x)) + C, x __ ​ tan ​ ​    ​  ​ – 1  ​ 2



[IIT-JEE, 1985]

4 ex  +  6 e–x 13. If I = ​ __________ ​  x    ​   ​ dx = Ax +  log |(9 e2x – 4)| + C 9e – 4 e–x

( 





______

​ cos 2 x    ​   ÷ 11. Ú  ​ _______ ​   sin x dx ____

÷(   ) x–p 2 (b) – ​ ______      ​ ​ ​(   ​ _____    ​  ​ ​ + c (p – q) ÷ x – q ) ______

x–p 2 (a) ​ ______      ​ ​ ​ ​ _____    ​   ​ ​ + c (p – q) x – q

then

______ __



[IIT-JEE, 1996]

[IIT-JEE, 1980]

)

6 tan–1 (sin x) + c 2 (sin x)–1 + c 2 (sin x)–1 – 6 tan–1 (sin x) + c 2 (sin  x)–1 – 5 tan–1 (sin x) + c

x+1 17. Ú​ __________       ​ dx x 2 x (1 + x e )



x   ​  ​ dx ​ 4. Ú  ​ 1 + sin ​ __ ​     2 x2 _____ 5. Ú  ​ ______     ​ dx ​ 1  – x   ​ ÷

– – – –

[IIT-JEE, 1995]

[IIT-JEE, 1979]

___________

(a) sin x (b) sin x (c) sin x (d) sin x





x2 dx 3. Ú  ​ ________     ​ (a + bx)2

)

cos3 x + cos5 x Ú ​ ​ ____________    ​  ​ dx is sin2 x + sin4 x

(1 + tan x) dx

7p ​   ​ – x  ​  ​ Ú  ​ 1 + tan ​ ___ 8 (D) 3p ​ 1 + tan ​ ___ ​   ​ + x  ​  ​ dx 8

( 

4x + c

[IIT-JEE, 1994]

[IIT-JEE, 1997] cos x  –  sin x 20. Ú  ​ ___________ ​     ​  ​ (2 + 2 sin 2 x) is equal to cos x + sin x

( 

(a) sin 2 x + c (c) tan 2 x + c

÷ 

21. Ú  ​

)

_______ __ 1 – ​÷x    ​  dx ​ ______  ​ ​    × ___ ​  x ​   __  1+÷ ​ x    ​ 

(b) cos 2 x + c (d) None [IIT-JEE, 1997]

dx ___________ 22. Ú  ​ ___________________         ​ is equal to (2x – 7) ​÷x  2 – 7x  +     12 ​

[IIT-JEE, 1997]

Indefinite Integrals 

(a) 2 sec–1 (2x – 7) + c (b) sec–1 (2x – 7) + c (c) 1/2 sec–1 (2x – 7) + c (d) None of these.



[IIT-JEE, 1997]

2

x + 3x + 2 23. Ú​  _____________        ​ dx (x2 + 1)2 (x + 1)

( 

[IIT-JEE, 1999]

)

2x + 2 ____________ 24. Ú  in–1 ​​ _____________        ​  ​ dx 2   + 8x +     12 ​ ÷​ 4x 3m

25. (x

2m

+x

2m

m

+ x ) (2 x

[IIT-JEE, 2001] m

+ 3x + 6)

2

____________

2   4 – 2x ​     +  1 ​ ÷​ 2x (a) ​ _____________      +c x2

(b) ​ 



  4  –  2x  2       + 1 ​ ÷​ 2x (c) ​ _____________ ​  +c x

(  (  (  ( 

e4x  –  e2x + 1 1 (a) ​ __ ​  log ​ ​ ___________       ​ ​ + c 2 e4x + ex + 1



e2x  + ex + 1 1 (b) ​ __ ​  log ​ ​ __________     ​  ​ + c 2 e2x – ex + 1



e2x  –  ex + 1 1 (c) ​ __ ​  log ​ ​ __________     ​  ​ + c 2 e2x + ex + 1

e4x + e2x  +  1 1 (d) ​ __ ​  log ​ ​ ___________        ​ ​ + c 2 e4x – e2x + 1

 ​      +c

x3

[IIT, 2008]

sec2 x 29. The integral Ú  ​ _____________       ​ dx equals (sec x + tan x)9/2

____________

____________

2   4  –  2x ​    + 1 ​ ÷​ 2x (d) ​ _____________      + c [IIT, 2006] 2 2x x 27. Let f (x) = ​ _________      ​ for n ≥ 2 and g (x) = ( f O fO (1  + xn)1/n

{  {  {  { 

}



1 1 (a) –  ​ ______________      ​ ​ ___ ​  1  ​ – __ ​   ​  (sec x + tan x)2  ​ + K (sec x + tan x)11/2 11 7



1 1 (b) ______________ ​       ​ ​ ___ ​  1  ​ – __ ​   ​  (sec x + tan x)2  ​ + K (sec x + tan x)11/2 11 7



1 1 (c) – ​ ______________      ​ ​ ___ ​  1  ​ + __ ​    ​ (sec x + tan x)2  ​ + K 11/2 11 7 (sec x + tan x) 1 1 (d) ​ ______________      ​ ​ ___ ​  1  ​ + __ ​    ​ (sec x + tan x)2  ​ + K 11/2 11 7 (sec x + tan x)

n–2 

... O  f ) (x), then x

) ) ) )





____________ ​÷ 2x   4  –  2x2    + 1 ​ _____________



For an arbitrary constant C, the value of J – I is

 dx where m > 0

x    – 1     ​ dx ____________ 26. Ú​ _______________ 3 4 x÷ ​ 2x   – 2x2    +  1 ​

[IIT, 2007]

e–x J = ____________ ​  –4x       ​ dx. e + e–2x + 1

1/m

[IIT-JEE, 2002]



1 __ 1 (d) ​ ______      ​ (1 + n xn​)1 + ​  ​ n ​​ + c (n + 1) ex 28. Let I = Ú ​ __________       ​ dx, e4x + e2x + 1

1.39

g (x) dx is



1 __ 1 (a) ​ _______      ​ (1 + n xn ​)1 – ​  ​ x ​​ + c n (n – 1)



1 __ 1 (b) ​ ______      ​ (1 + n xn​)1 – ​  ​ x ​​ + c (n – 1)





1 __ 1 (c) ​ _______      ​ (1 + n xn​)1 + ​  ​ n ​​ + c n (n – 1)



} } }

[IIT, 2012]

Answers Level IIB 1. (a) 6. (b) 11. (a) 16. (d) 21. (c)

2. (b) 7. (a) 12. (b) 17 (a) 22. (d)

3. (c) 8. (b) 13. (a) 18. (b) 23. (a)

4. (d) 9. (c) 14. (b) 19. (a) 24. (b)

5. (a) 10. (d) 15. (c) 20. (b) 25. (a)



26. (b) 27. (c) 28. (d) 29. (a) 31. (a) 32. (b) 33. (c) 34. (d) 36. (b) 37. (a) 38. (b) 39. (c) 41. (b, d) 42. (a, b) 43. (a, b, c, d) 45. (a, b) 46. (a, b, c) 47. (a, b, c, d) 49. (a, b, c, d) 50. (a, c)

30. (b) 35. (a) 40. (b, d) 44. (a, b, c) 48. (a, b)

1.40  Integral Calculus, 3D Geometry & Vector Booster 1 18. – ​ __ ​  (1 + cot5 x)2/5 + c 2 19. log |tan–1 (cos x + sec x)| + c

Level IV

– x sec x 1. ​ ____________       ​ + tan x + c x sin x + 3 cos x __

2 

2. tan x log (1 + sin x) – 2 ​÷2 ​     tan (t​÷2 ​   )  + c, where t = tan x –1  1/3

3. 3 tan (x ) + c 1 4. – ​ __  ​ log |cos (2x)| + log |cos (x – a)| 2

(  ÷  ) _____

_____



6. – ​÷1  – x    ​ + c



(t + 1) – ​÷2 ​    1 1 7. ​ __ ​  log |t2 + 2t – 3| – ____ ​  __    ​   log ​ ​ ___________   __ ​  ​ 2 2​÷2 ​    (t + 1) + ÷ ​ 2 ​   

| 

(  ) 1  ​( ​ t  + __ ÷ ​ t ​  +  1 ​ )​ + c

__

( 

( 

|

)

+1 1__ –1 3t + – ​ ___   ​  sin  ​ ​ _____  ​    ​ + c 2 ​ 3 ​    ÷

( 

(  )

|  | |      |

(x ex)3 – 1 1 10. ​ __ ​  log ​ ​ ________  ​     ​+ c 3 (x ex)3

_________

where t = ÷ ​ 2  +  3 cot x    ​

(x esin x)2 1 11. ​ __ ​    log ​ __________ ​   sin x 2       ​  ​ + c 2 (x e ) – 1

(  ) (  )

1 31. – ​ __ ​  cos (4x) + c 8

)|

x p 1__ 1 12. ​ ____    ​   log ​ tan ​ __ ​    ​ + __ ​   ​   ​  ​ – ___________ ​       ​ + c 2 8 (sin x + cos x) 2​÷2 ​   

32. sin x – 2 cosec x – 6 tan–1 (sin x) + c 33. tan–1 (tan x – cot x) + c

| 

tan x cos a  +  sin a __ 13. ​ _______________     ​    + c ​ 2 ​     cos a ÷

(  )

1 14. x3 tan ​ __ ​ x ​  ​ + c

( ÷ 

__________

)

]

)

_________

( 

)

Integer type Questions

2 (x2 + 1) (x + 1) p 1 1 _______ 16. ​ __ ​ ​  Ú ​ _____ ​    2   ​ + ​ _____   2   ​  ​  +  Ú  ​ _______  ​    –  Ú   ​   ​   ​ dx 4 4 8 1–x x +1 x +1 1+x

( ÷ 

|

(x2 + x + 1) 2x +__ 1 2 34. log ​ ​  __________     ​    ​ + ___ ​  __  ​  tan–1  ​ ​ ______  ​    ​ + c (x – 1) ​ 3 ​    ​÷3 ​    ÷

__ __ __ cosec2 x – 3 15. ​÷ 6 ​  sin–1 (​÷3 ​   s  in x) + 2​÷2 ​     tan–1  ​ ​ ​ __________  ​ ​          ​+ c 2

( ÷ 

 | |

__ 1 ​ t + __ ​   ​   ​  – ​÷2 ​    t 1__ –1  1 1 30. – ​ ____    ​   tan   ​ t – __ ​   ​   ​ + ____ ​  __    ​   log ​ ​ ___________   __ ​  ​ + c t 1 3​÷2 ​    6​÷2 ​    ​ t + __ ​   ​   ​ + ÷ ​ 2 ​    t

where tanq = x

and then you do it.

)|

|  |

)

[  ( 

( 

(x + ​÷1  + x2   ​)3 28. ​ ____________  ​      +c 3 t 1 29. log ​ ____ ​       ​  ​ + ______ ​       ​ + c, where t = x ex t+1 (t + 1)

q 1 1 9. –  ​ ______    ​  – __ ​   ​ ​  ______ ​       ​ + log |sin q|  ​ + c 3tan3q 3 2 sin2 q

|

| 

_____



(

(  )

1 1 + x8 3/2 26. – ​ ___  ​ ​​  ​ _____  ​    ​​ ​ + c 12 x8 x p 2__ 2 27. ​ ____    ​   log  ​ tan ​ __ ​    ​ + __ ​   ​   ​  ​ – ​ __ ​    tan–1 (sin x – cos x) + c 2 8 3 3​÷2 ​   

1 where t = x + __ ​ x ​

)

x 25. ex ​ ______ ​       ​  ​ + c (x + 4)

________

8. – 2 tan–1

____________________________

24. 2 sec (a + b) ​÷ cos (a     + b) tan (x      – b) + sin (a + b) ​ + c

1 where t = ​ x + __ ​ x ​  ​

2 22. ​ __ ​  sin–1 (sin3/2 x) + c 3 1+x 23. ​ ex ​ ​ _____     ​ ​  ​ + c 1–x

+ log |cos (x + a) + c



|

x 21. – ​ __________       ​ + 2 log |x sin x + cos x| + c (x tan x + 1)

1 5. – ​ __  ​  log |cos (2x)| + log| cos (x – a)| 2

2

| 

__

(tan x  +  cot x) ​÷2 ​    – 1 1__ __ 20. ​ ____    ​   log ​ ​ __________________     ​  ​ + c 2​÷2 ​    (tan x + cot x) ​÷2 ​    + 1 2

+ log |cos (x + a)| + c



__

–1 

)

)

1 1 17. 2 ​ _________ ​  ________      ​  +  tan–1 ​ ​ x + __ ​ x ​ +  1 ​   ​  ​ + c 1 __ ​ x + ​ x ​ +  1 ​  



1. 5 6. 4

2. 7 7. 9

3. 5 8. 9

4. 2 9. 7

Comprehensive Link Passages Passage I: Passage II: Passage III:

1. (b) 1. (b) 1. (b)

2. (d) 2. (c) 2. (b)

3. (a) 3. (b) 3. (a)

5. 1 10. 5

Indefinite Integrals 



Matrix Match 1. (A)Æ(Q), (B)Æ(R), 2. (A)Æ(R), (B)Æ(P), 3. (A)Æ(P, Q, R), (C)Æ(R),

(C)Æ(S), (D)Æ(P) (C)Æ(S), (D)Æ(Q) (B)Æ(Q), (D)Æ(R, S)

Hints



Ú logx x dx = Ú 1 ◊ dx = x + c ​ 2​ – ​2log  ​ 3​) dx = Ú (​2log  ​ 3​ – ​2log  ​ 3​)dx Ú (​3log  x

x

x

3. we have, m ​ x ​  )​ dx Ú ​( xm + mx + mm + __



x m + 1 = _____ ​       ​ + m+1

mx _____ ​      ​ + mmx + m log |x| + c log m

4. we have,

Ú 2  ◊ 3 dx = Ú (2 ◊ 3) dx = Ú 6 dx



6x = ____ ​    ​ + c log 6

x

x

dx

dx

1 = __ ​   ​  tan x + c 2 11. The given integral is

​ x​ – ​xlog ​ 3​) dx = Ú (​3log ​ x​ – ​3log ​ x​) dx Ú  (​3log 5

5

dx sin2x  +  cos2x   2  2    ​ = Ú  ​____________           ​ dx Ú  ​_________ sin x cos x sin2x cos2x

( 

)

Ú  ​( 1 + tan ​( __​ p8 ​  – x )​ ​( 1 + tan ​( __​ p8 ​  + x )​ )​ )​ dx



= Ú (2) ◊ dx

13. The given integral is

= 2x + C



= – cot x – x + c

( 

1 + x

1 + x



= 8 Ú 2xdx + Ú 4 dx 8 ◊ 2x = ____ ​     ​ + 4x + c log 2

= Ú (sec2x + cosec2x) dx

14. The given integral is



= tan x – cot x + c



) ) ( 

( 

))

2 + 2x

= Ú (23 + x + 22) dx



( 

3 + 3x





3p p 8. Ú ​ 1  +  tan ​ x + ​ ___ ​   ​  ​  ​ 1  +  tan ​ __ ​   ​  – x  ​  ​ dx 8 8

)

( 



)

+4 2 +2        ​  ​ dx = Ú  ​ ​ ___________      ​   ​ dx Ú  ​ ​ 8__________ 2x 2 22x

1 1 = Ú  ​ _____ ​       ​ + _____ ​     ​  ​ dx cos2x sin2x

( 

6

= Ú (0) ◊ dx = c





6

12. The given integral is

= tan x – x + c



1        ​ =   ​______      ​  =   ​__     ​ sec2x dx Ú  ​1_________ + cos 2x Ú 2cos2x Ú 2



Ú cot2x dx = Ú (cosec2x – 1) dx



= tan x – cot x + c



6. we have,

7. we have,

10. We have,



Ú tan2x dx = Ú (sec2x – 1) dx



= Ú (sec2x + cosec2x) dx

x

5. we have,





x

Ú (tan x + cot x)2dx = Ú (tan2x + cot2x + 2) dx









x

= Ú 0 ◊ dx = c





(D)Æ(S) (D)Æ(Q) (D)Æ(R) (D)Æ(R) (D)Æ(R) (D)Æ(P)

9. we have,





(C)Æ(R), (C)Æ(S), (C)Æ(S), (C)Æ(P), (C)Æ(Q), (C)Æ(P),

solutions



2. we have,



(B)Æ(Q), (B)Æ(P), (B)Æ(P), (B)Æ(Q), (B)Æ(P), (B)Æ(P),

p = Ú 2dx [ if A + B = __ ​   ​ , 4 then (1 + tan A) (1 + tan B) = 2] = 2x + c.

1. We have,



and

4. (A)Æ(P), 5. (A)Æ(R), 6. (A)Æ(Q), 7. (A)Æ(S), 8. (A)Æ(S), 9. (A)Æ(P),

1.41

m ​ m  ​  + __ ​ x ​  + xm + mx )​ dx Ú ​( __ x

x2 xm + 1 = ___ ​    ​ + m log x + _____ ​       ​ + 2m m+1

mx _____ ​    ​ + c log m

1.42  Integral Calculus, 3D Geometry & Vector Booster

)



((sin2x + cos2x)2 – 2sin2x cos2x) = Ú ​ ___________________________         ​  dx sin2x cos2x



a x b x = Ú ​ ​​ __ ​   ​  ​​ ​ + ​​ __ ​ a ​  ​​ ​ + 2  ​ dx b



(1 – 2 sin2x cos2x) = Ú ​ _______________         ​  dx sin2x cos2x



(a/b)x (b/a)x = _______ ​     ​  + _______ ​     ​  +  2x  + c log(a/b) log(b/a)



(sin2x + cos2x – 2sin2x cos2x) = Ú  ​ ________________________         ​  dx sin2x cos2x



= Ú (sec2x + cosec2x – 2) dx



= tan x – cot x – 2x + c

15. The given integral is

( 

(ax + bx)2

2x

2x

x x

a + b   + 2a b ​  dx = Ú  ​ ​ _______________        ​  ​ dx Ú  ​ ________ x x    ab a xbx

( (  ) (  ) )

16. The Given integral is (2x + 3x)2     ​   dx = Ú ​ _________ 2x ◊ 3x

( 

Ú ​ ​​( __​ 23 ​  )​​ ​ + ​​( __​ 32 ​  )​​ ​ + 2  ​ dx x

x

)

(2/3)x (3/2)x = _______ ​       ​ + _______  ​     ​  + 2x + c log (2/3) log (3/2)



21. We have,

17. It is given that 1 1 ​  _____      ​ f ¢(x) = __ ​ x ​ + ______  ​ ÷​ 1  – x2  On integration, we get

f (x) = log |x| + sin–1x + c



p x = 1 and f (1) = __ ​   ​ , then c = 0 2 Hence, the function is f (x) = log |x| + sin–1x 18. It is given that f ¢(x) = a cos x + b sinx On integration, we get f (x) = a sin x – b cos x + c When x = 0 and f ¢(0) = 4, then a = 4 p When x = 0, f (0) = 3 and f  ​ ​ __ ​   ​ = 5 2 then, we get b = – 2 and c = 1 Hence, the function is

( 

sin6x + cos6x



f (x) 4 cos x + 2sin x + 1

19. We have, (1 + sin x) dx       ​ = Ú​ _________________       ​ dx Ú ​1_______ – sin x (1 – sin x) (1 + sin x)

(1 + sin x) 1 + sin x = Ú ​ _________      ​ dx = Ú ​ _______      ​ dx (1 – sin2x) cos2 x



= Ú (sec2x + sec x ◊ tan x) dx



= tan x + sec x + c



sin4x  +  cos4x

​          ​ dx Ú ____________ sin2x cos2x

)

(sin2x)3 + (cos2x)3 = Ú ​ ​ _______________         ​  ​  dx sin2x ◊ cos2x



(sin4x + cos4x  –  sin2x ◊ cos2x) =  ​ ​ ________________________         ​  ​ dx sin2x cos2x



(1 – 3sin2x ◊ cos2x) =   ​ ​ _______________         ​  ​ dx sin2x cos2x



(sin2x + cos2x  –  3sin2x cos2x) =  ​ ​ ________________________         ​  ​ dx sin2x cos2x



= Ú (sec2 x + cosec2 x – 3)dx



= tan x – cot x – 3x + c

)

)

)

22. We have,

– cosa ____________       ​  ​ dx Ú ​( ​ cos 2x cos x – cosa )

( 

)



2cos2x – 1 – 2cos2a  +  1 = Ú ​ ​ ____________________ cos x     – cosa    ​  ​ dx



cos2x – cos2a = Ú 2 ​ ​ ____________        ​  ​ dx cos x – cosa



= Ú  2 (cos x + cosa) dx



= 2 (sin x + x cosa) + c

)

( 

23. We have,

20. We have,

(  Ú (  Ú (  Ú ( 



When

(  )

)

      ​  ​ dx Ú  ​ ​ ___________ sin2x ◊ cos2x



( 

cos4x – sin4x

)

​  ________       ​  ​ dx Ú ​ ____________ ​÷1  + cos4x   ​

( 

)

(cos2x –  sin2x) (cos2x + sin2x) _________ = Ú ​ ​ _________________________      ​     ​ dx ​ 1  + cos 4x   ​ ÷

Indefinite Integrals 

(  ( 

                        

cos 2x = Ú  ​ ________ ​  __      ​  ​ dx ​ 2 ​     cos 2x ÷



x = ___ ​  __  ​ + c ​ 2 ​    ÷



(  )

24. We have,

( 

27. We have,

)





)

(cos2x – sin2x) __ = Ú  ​ ​ ____________         ​  ​ dx ​ 2 ​     cos 2x ÷



)

+ tan2x 1 + tan2x    ​  ​ dx = Ú   ​ ​ ________     ​  ​ dx Ú ​ ​ 1________ 2 1 1 + cot x 1 + _____ ​  2     ​ tan x

( 

( 

5cos3x  +  3sin3x

)

​          ​  ​ dx Ú ​ ______________ cos2x sin2x

( 

                         

)



5cos3x 3sin3x _________ = Ú ​ _________ ​  2       ​ + ​      ​  ​ dx cos x sin2x cos2x sin2x



= 5 Ú cosec x cot x dx + 3 Ú sec x tan x dx



= – 5 cosec x + 3 sec x + c

28. We have,

)



cosx – sin x __________        ​  ​ (1 + sin 2x) dx Ú ​( ​ cos x + sin x )



tan2x (1  +  tan2x) = Ú  ​ ______________ ​         ​  ​ dx (1 + tan2x)





= Ú (tan x) dx

cos x – sin x = Ú ​ ​ __________     ​  ​ (cos x + sin x)2dx cos x + sin x





= Ú (sec x – 1) dx

= Ú (cos x – sin x) (cos x + sin x) dx



= Ú (cos2x – sin2x) dx



= tan x – x + c



2

2

– cos 2x ___________         ​  ​ dx Ú ​( ​ cos x 1  –  cos x )

(  Ú (  Ú (  Ú ( 

)



cos x  –  2cos2x + 1 = Ú   ​ ​ ________________         ​  ​ dx 1 – cos x





2cos2x –  cos x – 1 = –    ​ ​ _______________        ​  ​ dx 1 – cos x

)





(cos x –  1) (2cos x + 1) = –    ​ ​ ___________________          ​  ​ dx 1 – cos x



(1 – cos x) (2cos x  +  1) =   ​ ​ ___________________          ​  ​ dx 1 – cos x



=



= 2 sin x + x + c.

)



)



Ú ((2 cos x + 1))dx

26. We have,

( 

___________

( 

)

= Ú cos2x dx sin 2x = ​ _____  ​   + c 2 29. The given integral is

25. We have,

) ( ÷  Ú ( ÷ 

__________

) )

   +  2 ​ ÷​ x  4 + x– 4 ​  x4 + x– 4 + 2      ​ dx = Ú  ​ ​ ​  __________  ​ ​          ​ dx Ú  ​ ​ ____________ 3 x x6 ___________

​          ​  ​ dx Ú ​( _____________ 1 – 2cos 3x ) cos 5x  + cos 4x

sin 3x (cos 5x  +  cos 4x) = Ú  ​___________________            ​dx sin 3x – sin 6x

(  ) (  ) (  ) 3x x = – Ú 2cos ​( ___ ​   ​  )​ cos ​( __ ​    ​ )​ dx 2 2 =

Ú

(  ) (  ) (  )

9x 3x 3x x 2sin ​ ___ ​   ​   ​ cos  ​ ___ ​   ​   ​ 2cos ​ ___ ​   ​   ​ cos ​ __ ​    ​  ​ 2 2 2 2 _____________________________ ​            ​ dx 9x 3x ___ ___ – 2cos ​ ​   ​   ​ sin ​ ​   ​   ​ 2 2



= – Ú (cos 2x + cos x) dx



sin 2x = –  ​ _____ ​   ​   + sin x  ​ + c 2

( 

)

30. The given integral is

– cos 2x ___________         ​  ​ dx Ú  ​( ​ cos x 1 – cos x )

x8 + 2x4 + 1 =   ​ ​ ​  __________  ​ ​          ​ dx x10





x4 + 1 = Ú  ​ ​ _____  ​    ​ dx x5

2cos2x – cosx –  1 = – Ú  ​_______________        ​ dx 1 – cos x





1 = Ú  ​ x– 5 + __ ​ x ​  ​ dx

(cos x  –  1) (2cos x + 1) = – Ú ​ ___________________           ​dx 1 – cos x





1 = log |x| – ___ ​   4 ​ + c 4x

= Ú  (2cos x + 1) dx



= (2sin x + x) + C



(  ) ( 

1.43

)

1.44  Integral Calculus, 3D Geometry & Vector Booster 31. The given integral is

dx

          ​ Ú ​__________________________ (tan x + cot x  +  sec x + cosec x) sin x cos x dx = Ú  ​______________          ​ 1 + sin x  +  cos x



=

_____________ ​        ​ Ú sec x + tan x + 1



=

         Ú ​ _____________________ (1 + tan x)2 – sec2x



=







= Ú  (x1/3 – 1) dx



3 = – ​ __ ​  x– 2/3 – x + c 2

36. We have,

sin x(1 + tan x  –  sec x)dx

( 

( 

)

4

  –  1 + 3 3 x –1  ​      ​ dx = Ú ​ ​ _____    ​ + _____ ​  2      ​  ​ dx Ú  ​ ​ x_________ 2 2 x +1 x +1 x +1

        ​ Ú ​  ____________________ 2tan x



1 = __ ​   ​  Ú cos x (1 + tan x – sec x) dx 2

(x2 – 1) (x 2 + 1) _____ 3 = Ú  ​ ​  _____________     ​  + ​  2      ​  ​ dx x2 + 1 x +1



3 = Ú ​ (x2 – 1) + _____ ​  2      ​  ​ dx x +1



x3 = __ ​   ​  – x + 3 tan–1x + c 3

( 

sin x(1 + tan x – sec x)dx

32. We have,

(x + 1  – 1) x       ​ dx = Ú ​ __________     ​ dx   Ú  ​x_____ +1 (x + 1)



1 = Ú  ​ 1 – ​ _____     ​  ​ dx x+1



= x – log |x + 1| + C

( 

)

(1 + x)2 ________      ​ dx = Ú ​ x (1 + x2)

Ú

(1 + x2 +  2x) ​ ___________       ​ dx x (1 + x2)

)

37. We have,

)

( 

( 

x4  – 1 – 2

[ (  ) ] ) ]

)

4

x –1 2  ​      ​ dx = Ú  ​ ​ ​ _____    ​  ​ – ​ _____     ​  ​ dx Ú  ​ ​ _________ x2 + 1 x2 + 1 x2 + 1

[ ( 



(x2 +  1) (x2 – 1) 2 = Ú  ​ ​ ​ ______________     ​     ​ – ​ _____     ​  ​ dx 2 2 x +1 x +1



2 = Ú  ​ (x2 – x) – _____ ​  2      ​  ​ dx x +1



x3 = __ ​   ​  – x – 2 tan–1x + c 3

( 

33. We have,

)

4





1 = __ ​   ​    Ú (cos x + sin x – 1) dx 2 1 = __ ​   ​    (sin x + cos x – x) + C 2



=

sin x dx



(x1/3 – 1) (x2/3 + x1/3 + 1)

        ​ dx Ú ​ _____________________ (x2/3 + x1/3 + 1)



38. we have,

( 

)

) [ (  ) Ú [ (  )

]



(1  +  x2) + 2x = ​ ____________        ​ dx x (1 + x2)





dx dx = Ú ​___   x ​ + 2 Ú ​_____       ​ 1 + x2





= log |x| + 2 tan–1x + c

(x2 + 1) (x4 – x2 + 1) 2 =   ​ ​ ​  _________________  ​        ​ – ​ _____     ​  ​ dx 2 2 x +1 x +1



=



x5 = __ ​   ​  – 5

34. We have,

Ú

)

( 

)

3 = Ú ​ 1 – _____ ​       ​  ​ dx x2 + 1



–1



= x – 3 tan x + c

35. We have,

( 

x2  –  2 x2 + 1 – 3 ______ ​  2    ​ dx = Ú  ​ ​  ________  ​      ​ dx x +1 x2 + 1

(x1/3)3 – 1 x–1 _____________       ​  d x =   ​          ​dx Ú ​ _____________ Ú (x 2/3 + x1/3  +  1) (x2/3 + x1/3 + 1)

x6  + 1 – 2

( 

( 

]

)

2 ​  2      ​  ​ dx Ú ​ (x4 – x2 + 1) – _____ x +1 x3 __ ​   ​  + x – 2 tan–1x + c 3

39. We have,

6

x +1 2  ​     ​ dx = Ú ​ ​ ​ _____    ​  ​  – ​ _____     ​  ​ dx Ú ​ ​ _________ 2 2 2 x +1 x +1 x +1

x8 +  x4 + 1

)

       ​  ​ dx Ú  ​ ​ __________ x4 + x2 + 1

( 

)



(x4 –  x2 + 1) (x4 + x2 + 1) = Ú  ​ ​ ______________________      ​     ​ dx (x4 + x2 + 1)



= Ú ((x4 + x2 + 1)) dx

Indefinite Integrals 

x5 x3 = __ ​   ​  + __ ​   ​  + x + c 3 5







(  )

(x4 – 1) +  1

4

x ​  2      ​  ​ dx = Ú ​ __________     ​ dx   Ú ​ _____ x2 + 1 x +1

( 

)



1 = Ú  ​ x2 – 1 + _____ ​  2      ​  ​ dx x +1



x3 = ​ __ ​   ​  – x + tan–1x + c  ​ 3

( 

)

41. The given integral is

( 

4

)

2 

(x2 – x + 1) (x2 + x + 1) _____________________ ​       ​ dx    (x2 + x + 1)

=



= Ú (x2 – x + 1)dx



x3 x2 = ​ __ ​   ​  – __ ​   ​  + x + C  ​ 3 2

( 

)

(  )

(x2 +  1) (x4 – x2 +  1)

x6 +  1

   ​  ​ dx = Ú ​ __________________     ​ dx    Ú  ​ ​ ______ x2 + 1 (x2 + 1) = Ú (x4 – x2 + 1) dx

( 

5

3

)

43. We have,

x2 ​   ​  + c Ú sin–1(sin x) dx = Ú x dx = __ 2

44. We have,

Ú sin–1(cos x) dx = Ú sin–1 ​[ sin ​( __​ p2 ​  – x )​ dx ]​

( 

p = Ú ​ __ ​   ​  – x  ​ dx 2 p x2 = __ ​   ​  x – ​ __ ​  + c 2 2



)

45. We have,

( 



= Ú tan–1(tan x) dx



= Ú x dx



x2 = __ ​   ​  + c 2



( ÷ 

– cos 2x      ​ ​  ​ dx Ú tan–1 ​ ​÷​  11_________ + cos 2x _________

(  )

= Ú tan–1(tan x) dx



= Ú x dx



x2 = __ ​   ​  + c 2

)

( ÷  )





sin x ​      ​  ​ dx Ú tan–1 ​( _______ 1 – cos x )

( 

)

2sin (x/2) cos (x/2) = Ú tan–1 ​ _______________ ​      ​     ​ dx 2sin2(x/2)

[  (  ) ]

x = Ú tan–1 ​ tan ​ __ ​    ​  ​  ​ dx 2 x = Ú ​ ​ __  ​  ​ dx 2

(  )

x2 = __ ​   ​  + c 4

49. The given integral is

Ú tan

( ÷ 

________

)

1 – sin x  ​ ​ ​ ________   ​ ​   ​ dx 1 + sin x

–1

(  ( 

)



cos (x/2) – sin (x/2) = Ú tan–1 ​ _________________ ​        ​  ​ dx cos (x/2) + sin (x/2)



1 – tan(x/2) = Ú tan–1 ​ ​ __________     ​  ​ dx 1 + tan(x/2)



_______

[  ( 

)

)]

p x = Ú tan–1 ​ tan ​ __ ​   ​  – __ ​    ​  ​  ​ dx 4 2 p x = Ú ​ ​ __ ​  – __ ​    ​  ​ dx 4 2

( 



2 sin2x = Ú tan–1 ​ ​ ______ ​     ​ ​     ​ dx 2 cos2x





= Ú tan (tan x) dx = Ú x dx





x2 = __ ​   ​  + c 2

50. The given integral is

–1

)

– cos 2x sin x  ​ ​  ​ dx = Ú tan–1 ​ ____ ​ cos x     ​  ​ dx     Ú tan–1​ ​ ​ 11_________ + cos 2x





x x = ​ __ ​   ​  – __ ​   ​  + x + c  ​ 3 5



)

2sin x cos x = Ú tan–1 ​ _________ ​      ​  ​ dx   2 cos2x

48. The given integral is

42. The given integral is



( 



_________





sin 2x ​       ​  ​ dx Ú tan–1 ​( _________ 1 +  cos 2x )

47. The given integral is

x + x +  1    ​   ​ dx Ú  ​ ​ __________ x2 + + 1

Ú

46 We have,



40. The given integral is

1.45

( 

)

)

p x x2 = ​ ___ ​   ​ – __ ​   ​   ​ + c 4 4

1.46  Integral Calculus, 3D Geometry & Vector Booster

sin x ​      ​  ​ dx Ú  tan–1 ​( 1________ + cos x )

53. The given integral is

( 

)



2 sin (x/2) cos (x/2) = Ú tan–1 ​ ________________ ​      ​     ​ dx 2cos2(x/2)



= Ú tan–1 [tan (x/2)] dx



x = Ú ​ __ ​    ​  ​ dx 2





(  )

x2 = __ ​   ​  + c 4 51. The given integral is









(  ( 

( 

( 

)

)

 (((   ((   )) ((   )))) ((   ((   )) ((   )))))  ( ((   )) )

)

= Ú tan–1

)

p x p x 2 sin ​ __ ​   ​  – __ ​    ​  ​ cos ​ __ ​   ​  – __ ​    ​  ​ 4 2 4 2 ​ ​ _____________________         ​  ​ dx p x 2sin2 ​ __ ​   ​  – __ ​    ​  ​ 4 2 p x ​ cot ​ ​ __ ​  – __ ​    ​  ​  ​ dx 4 2

–1

x cos ​ __ ​    ​  ​ 2 ​ _______ ​  ​ dx x  ​   sin ​ __ ​    ​  ​ 2

[  (  ) ] p x ​[ tan ​( __ ​   ​  – __ ​    ​  ​  ​ dx 2 2 )]

( 

     

p x = Ú ​ __ ​   ​  – __ ​    ​  ​ dx 2 2

)

p x x2 = ___ ​   ​ – __ ​   ​  + c 2 4 54. The given integral is

Ú tan–1 (sec x + tan x)dx

( 

) p 1 + cos ​( __ ​   ​  – x )​ 2   ​ ​  _____________        ​  ​ dx p __ sin ​( ​   ​  – x )​ 2 p x 2cos  ​( __ ​   ​  – __ ​    ​  ​ 4 2)   ​​ ____________________         ​  ​ dx p x p x 2sin ​( __ ​   ​  – __ ​    ​ )​ cos ​( __ ​   ​  – __ ​    ​ )​ 4 2 4 2 p x ​[ cot ​( __ ​   ​  – __ ​    ​  ​  ​ dx 4 2 )] p p x ​[ tan ​{ __ ​   ​  – (​  __ ​   ​  – __ ​    ​  ​  ​   ​dx 2 4 2 )} ]



1 + sin x = Ú tan–1 ​ ​ _______ ​   ​ dx cos x   



= Ú tan–1

–1

( 







(  ( 

)



= Ú tan–1

– sin x   ​ )​ dx Ú tan–1 ​( ​ 1_______ cos x   



= Ú tan–1



= Ú tan–1



p = Ú ​ __ ​   ​  + 4



p x x2 = ​ ___ ​ + __ ​   ​  + c 4 4

p x x2 = ​ ___ ​   ​ + __ ​   ​  + c  ​ 4 4

52. The given integral is

= Ú tan–1

= Ú tan–1

(  ( 

( 

)

p 1  –  cos ​ __ ​   ​  – x  ​ 2 ​ ​ _____________        ​  ​ dx p sin ​ __ ​   ​  – x  ​ 2 p x 2sin2 ​ __ ​   ​  – __ ​    ​  ​ 4 2 _____________________ ​ ​          ​  ​ dx p x p x 2 sin ​ __ ​   ​   – __ ​    ​  ​ cos ​ __ ​   ​  – __ ​    ​  ​ 4 2 4 2

(  (  (  )

( 

( 

( 

))

)

)

) ) ( 

p x = Ú tan–1 ​ tan ​ __ ​   ​  – __ ​    ​  ​  ​ dx 4 2 p x = Ú ​ __ ​   ​  – __ ​    ​  ​ dx 4 2 p x x2 = ​ ___ ​ – __ ​   ​  + c 4 4

)

x = Ú tan–1 ​ cot ​ __ ​    ​  ​  ​ dx 2

) (  ) = Ú tan (  ) = Ú tan (  (  )) p p x = Ú tan ​( tan ​( __ ​   ​  – (​  __ ​   ​  – __ ​    ​  ​  ​  ​ dx 2 4 2 ))) p x = Ú tan ​( tan ​( __ ​   ​  + __ ​    ​  ​  ​ dx 4 2 )) p x = Ú ​( __ ​   ​  + __ ​    ​  ​ dx 4 2) –1

( 

_________

x x x x ​ cos ​ __ ​    ​  ​  + sin ​ __ ​    ​  ​  ​ + ​ cos ​ __ ​    ​  ​ – sin ​ __ ​    ​  ​  ​ 2 2 2 2 ​ ​ __________________________________           ​ ​ dx x x x x ​ cos ​ __ ​    ​  ​ + sin ​ __ ​    ​  ​  ​ – ​ cos ​ __ ​    ​  ​ – sin ​ __ ​    ​  ​  ​ 2 2 2 2

= Ú tan

p sin ​ __ ​   ​  – x  ​ 2 _____________ = Ú tan  ​ ​         ​  ​ dx p 1 –  cos ​ __ ​   ​  – x  ​ 2 –1

= Ú tan

–1

( 

_________

  + sin x) ​   + ​÷(1   – sin x) ​  ÷​ (1 _________  ​  ​  dx ​ ______________________ ​  _________           + sin x) ​  –÷ ​ (1   + sin x) ​  ÷​ (1

–1

cos x ​      ​  ​ dx Ú tan–1 ​( _______ 1 – sin x ) –1

Ú  tan

–1

)

)

( 

2

)

x __ ​    ​  ​ dx 2

55. The given integral is

sin 2x ​      ​  ​ dx Ú tan–1 ​( _________ 1 + cos 2x )

( 

)

2sin x cos x = Ú tan–1 ​ _________ ​      ​   ​ dx 2cos2x

)

)

1.47

Indefinite Integrals 



= Ú  tan–1 (tan x) dx



= Ú x dx 2

x = __ ​   ​  + c 2

56. We have,

 ​    +c Ú (3x + 2) dx = Ú ​ ________ 2.3



(3x + 2)2 = Ú ​ ________  ​   + c 6 1 __ ​   ​  log |2x – 3| + c 2

= Ú (​÷x  + 2 ​  + ÷ ​ x  + 1 ​   ) dx



2 2 = __ ​   ​  (x + 2)3/2 + __ ​   ​  (x + 1)3/2 + c 3 3

ax + b

e ​  a    ​ + c Ú eax + bdx = _____ 4x + 5

3 ​     ​  +c Ú 34x + 5dx = _____ 4log 3

sin (5x + 3)  ​      +c Ú cos (5x + 3) dx = ​ __________ 5 62. We have, cos 2x  ​   + c Ú sin 2x dx = – ​ _____ 2





(​÷2x   + 5 ​    + ​÷2x   + 3 ​   ) dx = Ú ​____________________            ​ (2x + 5) – (2x + 3)



______ ______ 1 = __ ​   ​  Ú (​÷2x   + 5 ​   +÷ ​ 2x   + 3 ​   )  dx 2



1 2 __ 1 2 1 = ​ __ ​  ​ __ ​   ​  × ​    ​ (2x + 5)3/2 + __ ​    ​ × __ ​    ​ (2x + 3)3/2  ​ + c 2 3 2 3 2



1 = __ ​   ​  ((2x + 5)3/2 + (2x + 3)3/2) + c 6



(3x + 2)3/2

  + 2 ​    dx = ​ _________  ​    +c Ú ​÷3x 3 __

​   ​  ◊ 3 2

64. We have,

Ú (3x +

1 – ​ __ ​  4​)​ 2 ​  dx

(3x + = ​ ________  ​    +c 1 __ ​    ​ ◊ 3 2 1 __ ​    ​ 4​)​2 ​ +



______



______ ______ 1 = __ ​   ​  Ú (​÷3x   + 4 ​   +÷ ​ 3x   + 1 ​   ) dx 3



+ 4)3/2 (3x + 1)3/2 1 (3x = __ ​   ​  ​   ​ _________  ​    + ​ _________  ​     ​+ c 3 9/2 9/2

( 

)

dx

  ______   ______    ​ Ú  ​_________________ ​÷2x   + 3 ​   + ​÷2x   – 3 ​   ______



 (​÷2x   + 3 ​    – ​÷2x   – 3 ​   ) = Ú​  _________________       ​ dx (2x + 3 – 2x + 3)



______ ______ 1 = __ ​   ​  Ú (​÷2x   + 3 ​   –÷ ​ 2x   – 3 ​   ) dx 6



+ 3)3/2 (2x – 3)3/2 1 (2x = __ ​   ​  ​   ​ _________  ​    – ​ _________  ​     ​+ c 3 3 6

c

( 

)

69. The given integral is

dx

_____   _____       ​ Ú ​______________ ​÷x  + 2 ​   – ​÷x   + 1 ​   _____

dx

______   ______     ​ Ú ​​÷ _______________ 3x   + 4 ​   – ​÷3x   + 1 ​  

______

65. We have,

)

______



1 ​ __  ​ 4​)​2 ​

2 = ​ __ ​  (3x + 3



( 

68. The given integral is

2 = ​ __ ​  (3x + 2)3/2 + c 9



______

(​÷3x   + 2 ​    + ​÷3x   + 1 ​   ) = Ú ​__________________          ​ dx (3x + 4 – 3x– 1)

63. We have, ______

______

(​÷2x   + 5 ​   +÷ ​ 2x   + 3 ​   )dx _____ ______ ______ ______  ​ = Ú​   __________________________________          (​÷x  + 5 ​  – ÷ ​ 2x   + 3 ​   ) (​÷2x   + 5 ​   +÷ ​ 2x   + 3 ​   )

67. The given integral is

61. We have,



dx

  ______   ______     ​ Ú ​_________________ (​÷2x   + 5 ​    – ​÷2x   + 3 ​   )

______

60. We have,

_____



______

dx 1       ​ = – ​ __ ​  log |5 – 2x| + c Ú  ​______ 5 – 2x 2 59. We have,

_____





57. We have, dx       ​ = Ú ​______ 2x – 3 58. We have,

_____

66. We have,

(3x + 2)2



_____

(​÷x  + 2 ​   + ​÷x   + 1 ​   ) dx = Ú ​ _________________        ​ (x + 2) – (x + 1)

_____

(​÷x  + 2 ​  + ÷ ​ x  + 1 ​  ) dx _____ _____ _____ _____  ​ = ​ Ú _______________________________          (​÷x  + 2 ​   – ​÷x   + 1 ​   ) (​÷x  + 2 ​  + ÷ ​ x  + 1 ​  )



dx

_____

__

​  _____     __ ​ = Ú (​÷x  + 1 ​  – ÷ ​ x     ​)dx Ú  ​÷__________ x  + 1 ​ + ÷ ​ x     ​ 2 = __ ​   ​  ((x + 1)3/2 – (x)3/2 ) + c 3

1.48  Integral Calculus, 3D Geometry & Vector Booster 70. The given integral is

74. We have,

dx

_____   _____       ​ Ú ​​÷______________ x  + a   ​  + ​÷x  + b   ​

( 



_____

_____

)



​ x  + a   ​ – ​÷x  + b   ​ ÷ = Ú ​ ​ ______________         ​  ​ dx x+a–x–b



_____ _____ 1 = ______ ​       ​  Ú (​÷x  + a   ​– ÷ ​ x  + b   ​) dx (a – b)



2 = _______ ​       ​ ((x + a)3/2 – (x + b)3/2) + c 3(a – b)



_________

_________

_________

_________

​÷2x   + 2014 ​   – ​÷2x   + 2013 ​   = Ú  ​_______________________           ​dx (2x + 2014 – 2x – 2013)



2 t3 = __ ​   ​  ​ __ ​   ​  – t  ​ + c 3 3



3/2 ______ 2 (3x + 1) = __ ​   ​  ​ ​ _________  ​    –÷ ​ 3x   + 1 ​   ​ + c 3 3

(  )

( 

)

1 = __ ​   ​  [(2x + 2014)3/2 – (2x + 2013)3/2] + c 3



fi 2 dx = 2t dt fi dx = t dt

= 2 Ú ( + 1) dt

(  )

t3 = 2 ​ __ ​   ​  + t  ​ + c 3

( 

2/3

_____

)

(x – 1) = 2 ​ ​ ________  ​   + ÷ ​ x  – 1 ​  ​ + c 3

__

​ x     ​ ÷ t       ​ dx = Ú ​_____  2      ​ ◊ 2t dt, Ú ​_____ x+1 t + 1

Let x = t2



fi  dx = 2t dt

t2 = 2 Ú ​ _____     ​ dt t2 + 1 2

(t + 1  –  1) = 2 Ú  ​ __________     ​  dt t2 + 1

( 

)



1 = 2 Ú ​ 1 – _____ ​  2      ​  ​ dt t +1



= 2 (t – tan–1t) + c



–1 = 2 (​÷x    ​  – tan (​÷x    ​)  ) + c

__

__

(t2 + 1)

    ​   t dt Ú ​ ______ 2t

\

=



1 = __ ​   ​  Ú (t2 + 1) dt 2



1 t3 = __ ​   ​  ​ __ ​   ​  + t  ​ + c 2 3



3/2 1 (2x – 1) = __ ​   ​  ​ ​ _________  ​    + (2x – 1)1/2   ​ + c 2 3

(  )

2







Let 2x – 1 = t2





2 = __ ​   ​    Ú (t2 – 1) dt 3

= Ú (​÷2x   + 2014 ​   – ​÷2x   + 2013 ​   ) dx

2 (t______ + 1) x ______ _____  ​        ​  d x =  ​   ​ × 2t dt.    Ú ÷​ x  – 1 ​  Ú t    Let x – 1 = t2 fi  dx = 2t dt

73. We have,

Let 3x + 1 = t2 2t dt fi  dx = ____ ​   ​    3

75. We have, x______ +1     ​ dx Ú ​ _______ ​ 2x   + 1 ​   ÷

72. We have,



(Ú   )

t2 – 1 ​ ​ _____  ​    ​ 3 ​ _______       ​ × 2t dt, t



dx

_________  ​   _________       Ú  ​​÷______________________ 2x   + 2014 ​    + ​÷2x   + 3013 ​  





=



71. The given integral is

x

  ______      ​ dx Ú ​_______ ​÷3x   + 1 ​  

( 

)

76. We have,

x–1

_____     ​ dx Ú ​ ​÷______ x  + 4 ​  



Let x + 4 = t 2



fi dx = 2t dt

(  ) 2

–5      ​  ​ × t dt Ú ​ ​ t_____ t



=



= Ú (t2 – 5) dt



t3 = ​ __ ​   ​  – 5t  ​ + c 3



(x – 1)3/2 = ​ ________  ​   – 5(x – 1)1/2 + c 3

( 

)

77. We have,

x

 2      ​ dx Ú ​_____ x +1



Let x2 + 1 = t

Indefinite Integrals 

1.49



fi 2x dx = dt



Let xex = t



1 fi x dx = __ ​   ​  dt 2



fi (xe x + ex) dx = dt



fi (x + 1) ex dx = dt

1 dt = __ ​   ​  Ú  ​__    ​  t 2 1 = __ ​    ​ log |t| + c 2 1 = ​ __ ​  log |x2 + 1| + c 2

78. We have,

cos x – sin x __________     ​ dx Ú ​ sin x + cos x

Let sin x + cos x = t



fi (cos x – sin x)dx = dt



dt = Ú ​_____   2    ​ cos t



= Ú sec2t dt



= tan t + c



= tan(xex) + c

82. We have,

dx

​       ​ Ú _________ x (l + ln x)2





dt = Ú  __ ​   ​  t = log |t| + c



= log |sin x + cos x| + c



dt = __ ​  2 ​  t



1 = – ​ __ ​  + c t



1 = – ​ __ ​  + c t



1 = – ​ _______    ​  +c 1  +  ln x





79. We have,

Let 1 + ln x = t 1 fi ​ __ x ​ dx = dt

3cos x

________        ​ dx Ú ​2sin x +5



Let 2 sin x + 5 = t fi 2 cos x dx = dt 1 fi cos x dx = __ ​   ​  dt 2



83. We have, cos x  –  sin x + 1 – x



3 dt = __ ​   ​  Ú __ ​   ​  t 2



​          ​dx Ú _________________ ex + sin x + x



3 = __ ​   ​  log |t| + c 2



(e x + cos x + 1)  –  (ex + sin x + x) = Ú  ​ ____________________________            ​dx ex + sin x + x



3 = ​ __ ​  log |2sin x + 5| + c 2



(e x + cos x + 1) (ex + sin x + x) = Ú ​ ​  _____________        ​ – ​  _____________        ​  ​ dx x e + sin x + x (e x + cos x + 1)



(ex + cos x  + 1) (ex + sin x  + x) =   ​ ​ _____________       ​  – ​ _____________        ​  ​ dx x (e + sin x + x) (ex + sinx + x)

80. We have,

cos x – sin x

cos x – sin x

      ​ dx = Ú ​ _____________        ​ dx Ú  ​ __________ 2 + sin 2x 1 + (1 + sin 2x)

(  Ú (  Ú ( 

     

)



cosx – sin x = Ú ​________________        ​ dx 1  +  (sin x + cos x)2



(ex + cos x + 1) =   ​ ​ _____________       ​ – 1  ​ dx (e x + sin x + x)



Let sin x + cos x = t



= log |ex + sin x + x| – x + c



fi (cos x – sin x) dx = dt

84. We have,



dt = Ú ​ _____     ​ 1 + t2



= tan–1(t) + c –1



= tan (t) + c

81. We have,

xe x + ex

(x + 1)ex

     ​ dx = Ú ​ _________    ​    dx Ú ​ ________ cos2(xe x) cos2 (x e x)



dx

) )

e– x

   x   ​ = Ú  ​______   – x     ​ dx Ú ​_____ 1+e e +1



Let e– x + 1 = t



fi – e– xdx = dt



dt = – Ú  ​____       ​ t+1



= – log |t + 1| + c



= – log |e– x + 1| + c

1.50  Integral Calculus, 3D Geometry & Vector Booster 85. We have,

dx x2dx   3      ​ = Ú ​________   3 3     ​ Ú  ​________ x (x + 1) x (x + 1) dt 1 = __ ​   ​  Ú ​______       ​ 3 t(t + 1)



( 

Put x3 = t

1 1 ____ 1 = __ ​   ​  Ú ​ __ ​   ​   – ​       ​  ​ dt t t+1 3



t 1 = __ ​   ​  log ​ ____ ​       ​  ​ + c 3 t+1



x3 1 = __ ​   ​  log ​ _____ ​  3      ​  ​ + c 3 x +1

|  |





dt 1 = ​ __ ​  Ú ​ _______     ​ Let x4 = t 4 t (t + 1) dt fi x3dx = __ ​   ​  4

)



1 1 1 = ​ __ ​  Ú ​ __ ​   ​  – ​ ____     ​  ​ dt t t+1 4



t  1 = __ ​   ​  log ​ ____ ​       ​  ​ + c 4 t+1



x4 1 = __ ​   ​  log ​ _____ ​  4      ​  ​ + c 4 x +1





)

|  |

sin (5x  –  3x)

​       ​  dx = Ú ___________ ​         ​  dx Ú __________ sin 5x sin 3x sin 5x sin 3x

Let ex + e– x = t



fi (ex – e– x) dx = dt



dt = Ú  ​__    ​  t = log |t| + c



= log |e x + e–x| + c

91. The given integral is

ex

dx

      ​ = Ú ​______   x     ​ dx = log |ex+ 1| + c Ú  ​1______ + e– x e +  1 e– xdx

dx

   x   ​ = Ú ______ ​       ​ Ú ​1_____ +e e– x + 1  



= – log |e– x + 1| + c



ex = log ​ _____ ​  x      ​  ​ + c e +1

|  |

93. The given integral is

sin 5x cos 3x – cos 5x sin 3x = Ú  ​ ______________________         ​  dx sin 5x sin 3x sin 5x cos 3x __________ cos 5x sin 3x = Ú  ​ __________ ​     ​ – ​     ​  ​ dx sin 5x sin 3x sin 5x sin 3x

( 

ex – e– x

   ​dx Ú ​ _______ ex + e–x





x –1 1 = __ ​   ​  log ​ ​ _____  ​    ​ + c 5 x5 sin 2x

|)

92. The given integral is

5

88. We have,

1 = _________ ​       ​ [log |sin (x – b)| – log |sin (x – a)|] + c sin (b – a)



t–1 1 = __ ​   ​  log ​ ​ ____     ​  ​ + c t 5



1 = _________ ​       ​  [cot (x – b) – cot (x – a)] dx sin (b – a) Ú



dt 1 = ​ __ ​  Ú ​______       ​ Let x5 = t 5 t (t – 1) dx __ dt ​ ___ x ​ = ​ 5t ​  1 1 1 = __ ​   ​  Ú ​ ____ ​       ​ – __ ​   ​   ​ dt 5 t–1 t

|  |

)

90. The given integral is





sin (x – a)  cos (x – b) – cos (x – a)sin (x – b)

(  | 

dx x4dx ________   5      ​ = Ú ​________   5 5     ​ Ú  ​x (x – 1) x (x – 1)

( 

( 

​              ​  ​ dx Ú ​ ______________________________________ sin (x – a) sin (x – b)

sin (x  –  b) 1 = _________ ​       ​ ​ log ​_________ ​   ​   ​  ​ + c sin (b – a) sin (x – a)

|  |

87. We have,

dx

         ​ Ú ​__________________ sin (x –  a) sin (x – b)

1 = _________ ​       ​ sin (b – a)



|  |

89. We have,

  

  4      ​ = Ú  ​________   4 4     ​ Ú  ​________ x (x + 1) x (x + 1)

( 

1 1 = __ ​   ​  log |sin 3x| – __ ​    ​ log |sin 5x| + c 3 5

sin ((x – a)  –  (x – b)) dx 1 = _________ ​       ​ Ú ​ ____________________         ​ sin (x – a) sin (x – b) sin (b – a)

x3dx

dx



sin (b – a)dx 1 = _________ ​       ​  Ú​ __________________        ​ sin (b – a) sin (x – a)  sin (x – b)

|  |

86. We have,

= Ú (cot 3x – cot 5x) dx



)





)



sin 2x

_____________   2       ​ dx Ú ​a sin x + b cos2x



Let a sin2x + b cos2x = t

Indefinite Integrals 



(a – b) sin 2x dx = dt

dt sin 2x dx = ______ ​      ​ (a – b) dt 1 = ______ ​       ​ __ ​   ​  (a – b) Ú t 1 = ______ ​       ​ log |t| + c (a – b)



1 = ______ ​       ​ log |a cos2x + b sin2x| + c (a – b)



      

94. The given integral is

sin (x  –  a)

sin x cos a – cos x sin a

      ​   dx = Ú   ​ __________________        ​  dx Ú  ​_________ sin x sin x = Ú  (cos a – sin a cot x) dx

1.51

98. The given integral is 1 + tan x       ​ dx Ú ​ __________ x + log sec x

Let x + log sec x = t



fi (1 + tan x) dx = dt



dt = Ú  ​__    ​  t = log |t| + c

= log |x + log (sec x)| + c 99. The given integral is

sin(5x  –  3x)

sin 2x

       ​ dx = Ú ___________ ​         ​ dx Ú ​__________ sin 3x sin 5x sin 3x sin 5x     



= x cos a = sin a log |sin x| + c 95. The given integral is sin (t + a) sin x ________ ​      ​ dx = Ú _________ ​        ​  dt, Ú sin  (x – a) sin t

sin 5x cos 3x – cos 5x sin 3x = Ú ​ ______________________         ​ dx sin 3x sin 5x



= Ú  (cot 3x – cot 5x) dx





1 1 = __ ​   ​  log |sin 3x| – __ ​    ​ log |sin 5x| + c 3 5

100. The given integral is



Let t = x – a fi dt = dx

      

cos x  –  sin x

(cos x – sin x)

         ​ dx = Ú  ​ ________________        ​ dx Ú  ​___________ 1 + sin 2x 1 + (sin x +  cos x)2

= t cos a + sina log |sin t| + c = (x – a) cos a + sin a log |sin(x – a)| + c 96. The given integral is



Put (sin x + cos x) = t

sin (x + a) Ú ​ _________   ​ dx sin (x + b)



fi (cos x – sin x) dx = dt

  

sin [t +  (a – b)] = Ú ​ _____________        ​ dt, sin t



dt = Ú ​_____       ​ 1 + t2

Let t = (x + b)



= tan–1(t) + c

fi dt = dx



= tan–1(sin x + cos x) + c

sin (t)  cos (a – b) + cos t sin (a – b) = Ú ​ _____________________________          ​ dt sin t

101. The given integral is

= Ú (cos (a – b) + sin (a – b) cot t) dt



= t cos (a – b) + sin (a – b) log |sin t| + c



= Ú  (sec x tan x + cosec x)dx



x = sec x + log ​ tan ​ __ ​    ​  ​  ​ + c 2



= (x + b) cos (a – b) + sin (a – b) log |sin (x + b)| + c

| 



97. The given integral is

dx

​  __ __       ​ Ú ​÷__________ x    ​  (​÷x    ​  + 1)



dt

​   ​  Ú __ t



=2



= 2 log |t| + c



= 2 log |​÷x    ​  + 1| + c

__

(sin2x + cos2x) dx

dx

       ​ = Ú ​ ______________         ​ Ú  ​_________ sin x cos2x sin x cos2x

(  ) |

102. The given integral is __

Let (​÷x    ​  + 1) = t dx fi ​ ____  ​= dt __   2​÷x     ​ dx __    fi ​ ___  ​= 2dt ​ x     ​ ÷



(sin2x + cos2x)

dx

  2  2  ​  = Ú  ​ ____________         ​ dx Ú  ​_________ sin x cos x sin2x ◊ cos2x = Ú (sec2x + cosec2x) dx

= tan x – cot x + c. 103. The given integral is

dx

__________________ ​         ​ Ú sin x (x – a) sin (x – b)

1.52  Integral Calculus, 3D Geometry & Vector Booster sin (a – b) 1 = _________ ​       ​ Ú ​ _________________       ​dx sin (x – a) sin (x – b) sin (a – b) sin [(x – b)  –  (x – a)] 1 = _________ ​       ​ ___________________ ​         ​dx sin (a – b) Ú sin (x – a) sin (x – b)



= log |t| + c

107. The given integral is

= log |xx + 1| + c



1 = _________ ​       ​ sin (a – b)

cos x  –  sin x + 1 – x

          ​ dx Ú ​_________________ ex + sin x + x (cos x + 1) – (sin x + x) = Ú ​ ____________________         ​ dx (e x + sin  + x)

sin (x – b) cos (x – a) – cos (x – b)sin (x – a) ​               ​ Ú ______________________________________ sin (x – a) sin (x – b) dx 1 = _________ ​       ​  [cot (x – a) – cot (x – b)] dx sin (a – b) Ú

=

                 

1 = _________ ​       ​ [log |sin (x – a)| – log |sin (x – b)|] + c sin (a – b)

(  | 

|)

sin (x – a) 1 = _________ ​       ​ ​ log ​ ​ ________   ​  ​  ​ + c sin (a – b) sin (x – b)

(ex +  cos x + 1) – (ex + sin x + x)

          ​ dx Ú ​ _____________________________ (ex + sin x + x)

( 

)



(ex + cos x + 1) = Ú ​​  ________________        ​  ​ dx (ex + sin x + x)  –  1



= log |ex + sin x + x| – x + c

108. The given integral is

104. The given integral is

sin3x

​  4           ​ dx Ú __________________________________ (cos x + 3cos2x + 1) tan–1(sec x + cos x)

dx Ú  ​_________________          ​ cos (x – a) cos (x – b)



sin (a – b) 1 = _________ ​       ​ Ú ​ _________________       ​dx sin (a – b) cos (x – a) cos (x – b)



Let tan–1(sec x + cos x) = t



sec x tan x – sin x   fi ​ ________________        ​dx = dt 1 + (sec x  +  cos x)2



sin3x fi ​ ______________________         ​ dx = dt cos2x (1 + (sec x +  cos x)2)



sin3x fi ​ ____________________         ​dx = dt 2 2 cos x (sec x + cos2x + 3)



sin3x fi ​ _________________        ​dx = dt 4 (cos x + 3cos2x + 1)

sin [(x – b)  –  (x – a)] 1 = _________ ​       ​ ___________________ ​          ​dx sin (a – b) Ú cos (x – a) cos (x – b) 1 = _________ ​       ​ [tan(x – b) – tan (x – a)] dx sin (a – b) Ú 1 = _________ ​       ​ [– log |cos (x – b)| + log |cos (x – a)|] + c sin (a – b) cos (x – a) 1 = _________ ​       ​ ​ log ​ ​ _________   ​  ​  ​ + c sin (a – b) cos (x – b)

(  | 

|)



dt = Ú  ​__    ​  t



= log |t| + c



= log |tan–1(sec x + cos x)| + c



cos (a – b) 1 = _________ ​       ​  ​ _________________       ​ dx cos (a – b) Ú sin (x  –  a)cos (x – b)



cos [(x – b)  –  (x – a)] 1 = _________ ​       ​ Ú  ​___________________          ​dx cos (a – b) sin (x – a) cos (x – b)



= – cos (t) + c



1 = _________ ​       ​  [tan (x – b) tan (x – b)]dx cos (a – b) Ú



= – cos (x3) + c



cos (x – a) 1 = _________ ​       ​ ​ log ​ ​ _________   ​  ​  ​ + c cos (a – b) cos (x – b)

105. The given integral is dx Ú  ​ _________________        ​ sin (x – a) cos (x – b)

(  | 

|)

106. The given integral is x



x (1  +  ln x)

dt

​  x     ​ dx   = Ú ​__    ​ ,   Let t = xx Ú __________ t x +1

109. We have,

Ú 3x3sin (x3) dx = Ú sin(t) dt 

where x3 = t

110. We have,

(1 + ln x)3

​   dx = Ú t3dt  Ú  ​ _________ x   



Let (1 + ln x) = t dx fi ___ ​  x ​ = dt



t4 = __ ​   ​  + c 4



(1 + ln x)4 = ​ _________  ​    +c 4

Indefinite Integrals 

111. We have,

114. The given integral is dx

dx



x  ​​ x  ​ ​  4  ​  + 1  ​  ​​ ​ x



Let tan x = t



fi sec2x dx = dt

​  2      ​ = Ú _______________ ​        ​ Ú __________ 3/4 1 2 4 __ x (1 + x4)3/4



=

(  (  ) ) Ú (  ) Ú (  ) dx ___________ ​        ​ 3/4 1 5 __ x  ​​ ​  4  ​  + 1  ​​ ​ x

4t3 1 = –  ___ ​  3 ​ dt, Let ​ __ ​  4  ​  + 1  ​ = t4 t x – 4 dx fi    ​_____   5 ​   = t3dt x

= – 4 Ú dt



= – 4t + c



1/4 1 = – 4 ​​ __ ​  4  ​  + 1  ​​ ​ + c x

( 

)

 ​

__

Let 4 + 3​÷x    ​  = t





3 ____ ​  __    ​ dx = dt 2​÷x     ​





dx ___ ​  __  ​ = ​ x     ​ ÷

2 __ ​   ​  dt 3

dt __ ​  2 ​  t 2 1 = –  ​ __ ​  × __ ​   ​  + c t 3 2 = __ ​   ​  Ú 3



Ú ​3​3​ ​ ​​ ◊ ​33​ ​ ◊ 3xdx 3x

x



Let 3 x = t



1 fi 3xdx = _____ ​     ​   dt loge 3



t4 = __ ​   ​  + c 4

tan4x = _____ ​   ​   + c 4 115. The given integral is



Ú sin3x ◊ cos x dx



= Ú t3dt,

(log x)3 ______  ​   ​   dx Ú x   



= Ú t3dt,

1 = ______ ​    2 ​  Ú ​33​ ​ ◊ 3tdt, (log3) t

3v = ______ ​     ​  +c (log3)3



​3​3​ ​ ​​ = ______ ​    ​  +c (log3)3

3x

Let t = log x dx fi dt = ___ ​  x ​ 



sin x

  _________       ​ dx Ú  ​__________ ​÷3  + 2cos x   ​



Let 3 + 2 cos x = t2



fi – 2 sin x dx = 2t dt



fi sin x dx = – t dt



t dt = – Ú ___ ​      ​ t



= – Ú dt

Let 3t = v



= – t + c

fi logs 3dt = dv



= – ​÷3  + 2 cos x   ​+ c

1 = ____ ​     ​ Ú 3​ 3​ ​ ◊ 3tdt log3



t4 = __ ​   ​  + c 4



t



Let t = sin x fi dt = cos x dx

sin4x = _____ ​   ​   + c 4 116. The given integral is



113. We have,



t4 = __ ​   ​  + c 4 (log x)4 = ______ ​   ​   + c 4 117. The given integral is

2 1 = __ ​   ​  × ________ ​    __    ​ + c 3 (4 + 3​÷x    ​) 



= Ú t3dt



dx      Ú ÷​​ __________ __ __ 2  x  ​  (4 + 3 ​÷x     ​)



Ú tan3x ◊ sec2x dx





112. We have,

1.53

_________

118. The given integral is ________

​ ÷​ 2  +  log x    dx Ú  ​ _________ x     ​   

Let 2 + log x = t2 dx fi ​ ___ x ​ = 2t dt

1.54  Integral Calculus, 3D Geometry & Vector Booster

= Ú (t ◊ 2t) dt

122. The given integral is



= 2  Ú t2 dt





t3 = 2  ​ __ ​   ​   ​ + c 3

(  )

2 = __ ​   ​  [(2 + log x)3/2] + c 3 119. The given integral is

sin x – cos x

      ​ dx Ú  ​ __________ ex + sin x



(ex + sin x)  –  (ex + cos x) = Ú  ​ _____________________      ​ dx    (ex + sin x)



(ex + cos x) = Ú  ​ 1 – ​ _________    ​   ​ dx (ex + sin x)



= (x – log |ex + sin x| + c)

( 





dx

   __   ​ Ú ​1______ +÷ ​ x    ​  Let x = t2 fi dx = 2t dt



2t = Ú ​____       ​ dt 1+t



1 = 2 Ú ​ 1 – ​ ____     ​  ​ dt 1+t



= 2 (t – log |1 + t|) + c

( 

__

Let x4 = t



dt fi x dx = __ ​   ​  4

1 = __ ​   ​  Ú sin (t)dt 4 1 = – ​ __ ​  cos (t) + c 4 1 = – ​ __ ​  cos (x4) + c 4



Ú ​5​

x

5x

x

​ ◊ ​5​ ​ ◊ 5 dx



Put 5x = t



dt fi 5xdx = ____ ​    ​  log 5



t 1 = ​ ____    ​   ​55​ ​ ◊ 5tdt log5 Ú



1 = ______ ​    2 ​  Ú 5z ◊ dz, z = 5t (log5)



1 = ______ ​    2 ​   5z ◊ dz Ú (log5)



5z = ______ ​     ​  +c (log5)3



= Ú (1 – cos2x)cos4x sin x dx



= – Ú (1 – t2) t4dt

​5​5​ ​ ​​ = ______ ​    ​  +c (log5)3

Let cos x = t fi sin xdx = dt



= Ú (t6 – t4) dt



t7 t5 = ​ __ ​   ​  – __ ​   ​   ​ dt 7 5



cos7x _____ cos5x = ​ _____ ​   ​   – ​   ​    ​ + c 7 5

(  ( 

)

)

127. We have,

Ú sin2x cos3x dx = Ú sin2x(1 – sin2x) cos x dx = Ú t2(1 – t2) dt, Let sin x = t



fi cos xdx = dt



= Ú (t2 – t4) dt



t3 t5 = ​ ​ __ ​  – __ ​   ​   ​ + c 3 5



sin3x _____ sin5x = ​ _____ ​   ​   – ​   ​    ​ + c 3 5

5x



Ú sin3 x cos4 x dx



121. The given integral is 5​ 5​ ​



|  |

|  |

124. We have,

3

)

x3 1 = __ ​   ​  log ​ _____ ​  3      ​  ​ + C 3 x +1



3

fi 4x dx = dt



( 

1 1 1 = __ ​   ​  Ú ​ __ ​   ​  – ____ ​       ​  ​ dt t t+1 3 t 1 = ​ __ ​  log ​ ____ ​       ​  ​ + C 3 t+1







x2dx

d

________        ​ = Ú ________ ​  3 3     ​ Ú  ​x (1 + x3) x (x + 1)



Ú x3sin x4 dx







dt 1 = __ ​   ​  Ú ​_______       ​, Let t = x3 3 t (t + 1) fi dt = 3x2

= 2 (​÷x    ​  – log |1 + ÷ ​ x    ​| ) + c 120. The given integral is

123. The given integral is



)

__

)

(  ( 

)

)

1.55

Indefinite Integrals 

130. We have,

Ú sin3x cos3x dx



= Ú sin x (1 – sin )cos x dx



= Ú t (1 – t ) dt

3

3

2

Let sin x = t fi cos xdx = dt

= Ú (t3 – t5) dt



sin3x _____ sin5x = ​ _____ ​   ​   – ​   ​    ​ + c 3 5

( 

)

134. we have,

Ú sin2x cos2x dx = __​ 14 ​  Ú (2 sin2x) (2 cos2x)dx



1 = __ ​   ​  Ú (1 – cos 2x) (1 – cos 2x)dx 4



1 = __ ​   ​  Ú (1 – cos22x)dx 4



1 = __ ​   ​  Ú sin22x dx 4



1 = __ ​   ​  Ú 2 sin22x dx 8 1 = __ ​   ​  Ú (1 – cos 4x) dx 8 sin 4x 1 = __ ​   ​  ​ x – _____ ​   ​    ​ + c 8 4

( 



)

135. We have,

Ú sin3x dx = Ú sin2x ◊ sin x dx = Ú (1 – cos2x) ◊ sin x dx = – Ú (1 – t2)dt, Let cos x = t



139. We have,

fi –sin xdx = dt

= Ú (t2 – 1)dt



(  ) ( 

t3 = ​ __ ​   ​  – t  ​ + c 3 3 cos x = ​ _____ ​   ​   – cos x  ​ + c 3

)

Ú cos5x dx = Ú cos4x ◊ cos dx



= Ú (1 – sin2x)2 ◊ cos dx



= Ú (1 – t ) dt,





t5 = ​ __ ​   ​  – 5



sin5x __ 2 = ​ _____ ​   ​   – ​    ​ sin3x + sin x  ​ + c 3 5

(  ( 

2 2

Let sin x = t fi cos xdx = dt

)

2 __ ​   ​  t3 + t  ​ + c 3

)

142. We have,





= Ú (t4 – 2t2 + 1)dt

2







Ú sin4 x dx = __​ 14 ​  Ú (2 sin2x)2dx

1 = __ ​   ​  Ú (1 – cos 2x)2dx 4 1 = __ ​   ​  Ú  (1 – 2 cos 2x + cos22x) dx 4 1 1 = __ ​   ​  Ú  (1 – 2 cos 2x)dx + __ ​   ​  Ú (2cos22x) dx 4 8 1 1 = __ ​   ​  Ú  (1 – 2 cos 2x) dx + __ ​    ​ Ú (1 + cos 4x) dx 4 8 2 sin 2x sin 4x 1 1 = __ ​   ​  Ú  ​ x – ______ ​   ​    ​ + __ ​   ​ ​  x + _____ ​   ​    ​ + c 4 2 8 4 3 1 1 = __ ​   ​  x – __ ​   ​  sin 2x + ___ ​    ​ sin 4 x + c 8 4 32

( 

) ( 

)

145. We have,

Ú cos6x dx = __​ 18 ​  Ú (2 cos2x)3dx

1 = ​ __ ​  Ú (1 + cos 2x)3dx 8 1 = __ ​   ​  Ú (1 + 3 cos 2x + 3 cos22x + cos32x) dx 8 3 1 = __ ​   ​  Ú (1 + 3 cos 2x) dx + ___ ​    ​ Ú (2 cos22x) dx 8 16 1 + ​ ___  ​ Ú (4 cos32x) dx 32    

3 1 = __ ​   ​  Ú (1 + 3 cos 2x)dx + ___ ​    ​ Ú (1 + cos 4x) dx 8 16 1   + ​ ___  ​ Ú (cos 6x + 3 cos 2x) dx 32

( 

( 

)

)

3 3 sin 4x 1 = ​ __ ​  ​ x + __ ​   ​  sin 2x  ​ + ___ ​    ​ ​  x + _____ ​   ​    ​ 8 2 4 16

( 

)

3 1 sin 6x __ + ​ ___  ​ ​ _____ ​   ​   + ​   ​  sin 2x  ​ + c 32 2 6



5 15 3 1 = ​ ___  ​  x + ___ ​   ​ sin 2x + ___ ​    ​ sin 4x + ____ ​     ​ sin 6x + c 192 16 64 64 148. We have,

dx

​  1/2      ​ Ú ___________ sin x cos3/2x

Divide the numerator and the denominator by cos2x, we get

1.56  Integral Calculus, 3D Geometry & Vector Booster 2t dt sec2x   ____   ​   dx = Ú  ​____       ​,  Let tan x = t2 Ú  ​_____ t ​ tan x    ​   ÷ fi sec2 xdx = dt

= 2 Ú dt



= 2t + c



=



t2 t4 = __ ​   ​  + __ ​   ​  + C 2 4



tan2x _____ tan4x = ​ _____  ​   + ​   ​   + C 2 4

152. The given integral is

____ 2​÷tan x    ​ +



c

sec8x

dx

  3  5    ​ = Ú _____ ​  3    ​ dx Ú ​_________ tan x sin x cos x

149. We have, dx ​  3/2      ​ Ú ___________ sin x cos5/2x Divide the numerator and the denominator by cos4x, we get

Ú

(1 + tan2x) sec2x sec4x ______ ​  3/2    ​   dx = Ú  ​ ______________        ​  dx tan x tan3/2x (1 + t2)dt = Ú  ​ ________  ​       Let tan x = t2 t3/2 fi sec2 xdx = dt





=

Ú (t– 3/2 + t1/2)dt

_ 2 = 2 ​÷t    ​  + __ ​   ​  t3/2 + c 3 ____ 2 = 2 ​÷tan x    ​ + __   ​   ​  (tan x)3/2 + c 3



150. The given integral is

____ ​÷tan x    ​  ________

​ dx = Ú  ​     ​   dx Ú ​ sin x cos x    sin x cos x ____ sec x ​÷tan x      ​ __________ 2



= Ú  ​ 



=



2t dt = Ú  ​____       ​,  Let tan x = t2 t

      ​  dx tan x

sec2x

​  ____   ​   dx Ú _____ ​÷tan x    ​ 

fi sec2 xdx = 2t dt



= Ú  2 dt



= 2t + c



=

_____ 2​÷  tan x   ​+

c

sin x

  5     ​ dx = Ú  sec4x tan x dx Ú  ​_____ cos x



= Ú  (1 + tan2x) tan x sec2x dx



= Ú  (1 + t ) t dt Let tan x = t fi sec2 xdx = dt 2

= Ú  (t + t3) dt

( 



)

where t = tan x 153. The given integral is

sin2x dx

     ​  = Ú tan2x sec4x dx Ú  ​_______ 6 cos x =

=

Ú tan2x (1 + tan2x) sec2x dx Ú t2(1 + t2) dt Let tan 2 x = t

fi sec x dx = dt



= Ú (t4 + t2) dt



t 5 t3 = ​ __ ​  + __ ​   ​  + c 3 5



tan5x ____ tan3 = _____ ​   ​   + ​   ​   + c 3 5

154. The given integral is sec4x

dx

__________         ​ = Ú _____ ​   ​    dx Ú  ​sin x cos x 3 tan x x

Ú

(1 + tan2x)sec2 x  ​_____________        ​ dx tan x

Ú

(1 + t2)  ​______     ​   dt   Let tan x = t t



=



=



=



t2 = ​ __ ​  + log |t| + c 2



tan2x = _____ ​   ​   + log |tan x| + c 2





Let t = tan x fi dt = sec2 xdx

(1  +  3t2 + 3t4 + t6)    = Ú  ​ _________________  ​      dt t3 1 3 = Ú ​ __ ​  3  ​  + __ ​   ​  + 3t + t3  ​ dt t t 3t2 t4 1 = –  ​ ___2  ​ + 3log |t| + ___ ​   ​ + __ ​   ​  + c 2 4 2t





151. The given integral is

(1 + t2)3 = Ú  ​ _______  ​ dt,     t3



____ ​÷tan x    ​  ________



(1 + tan2x)3sec2 = Ú  ​ _____________     ​   dx tan3x



Ú ​( 1 + __​ 1t ​  )​ dt

Indefinite Integrals 

155. The given integral is

dx sec x   2  4    ​ = Ú  ​_____   2    ​ dx Ú  ​_________ sin x cos x tan x (1 + tan2x)2sec2x = Ú  ​ ______________        ​ dx tan2x



(1 + t2)2  = Ú  ​ _______  ​    dt  Let tan x = t t2 fi sec2 xdx = dt

( 

)

158. We have, x 1   2     ​ = Ú  ​______       ​ = __ ​   ​  tan–1 ​( __ ​    ​ )​ + c Ú  ​_____ 2 x +4 x2 + 22 2 dx



dx

159. We have, dx

dx

1 1   2     ​ = __ ​   ​    Ú  ​________     2   ​ = __ ​   ​  × 3tan–1 (3x) + c Ú  ​_______ 9 1 __ 9 x + 1 9 2



(  )

x + ​​ ​   ​   ​​ ​ 3

(t4  + 2t2 + 1)  = Ú  ​ ___________  ​      dt t2



( 

tan2x = 2 ​ _____ ​   ​   + log |tan x|  ​ + C 2



6

160. We have,

)



1 = Ú  ​ t2 + __ ​  2  ​  + 2  ​ dt t





t3 1 = __ ​   ​  – __ ​   ​  + 2t + c t 3



x–2 1 = ___ ​    ​ log ​ ​ _____   ​  ​ + c 2.2 x+2



x–2 1 = __ ​   ​  log ​ ​ _____   ​  ​ + c 4 x+2

tan3x = _____ ​   ​   + 2tan x – cot x + c 3 156. The given integral is



dx   1       ​ = Ú  ​__________ 7 __ __ ​   ​  ​   ​  si​n​2 ​ x co​s​2 ​ x

sec4x ​  ____   ​    dx Ú ÷​_____ tan x    ​   2



=

2

(1 + tan x)sec x

____ ​       dx Ú ​ _____________ ​÷tan x    ​ 

(1 + t2)2t = Ú  ​ ________     ​   dt t

= 2 Ú (1 + t ) dt



t3 = 2 ​ t + __ ​   ​   ​ + c 3



Let tan x = t fi sec2 xdx = dt

dx





=

    ​  dx Ú ​ ____________ x2 + 4



=

​       ​ dx    Ú ____________________ x2 + 4



5 = Ú  ​ x2 – 4 + ​ ______      ​  ​  dx 2 x + 22



5 x3 x = __ ​   ​  – 4x + __ ​   ​  tan–1 ​ __ ​    ​  ​ + c 3 2 2

sec x

dx

(1 + tan2x) sec2x (1 + t )2t

   ​    dt, Ú ​ ________ 3 t



(1 + t2) = 2 Ú ​ ______     ​   dt t



1 = 2 Ú ​ t + __ ​   ​   ​ dt t



t2 = 2 ​ __ ​   ​  + log |t|  ​ + C 2

( 

dx

​÷x  + 4 ​   ​÷  x +2    ​

)

= log (x + ​÷x  2 + 4 ​   )+c

163. We have, dx

Let tan x = t 2

÷  (  ) 1 = __ ​   ​  log ​ x + ​ x  + __ 2 | ÷ ​ 14 ​ ​  |​ + c

​÷4x   + 1 ​ 

​ x2 + ​​ __ ​   ​   ​​  ​ ​ 2 ______ 2



2 

fi sec x dx = 2t dt

dx

1   ______      ​= __ ​   ​  Ú _________ ​  ________      ​ Ú ​________ 2 2 1 2



       ​ dx Ú ​ ______________ tan3/2x

(  )

(  )



​÷sin   x cos x   ​



)

_____

dx

=

((x2 + 4) (x2 – 4))  +  15

  _____     ​= Ú  ​_______   ______     ​ Ú  ​_______ 2 2 2



4

2



(x4 – 16)  +  15

( 

162. We have,

  _________      ​ = Ú  ​______   3/2      ​ dx Ú  ​__________ 3 5 tan x =

x4 – 1

   ​ dx Ú ​ _____ x2 + 4

157. The given integral is

|  | |  |

161. We have

3

tan x = 2 ​ tan x + _____ ​   ​    ​ + c 3

dx

​  2      ​ = Ú ​_______   2   2   ​ Ú _____ x –4 x – (2)

2

(  ) (  )

1.57

164. We have,

( 

)

( 



)

x+4 x 4 Ú  ​ ​ ______      ​  ​ dx = Ú ​ ______ ​  3      ​ + ______ ​       ​  ​ dx x3 + 4x x + 4x x3 + 4x

( 

)

1 4 = Ú ​ _____ ​  2      ​ + ________ ​       ​  ​ dx x + 4 x (x2 + 4)

1.58  Integral Calculus, 3D Geometry & Vector Booster

169. The given integral is

dx 4x = Ú  ​_____   2     ​ + Ú ​________  2 2      ​ dx x +4 x (x + 4)

(  )

x 1 = __ ​   ​  tan–1 ​ __ ​    ​  ​ + 2 2 2



dt

​      ​, Let t = x2 Ú _______ t (t + 4) fi dt = 2x2dx

(1  +  x) dx

1+x

   ​    dx = Ú  ​_________   2  ​  Ú  ​ ______ x3  +  x x (x + 1) (1 + x2)  +  x – x2



=

​      ​    dx Ú _______________ x (x2 + 1)

=

​  x ​ + Ú _____ ​  2      ​ – Ú  ​_____        ​ dx Ú ___ x +1 x2 + 1



x 1 2 1 ____ 1 = __ ​   ​  tan–1 ​ __ ​    ​  ​ + __ ​    ​ Ú ​ __ ​   ​  – ​       ​  ​ dt t t+4 2 2 4





1 = __ ​   ​  tan–1 2

) (  ) (  x 1 ​( __ ​    ​ )​ + __ ​    ​ log ​ ____ 2 2 | ​ t +t  4  ​ |​ + c



1 = __ ​   ​  tan–1 2

x ​ __ ​    ​  ​ + 2

1 = log |x| + tan–1x – __ ​   ​  log |x2 + 1| + c 2 170. The given integral is

(  )

|  |

x2 1 __ ​    ​ log ​ _____ ​  2      ​  ​ + c 2 x +4

165. The given integral is

4 +1    ​ dx = Ú  ​ xx_____ 2 +1

(x4 –  1) + 2 ___________   ​  ​  dx Ú x2 + 1  

(  ( 

) )



2 = Ú ​ x2 – 1 + ​ _____     ​  ​ dx 2 x +1



x3 = ​ __ ​   ​  – x + 2 tan–1x  ​ + c 3





=



dt

​  _____     ​, Ú ______ 2

Let t = (x – 2)

​÷t  + 1 ​ 

fi dt = dx

_____ ​÷t 2 + 1 ​  |+



= log |t +



= log |(x – 2) + ÷ ​ (x   – 2)2   + 1 ​| + c

c



dx

(x –  1) (x + 1)

( 



=

Ú

x  +  (9 + x2) – x2 ​ _______________        ​dx x (x2 + 9)



dx = Ú  ​_______   2     ​ + (x + 9)



1 = ​ __ ​  tan–1 3

dx

x dx

​  x ​ – Ú  ​_______   2     ​ Ú ___ (x + 9)

(  )

x 1 ​ __ ​    ​  ​ + log |x| – ​ __ ​  log| x2 + 9| + c 3 2

1 1 1 = __ ​   ​  Ú ​ _____ ​       ​ – _____ ​       ​  ​ dx 2 x2 – 1 x2 + 1



x–1 1 __ 1 = ​ __ ​  ​   ​    ​ log ​ ​ _____   ​  ​ – tan–1x  ​ + c 2 2 x+1

(  | 



1+x

dx

x

     ​  dx = Ú  ​_____    2   ​ + Ú  ​_____        ​ dx Ú​ ______ 2 1  +  x 1+x 1 + x2

1 = tan–1(x) + __ ​   ​  log |1 + x2| + c 2

|

)

171. The given integral is

dx

dx

​  3      ​ = Ú ________ ​  2      ​ Ú _____ x +x x(x + 1) x dx = Ú ________ ​  2 2      ​ x (x + 1)



dt 1 = __ ​   ​  Ú _______ ​      ​, Let x2 = t2 2 t (t + 1) 2x dx = 2t dt

( 

)



1 1 ____ 1 = __ ​   ​  Ú ​ __ ​   ​  – ​       ​  ​ dt t t+1 2



t 1 = __ ​   ​  log ​ ____ ​       ​  ​ + c 2 t+1



x2 1 = __ ​   ​  log ​ _____ ​  2      ​  ​ + c 2 x +1

|  |

|  |

172. We have,

dx



dx  ​      ​ = Ú _______ ​  2   2   ​ Ú __________ 2 (x + 2)



1 = – ​ ______      ​ + c (x + 2)

x + 4x  +  4

173. We have,

168. The given integral is

)



167. The given integral is

x

dx  ​  4      ​ = Ú ______________ ​      ​ Ú x_____ 2 2 –1

__________

x+9 x+9   ​    dx = Ú ​ ________     ​ dx Ú ​ _______ 3 x   +  9x x (x2 + 9)

dx



166. The given integral is dx dx   __________       ​ = Ú ​____________   __________       ​ Ú  ​____________ 2 ​÷(2   – x)    + 1 ​ ​÷(x   – 2)2    +  1 ​

dx

dx  dx  ​      ​ = Ú ________________ ​      ​ Ú ___________ 2 2 x + 6x +  10

(x  +  3)   +  (10 – 9)



dx = Ú __________ ​        ​ (x + 3)2 + 1



= tan–1(x + 3) + c

1.59

Indefinite Integrals 

174. We have,

178. The given integral is

1 dx  dx  ​      ​ = __ ​   ​  Ú ___________ ​     ​ Ú ___________ 2 2 2 __ 5 2x   +  5x + 6





x + ​   ​  x +  3 2 1 dx     ​ = __ ​   ​  Ú _________________ ​     2 2 5 25 ​​ x + __ ​   ​   ​​ ​ + ​ 3 – ___ ​   ​   ​ 4 16

(  ) ( 

)

dx 1 ___  ​ = ​ __ ​  Ú _______________ ​       2 ​÷23 ​    2 5 2 __ ____ ​​ x + ​    ​  ​​ ​ + ​​ ​   ​    ​​ ​ 4 4



(  ) (  ) 5 ​( x + __ ​   ​  )​ 4 1 ____ 4 __ _______ = ​   ​  × ​     ​   tan ​ ​   ​     ​+ c







​ 23 ​     ÷ ____ ​   ​    4

)

(  ) (  ) 1 ​( x + __ ​   ​  )​ 2 2 = ___ ​    ​ tan ​ ​ _______  ​    ​ + c –1

__

​÷3 ​   

(  ) __

( 

​ 3 ​    ÷ ___ ​   ​  2

)

dx

dx

(  ) (  ) ​÷5 ​   1 ​( x – __ ​   ​  )​ – ___ ​   ​  2 2 1 = – ​ ___  ​ log ​ ​  ___________     ​  ​ + c ​÷5 ​   ​÷5 ​   1 __ ​( x – ​   ​  )​ + ___ ​   ​  2 2

| 

 | |  

dx ​        ​ Ú  (x__________ + 2)2 – 1

|  | |  |

|

(x – a) –  a 1 = ___ ​    ​ log ​ ​ __________       ​  ​ + c 2a (x – a) + a



(x – 2a) 1 = ___ ​    ​ log ​ ​ _______ ​  ​ + c x    2a

| 

|

180. The given integral is

dx

dx

​  2      ​ = Ú __________ ​        ​ Ú x_______ + 2ax (x + a)2 – a2

| 

|

x 1 = ___ ​    ​ log ​ ______ ​       ​  ​ + c 2a x + 2a

dx

1 ​  2      ​ = ___ ​    ​ log |a2 + 2ax| + c Ú a_______ 2a + 2ax

182. The given integral is

dx

​  dx   ​  = – Ú _______ ​      ​ Ú ________ 2 x2 – 2ax 2ax  –  x



dx  = – Ú ​ ___________     ​ (x – a)2 – a2



x –  a – a 1 = – ___ ​    ​ log ​ ​ ________   ​  ​ + c x–a+a 2a



x 1 = ___ ​    ​ log ​ ______ ​       ​  ​ + c 2a x – 2a

__



dx ​  2       ​ = Ú _________ x + 4x + 3

(x – a) – a





dx __  ​ = – Ú ______________ ​       ​÷5 ​    2 1 2 __ ___ ​​ x – ​   ​   ​​ ​ – ​​ ​   ​  ​​ ​ 2 2

177. The given integral is

dx

dx  ​  2      ​ = Ú ____________ ​     ​ Ú x_______ 2 2 2 – 2ax

181. The given integral is

​       ​ = – Ú ________ ​       ​ Ú 1________ + x – x2 x2 – x – 1

__

)

179. The given integral is



2x +__ 1 2 = ___ ​  __  ​ tan–1 ​ ​ ______  ​    ​ + c ​ 3 ​    ​ 3 ​    ÷ ÷





)

(4x + 5) 2 ___ ​   = ____ ​  ___   ​ tan–1 ​ ​ _______   ​+ c ​ 23 ​     ​÷23 ​     ÷

( 

___

__



( 

(  )

–1

___ ​÷32 ​    

176. The given integral is

(  ) (  )

7 2 = _____ ​  ____    ​ tan–1 ​ 8x + _____ ​  ____    ​  ​ + c ​ 111 ​     ​ 111 ​     ÷ ÷

dx __  ​ ​  dx     ​ = Ú ______________ ​       Ú _________ 2 2 ​÷3 ​    2 1 x +x+1 ​​ x + __ ​   ​   ​​ ​ + ​​ ___ ​   ​  ​​ ​ 2 2



dx 1 ____  ​ = __ ​   ​  Ú ________________  ​       4 2 ​ 111 ​    2 ÷ 7 __ _____ ​​ x + ​   ​   ​​ ​ + ​​ ​   ​    ​​ ​ 8 8





( 



)

​ x + ​   ​  x + ​   ​   ​ 4 2

8 7 1 = __ ​   ​  × _____ ​  ____    ​ tan–1 ​ 8x + _____ ​  ____    ​  ​ + c 4 ÷ ​ 111 ​     ​ 111 ​     ÷

175. The given integral is

( 

4x + 7x +  10



2



dx

1 dx  ​      ​ = __ ​   ​  Ú ____________ ​        ​ Ú ____________ 2 4 5 7 2 __ __

| 

183. The given integral is



(x +  2) – 1 1 = __ ​   ​  log ​ ​ __________     ​  ​ + c 2 (x + 2) + 1





(x + 1) 1 = __ ​   ​  log ​ ​ ______   ​  ​ + c 2 (x + 3)



| 

|

|

( 

)

1 1 1 ​  2       ​ = ___ ​    ​ Ú ​ _____ ​  2      ​ – _____ ​  2      ​  ​ dx Ú (x_____________ 2 3a + 1) (x + 4) x +1 x +4 dx

( 

1 1 = __ ​   ​  ​ tan–1x – __ ​   ​  tan–1 3 2

(  ) )

x ​ __ ​    ​  ​  ​ + c 2

1.60  Integral Calculus, 3D Geometry & Vector Booster 184. We have, x2 1 3x2 ​  6      ​ dx = __ ​   ​  _____ ​      ​dx Ú _____ 3 x6 + 1 x +x 1 dt = __ ​    ​ _____ ​       ​, Let t = x3 3 t2 + 1 fi dt = 3x3 dx

1 = ​ __ ​  tan–1 (t) + c 3



1 = __ ​   ​  tan–1(x3) + c 3

cos x dx _______________ ​  2        ​ Ú sin x + 3 sin x + 2



dt  = Ú _________ ​      ​ 2 t + 3t  +  2

Let t = sin x fi dt = cos x dx

)

1 1 ____ 1 = __ ​   ​  Ú ​ __ ​   ​  – ​       ​  ​ t t+1 4



t 1 = __ ​   ​  log ​ ____ ​       ​  ​ + c 4 t+1



x4 1 = __ ​   ​  log ​ _____ ​  4      ​  ​ + c 4 x +1

|  |

|  |

194. We have,

185. We have,

( 



(2x + 4) –  1



2x + 3     ​ dx = Ú ​ ___________       ​dx Ú​ __________ 2 2



(2x + 4) = Ú ​__________       ​ dx – 2 x + 4x + 5



(2x + 4) dx = Ú ​ __________       ​ dx – Ú __________ ​        ​ 2 (x + 2)2 + 1 x + 4x + 5



= log |x2 + 4x + 5| – tan–1(x + 2) + c

x   +  4x + 5

x + 4x + 5

dx

​  2       ​ Ú __________ x + 4x + 5



dt = Ú ___________ ​        ​ (t + 1) (t + 2)



1 1 = Ú ​ ____ ​       ​ – ____ ​       ​  ​ dt t+1 t+2



t+1 = log ​ ​ ____   ​  ​ + c t+2





sin x + 1 = log ​ ​ _______   ​  ​ + c sin x + 2

9 3 ​  (2x – 3)  + ​ 2 + __ ​ __ ​   ​   ​ 2 2 = Ú ​ __________________         ​ dx 2 x – 3x + 4



(2x – 3) 3 13 dx  = __ ​   ​  Ú ​ __________       ​ dx + ___ ​   ​   Ú __________ ​      ​ 2 x2  – 3x + 4 2 x2  –  3x + 4

( 

195. We have,

)

|  | |  |



186. We have,

xx(1  +  log x)

​        ​dx = Ú ________ ​  dt     ​ Ú ___________ 2x x 2 x

+x +1



t  + t + 1

dt __  ​ = Ú ​ ______________      ​ 3 ​    2 ÷ 1 2 __ ___ ​​ t + ​   ​   ​​ ​ + ​​ ​   ​  ​​ ​ 2 2



(  ) (  ) 1 ​( t + __ ​    ​ )​ 2 2 = ___ ​    ​ tan ​ ​ ______  ​    ​ + c



__

–1

​÷3 ​   

(  ) ( 

)

2x x __ +1 2 = ___ ​  __  ​ tan–1 ​ ​ ______  ​    ​ + c ​ 3 ​    ​ 3 ​    ÷ ÷

187. We have,

dx

x3dx

________ ​  4      ​ = Ú ________ ​  4 4     ​ Ú x (x + 1) x (x + 1) 3

4x dx 1 = __ ​   ​  Ú ________ ​      ​ 4 x4(x4 + 1)

dt 1 = __ ​   ​  Ú _______ ​      ​, Let t = x4 4 t (t + 1) fi dt = 4 x3 dx

x –  3x + 4

( 

)

(2x – 3) dx 3 13 __  ​ = __ ​   ​  Ú​ __________       ​ dx + ___ ​   ​ Ú ______________ ​       2 2 x   –  3x + 4 2 ​÷7 ​    2 3 2 ​​ – __ ​   ​   ​​ ​ + ​​ ___ ​   ​  ​​ ​ 2 2

(  ) (  ) 3 ​( x – __ ​   ​  )​ 2 13 ______ ___ – 3x + 4| + ​    ​ tan ​ ​   ​    ​ + c

(  )



3 = __ ​   ​  log |x2 2



3 13 2x –__ 3 = __ ​   ​  log |x2 – 3x + 4| + ___ ​  __  ​ tan–1 ​ ​ ______  ​    ​ + c 2 ​ 7 ​    ​÷7 ​    ÷

__

​ 3 ​    ÷ ___ ​   ​  2

3x + 2     ​ dx Ú​ __________ 2

–1

__

​÷7 ​   

__

​ 7 ​    ÷ ​ ___ ​  2

( 

)

195. The given integral is 1 (2x + 1)  –  1 x    Ú _________ ​   ​ dx = __ ​   ​  Ú ​ ___________       ​ dx 2 2 (x2 + x + 1) x + x  + 1 (2x + 1) dx 1 1 __  ​ = __ ​   ​  Ú ​ __________       ​ dx – __ ​   ​  Ú ______________ ​       2 (x2 + x + 1) 2 ​÷3 ​    2 1 2 __ ___ ​​ x + ​   ​   ​​ ​ + ​​ ​   ​  ​​ ​ 2 2

(  ) (  )

( 

)

2x +__ 1 1 1 = __ ​   ​  log |x2 + x + 1| – ___ ​  __  ​ tan–1 ​ ​ ______  ​    ​ + C 2 ​ 3 ​    ​ 3 ​    ÷ ÷

Indefinite Integrals 

196. The given integral is





200. The given integral is.

1 2x + __ ​   ​  4x + 1 2   _________ ___________    ​dx = 2 Ú​    ​ dx Ú​  x2 + 3x   +2 (x2 + 3x  +  2)



(2x +  3)  –  (5/2) = 2 Ú ​ ______________       ​dx (x2 + 3x + 2)



(2x +  3) dx = 2 Ú ​ ___________      ​ dx – 5 Ú ___________ ​        ​ 2 (x + 1) (x+ 2) (x + 3x + 2)

|  |

____________ ​  2x      ​ = Ú ______________ ​  x       ​ Ú 2e (2e + 1) (ex + 1) + 3ex + 1



x+1 = 2 log |x2 + 3x + 2| – 5 log ​ ​ _____ ​  ​ + c x+ 2   

dx

dx

(  Ú ( 

) )

    ​  ​ × (2 + 2 sin2 x)dx Ú ​( ​ __________ cos x + sin x ) cos x – sin x

(  ) 1+t = Ú ​(​  _____     ​  ​ dt, Let cos x + sin x = t t )

cos x – sin x = Ú ​ ​ __________     ​  ​ (1 + (sin x + cos x)2) dx cos x + sin x 2



197. The given integral is



fi (– sin x + cos x) dx = dt

(  )

1 = Ú ​ t + ​ __ ​   ​ dt t t2 = ​ __ ​  + log |t| + c 2 (sinx + cos x)2 = ​ ____________  ​      + log |sin x + cos x| + c 2

201. The given integral is (sin x + cos x) dx



2 1 = Ú ​ ________ ​  x      ​ – _______ ​       ​  ​ dx (2e + 1) (ex + 1)





2e–x e– x = ​ _______ ​     ​ – ________ ​  – x      ​  ​ dx –x   (2 + e ) (e + 1)



(sin x +  cos x)dx = Ú ______________ ​      ​ 8 – 3 (1 – sin 2x)



= log |e– x + 1| – 2 log |e– x + 2| + c



(sin x + cos x)dx = Ú ​ _________________        ​ 8 – 3 (sin x  –  cos x)2

198. The given integral is



   

(3sin x – 2) cos x = Ú ​ _______________        ​ dx sin2x – 4sin x  + 4

(3t – 2) = Ú​ _________       ​ dt, 2 t – 4t  +  4

​ sin x  + cos x        ​ dx = Ú ​  __________________        ​ Ú ___________ 5 + 3 sin 2x 5 + 3 (1 – 1  +  sin 2x)

dt = Ú ______ ​    2   ​, Let t = (sin x – cos x) 8 – 3t dt = (cos x + sin x)dx

(3sin x  –  2) cos x dx       ​ Ú ​ _________________ (5 – cos2x – 4sin x)





Let t = sin x fi dt = cos x dx



dt = Ú ______ ​   2   ​ 8 – 3t dt 1 __   = – ​ __ ​  Ú _________ ​     ​ 3 2 8 2 __ t – ​​ ​ ​   ​ ​    ​​ ​ 3

( ÷  )

| 



(3t  –  2)   = Ú ​ _______ ​  dt (t – 2)2



(3t – 6 + 4)   = Ú  ​ __________     ​   dt (t – 2)2



dt dt = 3 Ú ______ ​       ​ + 4 Ú ______ ​      ​ (t – 2) (t – 2)2



4 = 3 log |t – 2| – ______ ​       ​ + c (t – 2) 4 = 3 log |sin x – 2| – ________ ​       ​ + c (sin x – 2)



sin x – cos x = Ú ​ ________________       ​  dx 5 (sin x + cos x)2 – 2



cos x – sin x = Ú ​ ________________        ​ dx 2 – 5 (sin x  +  cos x)2



=







ax3 + bx

x3

x dx

 ​   dx = a Ú ______ ​  4   2   ​dx + b Ú ______ ​  4  2   ​ Ú ​ _______ x4 + c2 x +c x +c

(  )

a b x2 = ​ __ ​    log |x4 + c2| + ___ ​    ​ tan–1 ​ __ ​ c ​   ​ + c 4 2c

___

|

t – (​÷8/3 ​     ) 1 ___   = – _____ ​  ___     ​log ​ ​ ________  ​  ​ + c 2​÷24 ​     t + (​÷8/3 ​   ) 

where t = sin x + cos x 202. The given integral is

199. The given integral is

1.61

sin x  – cos x

sin x – cos x

​        ​ dx = Ú ​ _______________        ​ dx Ú ___________ 3 + 5 sin 2x 5 (1 + sin 2x)  –  2



dt

​    2   ​, Let t = (sin x + cos x) Ú 2______ – 5t

fi dt = (cos x – sin x)dx

1.62  Integral Calculus, 3D Geometry & Vector Booster dt

​    2   ​ Ú ______ 2 – 5t



=



dt 1 ___ = – __ ​   ​  Ú ​__________       2 ​ 5 t2 – (​÷2/5 ​     )



t –  (​÷2/5 ​   )  1 ___   = – ____ ​  ___     ​log ​ ​ _________  ​  ​ + c ​ 10 ​     t + (​÷2/5 ​   )  ÷



=–

|  | 

Ú

|

| ( 

)

1 = log ​ ​ x + __ ​   ​   ​ + 2 dx

dx = Ú  ​_________________   ________________        ​ 25 1 2 ___ ​  – ​ ​​ x + __ ​    ​  ​​ ​ –   ​   ​   ​ ​ 2 4

÷  { (  )

÷(   ) (  ) 1 ​( x + __ ​   ​  )​ 2 _______ = sin   ​ ​   ​    ​ + c –1

( 

| 

= log ​ (x – a) +

dx

dx

dx

dx

  ______     ​ = Ú  ​_______________   ______________       ​ Ú  ​_______ 2 2 ​÷4x   – x   ​

c

÷(   ) (  )

​÷1  + x  +   x  ​

​ 3 ​    ÷ 1 ___ ​ ​​ x + __ ​    ​  ​​ ​  + ​​   ​   ​  ​​ ​ ​ 2 2

| ( 



dx = Ú ​____________   ___________       ​ 2 ​÷2  –  (x –   2)2 ​



x  –  2 = sin–1 ​ _____ ​   ​    ​ + c 2

(  )

dx = Ú ​________________   _______________        ​ 5 1 2 __ ​  – ​ ​​ x – __ ​   ​   ​​ ​    – ​   ​   ​ ​ 2 4

÷  { (  ) }





dx = Ú  ​______________   _____________       ​   – 2)2    – 4} ​ ÷​ – {(x



=

dx ____________ ​  __________       ​ ​÷4  –  (x –    2)2 ​



x –  2 = sin  ​ _____ ​   ​    ​ + c 2

Ú

206. The given integral is

–1

(  )

dx

​  _______________       ​ __ Ú ________________ 2 2

÷(   ) (  )



=



1 ​ x – __ ​   ​   ​ 2 __  ​   = sin–1 ​ ​ ______  ​ + c ​÷5 ​    ___ ​   ​  2



2x –__ 1 = sin–1 ​ ​ ______  ​    ​ + c ​÷5 ​   

​÷5 ​    1 __ ​ ​​ ___ ​   ​  ​​ ​  – ​​ x –   ​   ​   ​​ ​ ​ 2 2

 ((  )) ( 

205. The given integral is dx dx   ______     ​= Ú __________ ​  _________      ​ Ú ​_______ 2  2   – x   ​ ​÷– (x   – 4x) ​  ÷​ 4x

|

208. The given integral is dx dx   _________       ​ = Ú ______________ ​  ____________       ​ Ú  ​__________ 2 2   +  x – x    ​ ​÷– {x   – x –   1}  ​ ÷​ 1 

​÷4  – 4 + 4x  –     x  ​

dx = Ú ​_________________   ________________       ​ 2 2 ​÷2  – (x – 4x   + 4) ​

)

_________

1 = log ​ ​ x + __ ​   ​   ​ + ​÷x  2 + x +  1 ​   ​+ c 2



|

)

  _________      ​ = Ú ​________________   _______________       __  ​ Ú  ​___________ 2 2 2

​÷x  – 2ax   ​ ​÷x  – 2ax +  a    – a  ​

_______ ​  ​ + ÷​ x  2 – 2ax  

5 __ ​   ​  2

207. The given integral is

dx

dx = Ú ​_____________   ___________       ​ ​÷(x   – a)2  –    a2 ​

(  )

2x  +  1 = sin–1 ​ ______ ​   ​    ​ + c 5



|

}

dx = Ú  ​_______________   ______________       ​ 2 5 1 2 __ ​ ​​ __ ​    ​  ​​ ​  – ​​ x +   ​   ​   ​​ ​ ​ 2 2



_________ ​÷x  2 + x +  1 ​   ​+ c

205. We have,



​÷6  – x  –  x    ​ ​÷– (x   + x    – 6) ​

c

  _______      ​ = Ú ​_________________   ________________       ​ Ú ​________ 2 2 2 2



dx









|

÷(   ) (  )

204. We have,

___

dx dx __________ ​  ________       ​= Ú ​________________   _______________       __  ​ 2 2 ​ 3 ​    2 ÷   ÷​ x  + x + 1 ​ 1 ​ ​​ x + __ ​   ​   ​​ ​ + ​​   ​ ___ ​  ​​ ​ ​ 2 2



dx

  _________       ​ = Ú ​_____________   ___________       ​ Ú  ​__________ 2 2



___ (sin x +  cos x) – (​÷2/5 ​   )  1 ____ ___________________ ___  ​  ​ + ​  ___     ​log ​ ​          ​÷10 ​     (sin x + cos x) + (​÷2/5 ​   ) 

203. We have,



)

209. The given integral is

dx

dx

 2      ​ = Ú ____________ ​  __________       ​ Ú ​x_______ 2 2 + 2ax ​÷(x   + a)    – a  ​

________

| 

210. The given integral is

|

= log ​ (x + a) + ÷ ​ x  2 + 2ax   ​  ​ + c



dx

dx

  ________    ​  = Ú  ​____________   ___________       ​ Ú ​_________ 2 2 ​÷2ax    –  x  ​  ​÷  – {x – 2ax} ​   

Indefinite Integrals 

dx = Ú  ​_______________   ______________       ​   – a)2 –   a2} ​ ÷​ – {(x



dx = Ú ​____________   ___________       ​ 2 a)2 ​ ÷​ a  – (x –   



x–a = sin–1 ​ ​ _____ ​  ​ + c a   

( 



dt 1 _______ = __ ​   ​  Ú ​________       , ​ 2 2 ÷ ​ t  + t +1 ​  

dt fi x dx = __ ​   ​  2



(sin xcos a – cos x sin a) ___________ = Ú  ​ ___________________         ​dx 2   2x – sin   a ​ ÷​ sin



sin x = cos a  Ú ​____________   ___________       ​ dx 2 2   x – sin   a ​ ÷​ sin

|

1 1 = __ ​   ​  log ​​ t + __ ​   ​   ​ + ÷ ​ t  2 + t  +  1 ​   ​+ c 2 2



1 1 = __ ​   ​  log ​ ​ x2 + __ ​   ​   ​ + ​÷x  4 + x2  +  1   ​  ​ + c 2 2

_________

|

_______

  – 1 ​    dx Ú ​÷sec x

    

 cosx   – sin a Ú ____________ ​  ___________       ​ dx 2 2   x  – sin   a ​ ÷​ sin

212. We have,

÷ 

____________________

sin (x – a) ___________ = Ú ​ ____________       ​  dx 2   2x  –  sin    a ​ ÷​ sin



)

sin x = cos a Ú ____________ ​  ___________       ​ dx 2 2   a – cos   x ​ ÷​ cos

  – sin a

÷  Ú ÷ 

___________________



(1 + cos x) 1 – cos x __________ = Ú  ​ ​ _______ ​    ×     ​       ​ ​ dx cos x    (1 + cos x) ______________



1 – cos2x =  ​ ​ _____________           ​ ​dx cos x (1 + cos x)



 sin x = Ú  ______________ ​  _____________        ​ dx   + cos x) ​    ÷​ cos x (1

dt = – Ú ________ ​  _______      ​ Let cos x = t   + 1) ​  ÷​ t (t fi – sin x dx = dt



_________

sin (x – a) sin (x – a) _________      ​ ​ dx = Ú  ​ ​ _________      ​ ​  dx Ú  ​ ​ sin (x + a) sin (x + a)



_________

)

÷ 

_________

Let x2 = t

÷(   ) (  )

| (  | ( 

÷ 

c

sin (x – a) _________ sin (x – a) = Ú  ​ ​ _________   ​    × ​     ​ ​   dx sin (x + a) sin (x – a)

dt 1 _______________ = __ ​    ​ Ú ​________________        __  ​ 2 ​÷3 ​    2 1 2 __ ___ ​ ​​ t + ​   ​   ​​ ​  + ​​   ​   ​  ​​ ​ ​ 2 2



|



x dx   _________       ​ Ú ​__________ 4   ÷​ x  + x2 + 1 ​



| 

214. We have,

211. We have,

______ ​÷x  1/2 – 1 ​   ​+

= 4 × log ​ x1/4 +





|

= 4 log ​ t + ​÷t 2 – 1 ​  ​ + c



)

_____

| 

dt = – Ú  ​_______________   _____________       ​ 2 1 1 2 __ ​ ​​ t + __ ​   ​   ​​ ​  – ​​   ​   ​   ​​ ​ ​ 2 2

÷(   ) (  ) = – log ​ ​( t + __ | ​ 12 ​  )​ + ​÷t  + t ​ |​ + c = – log ​ ​( cos x + __ | ​ 12  ​ )​ + ÷​ cos  x + cos x ​ |​ + c _____ 2  

___________ 2   

213. We have, dx dt ______         ​ = 4 Ú ​______   _____    ,  ​ Let x1/4 = t Ú ​__________ 3/4 1/2 2 x ÷ ​ x  – 1 ​  ÷​ t  – 1 ​  1 fi ​ __ ​  x–3/4 = dt 4

1.63



cos x

​  ___________       ​ dx Ú  ____________ 2 2 ​÷sin   x – sin    a  ​

(  ) ___________ –  sin a log ​| sin x + ​÷sin   x – sin 2a     ​ |​ + c

cos x = – cos a sin–1 ​ _____ ​ cos a   ​  ​



2

215. The given integral is

exdx

ex

  ______      ​dx = Ú ​_________   ________     ​ Ú ​_______ 2x x 2

​÷4  – (e )    ​ dz = Ú ​______   _____     ​, Let z = ex 2  ​ ÷​ 4  – z   fi dx = ex dt

​÷4  – e    ​

(  )

z = sin–1 ​ __ ​    ​   ​ + c 2 ex = sin–1 ​ __ ​   ​   ​ + c 2

(  )

216. The given integral is  sec2x ​  ________      ​ dx Ú ​÷__________ 16   + tan x   ​ dt = Ú ​______   _____     ​, 2 ÷​ t  + 4 ​ 

Let t = tan x fi dt = sec2 x dt

_____



|  | ________ = log ​| tan x + ÷ ​ tan   x + 4 ​   |​ + c = log ​ t + ÷ ​ t 2 + 4 ​   ​ + c 2

1.64  Integral Calculus, 3D Geometry & Vector Booster 217. The given integral is

_______  ​÷sec x   – 1 ​    dx

Ú

________

÷ 

1 – cos x = Ú ​ ​ _______   ​   dx cos x   

÷ 

__________________



(1  –  cos x) (1 + cos x) = Ú ​ ​ __________________            ​ ​ dx cos x (1 + cos x)



sin x = Ú ​______________   _____________       ​ dx   + cos x) ​    ÷​ cos x (1

dt = – Ú ​______   _____     ​, Let t = cos x 2 ÷​ t  + t  ​ fi dx = – sin x dx dt = – Ú ​_______________   _____________       ​ 2 1 1 2 __ __ ​ ​​ t + ​   ​   ​​ ​  – ​​   ​   ​   ​​ ​ ​ 2 2



÷(   ) (  ) = – log ​ ​( t + __ | ​ 12 ​  )​ + ​÷t  + t ​ |​ + c = – log ​ ​( cos x + __ | ​ 12 ​  )​ + ÷​ cos  x + cos x ​ |​ + c _____ 2  

___________ 2   

218. The given integral is

÷ 

________

_________

1 – sin x   – 1 ​    dx = Ú ​ ​ _______         ​  ​ dx Ú ​÷cosecx sin x

÷ 

__________________

220. The given integral is

÷ 

_________

sin (x – a) Ú  ​ ​ _________     ​ ​ dx sin (x + a)

÷ 

__________________

sin (x  –  a) sin (x – a) = Ú ​ ​ __________________         ​ ​ dx sin (x – a) sin (x + a) sin(x – a) ___________ = Ú ​____________       ​  dx 2   2x – sin    a  ​ ÷​ sin =

sin x cosa  –  cos x sina

___________ ​           ​ dx Ú ___________________ 2 2

​÷sin   x – sin    a  ​

sin x dx cos x dx = cosa Ú  ​__________________   _________________         ​ Ú _____________ ​  ____________      ​ 2 2 2   a – sin x  –     sina ​ ​÷sin   2x  –  sin   a ​ ÷​ sin sin x dx cos x dx = cosa Ú  ​_____________   ____________       ​ – sina Ú  ​_____________   ____________      ​ 2 2 2   a  –  cos   x ​ ​÷sin   2x  –  sin   a ​ ÷​ cos

( 

)

cos x = – cos a  sin–1 ​ _____ ​       ​​ cosa ___________

| 



(1  –  sin x) (1 + sin x) = ​ ​ _________________           ​ ​dx sin x (1 + sin x)

221. The given integral is



cos x  = Ú ​______________   ____________       ​ dx   + sin x) ​    ÷​ sin x (1



dt = Ú ​_______   _____    ​  , 2 ÷​ t    +  t ​ 





Let t = sin x fi dt = cos x dt

dt = Ú ​______________   _____________       ​ 1 1 2 ​ ​ t + __ ​   ​   ​  –    ​​ __ ​   ​   ​​ ​ ​ 2 2

÷(   ) (  ) = log ​ ​( t + __ | ​ 12 ​  )​ + ÷​ t  + t ​ |​ + c = log ​ ​( sin x + __ | ​ 12 ​  )​ + ÷​ sin  x + sin x ​ |​ + c _____ 2  

__________ 2   

219. The given integral is

e– x

dx

  _______    ​  = Ú ​___________   __________       ​ dx Ú ​________ 2x 2 ​÷1  –  e  ​  ​÷(e   – x)     –  1 ​

dt = – Ú ​______   _____    , ​ 2 ÷​ t  – 1 ​ 

Let t = e– x





|  = – log ​| e

fi dt = – e –x dt

_____

|

= – log ​ t + ÷ ​ t 2 – 1 ​  ​ + c – x

_______

|

+ ​÷e  – 2x – 1 ​   ​+ c

|

2   – sin a  log ​ sin x + ​÷sin   2x – sin   a ​  ​ + c



dx

dx

______ ________         ​= Ú ​____________         ​ Ú ​__________ 2/3 2/3 2/3 1/3 2

x ​÷x 

– 4 ​  x ​÷(x   ) – 4 ​ 

dt 1 _____ = __ ​   ​  Ú ​______       ​, 3 ​÷t  2 – 4 ​ 





dt 1 _____ = __ ​   ​  Ú ​______       ​ 3 ​÷t 2 – 4 ​ 

Let t = x1/3 1 fi dt = ​ __ ​ x–2/3 dx 3

_____

|  | 

|

1 = __ ​   ​  log ​ t + ÷ ​ t 2 – 4 ​  ​ + c 3 ______ 1 = __ ​   ​  log ​ x1/3 + ​÷x  2/3 – 4 ​   ​+ c 3 222. The given integral is ______ x   ​  3   3     ​ ​dx Ú ​ ______ a –x Let x = a sin2/3q

|

÷ 

fi dx = a ◊ sin–1/3 q dq

__



1/3 –1/3 ​÷a     ​ sin q sin q cosq = Ú  ​___________________           ​ 3/2 a cosq 1 = __ ​ a ​ Ú dq



q = ​ __ a ​ + c



x 3/2 sin–1 ​ ​​ __ ​ a ​  ​​ ​  ​ = ____________ ​  ​+ c a      

{ (  ) }

1.65

Indefinite Integrals 

223. The given integral is

( 

cosq  +  sinq

)

​  _________    ​  ​ dq Ú ​ ___________ ​÷  5 + sin 2q    ​ cosq + sinq _____________ = Ú ​_______________        ​ dq ​÷6  – (1  –  sin 2q) ​   



cosq +    sinq ________________ = Ú​ _________________    ​dq 2     ​ ÷​ 6  – (sinq –  cosq)





Put (sinq – cosq) = t fi (cosq + sinq)dq = dt

dt _____ = Ú  ​ _______    ​    –  t2 ​  ÷​ 6  t = sin–1 ​ ___ ​  __   ​  ​ + c ​÷6 ​   



(  )



( 

)

sinq – __cos q = sin–1 ​ ​ __________  ​       ​+ c ​÷6 ​   



Let

(x2 – 3x + 2) = t2





(2x + 3) dx = 2t dt

| ( 

_________



sinq – cosq ______________ = Ú​ _______________        ​ dq    ÷​ 3  – (1 +  sin 2q) ​



sinq –    cosq ________________ = Ú​ _________________     ​ dq 2 ​÷3    –  (sinq + cosq)     ​

dt = – Ú  ​______   _____     ​, Let t = (sinq + cosq) ​ 3  – t2   ​ ÷ dt = (cosq – sinq) dq

(  )



t = cos–1 ​ ___ ​  __   ​  ​ + c ​ 3 ​    ÷



sinq  +  cosq __ ​  = cos–1 ​ __________ ​       ​+ c ​ 3 ​    ÷

( 

3x + 4

​÷x  + 5x    +  2 ​

( 

)



3 15 __ ​   ​  (2x + 5)  + ​ 4 – ___ ​   ​  ​ 2 2 _________ = Ú  ​ ___________________         ​  dx 2 + 2 ​ ÷​ x    +  5x   



(2x + 5)dx 3 dx 7 __________ __________ = __ ​   ​  Ú ​ ___________        ​ – __ ​   ​  Ú  ​ ___________       ​ 2 2 ​÷x  2 + 5x    2 +  2 ​ +  2 ​ ÷​ x  + 5x    dx 3 2t dt __ 7 = __ ​   ​  Ú  ​____       ​ – ​   ​  Ú  ​___________________   __________________        ​ t 2 2 2 5 25 __ ​ ​​ x + ​   ​   ​​ ​  + ​ 2    – ___ ​   ​   ​ ​ 2 4

÷(   ) ( 

)



Let (x2 + 5x + 2) = t2



fi (2x + 5) dx = 2t dt dx 7 ________________ = 3  Ú dt + __ ​   ​  Ú ​_________________         ___  ​ 2 ​÷17 ​    2 5 2 __ ____ ​ ​​ x + ​   ​   ​​ ​ – ​​ ​     ​    ​​ ​ ​ 2 2

÷(   ) (  )



| (  | ( 

_________

)

|

5 7 = 3t + ​ __ ​  log ​ ​ x + __ ​   ​   ​ + ÷ ​ x  2 + 5x    + 2 ​  ​ + c 2 2



)

)

_________

|

x–1 __________       ​ dx Ú ​___________ 2 +  2 ​ ÷​ x  – 3x    

227. We have,

​÷x  + 5x     +  6 ​

​÷x  + 5x     +  6 ​

(2x + 5) 1 1 1 __________ __________ = __ ​   ​  Ú ​ ___________       ​ dx – __ ​   ​  Ú ​___________        ​ dx 2 2 ​÷x  2 + 5x     2 +  6 ​ ​÷x  + 5x    +  6 ​



– 3) + 1 1 (2x __________ = __ ​   ​  Ú ​ ___________        ​ dx 2 ​÷x  2 – 3x     +  2 ​



(2x – 3) dx __________ 1 1 __________ __________ = __ ​   ​  Ú ​ ___________      ​ dx + __ ​    ​ Ú ​___________         ​ = ​ x  2 + 5x    +  6 ​ ÷ 2 2 ​÷x  2 –  3x     2 +  2 ​ ​÷x  – 3x     + 2 ​

(2x + 5) 1 1 1 __________ = __ ​   ​  Ú ​ ___________       ​ dx – __ ​   ​  Ú  ​_______________   ______________      ​dx 2 ​÷x  2 + 5x     2 5 2 1 2 +  6 ​ __ ​ ​​ x + __ ​   ​   ​​ ​ – ​​   ​    ​  ​​ ​ ​  2 2

dx 1 2t dt 1 ________________ = __ ​   ​  Ú ____ ​      ​ dx + __ ​   ​  Ú ​_________________          ​   t 2 2 9 3 2 ​ ​​ x – __ ​   ​   ​​ ​  + ​ 2   – __ ​   ​   ​ ​ 2 2

÷(   ) (  )

(2x + 5) – 1

x+2

1 __________ __________       ​ dx = __ ​   ​  Ú​  ___________       ​ dx Ú ​ ___________ 2 2 2

1 2 x – 2   __________ = __ ​   ​  Ú​ ___________   ​ dx 2 ​÷x  2 –  3x     +  2 ​



)

5 7 = 3 ​÷x  2 + 5x    + 2 ​ + __ ​   ​  log ​ ​ x + __ ​    ​  ​ + ÷ ​ x  2 + 5x    + 2 ​  ​ + c 2 2

225. We have,

|

_________

__________      ​ dx Ú​  ___________ 2

_________



| ( 

c

226. We have,

  1.65



|

__________ +  2 ​  ​ + ÷​ x  2 –  3x   

1 1 = ​÷x  2 – 3x + 2 ​   + ​ __ ​  log ​ ​ x – ​ __ ​   ​ + ​÷x  2 – 3x + 2 ​    ​+ c 2 2

sinq  –  cosq

  ________       ​ dq Ú  ​___________ ​÷2  – sin 2q   ​

)

1 1 = t + __ ​   ​  log ​ ​ x – __ ​   ​   ​ + 2 2



224. The given integral is



÷(   ) (  )

| ( 

)

_________

|

5 1 – ​ __ ​  log ​ ​ x + __ ​    ​  ​ + ÷ ​ x  2 + 6x    + 6 ​  ​ + c 2 2

1.66  Integral Calculus, 3D Geometry & Vector Booster 231. We have,

6x – 5 __________ 228. Ú ​ ___________       ​ dx   2 – 5x   + 1 ​ ÷​ 3x

Let 3x 2 – 5x + 1



fi (6x – 5) dx = 2t dt





2t dt = Ú  ​____       ​  t





= 2 Ú dt





= 2t + c



= 2​÷3x   2 – 5x   + 1 ​ + c



_____

____________

÷ 

÷ 

a______ – x   = Ú​ _______  ​ dx 2  ​ ÷​ a  – x2 

÷  4 1–t = __ ​   ​  Ú ​ ​  ____   ​ ​ dt 3 ÷1 + t

–1

= a sin

÷ 

______

(  )

x ​ __ ​ a ​  ​ + ÷ ​ a  2 – x2    ​+ c

______

a2 – x2   230. Ú x ​ ​ ______      ​ ​dx a2 + x2

4 – 4t 4 = __ ​   ​  Ú ​ ______ ​   ​ ​     dt 3 4 + 4t

Let x2 = a2t 2







a2(1  – t) a2 fi ​ __ ​  Ú  ​ ​ ________    ​ ​  dt 2 a2(1 + t)

2x dx = a  dt

  

÷  Ú ÷ 





– t) 4 (1_____ = __ ​   ​  Ú ​ ______      ​ dt 3 ÷ ​ 1  – t2   ​



dt t 4 = __ ​   ​  ​ Ú ​_______   _____     ​– Ú ​______   _____      ​ dt  ​ 3 ​÷1  – t2   ​ ​÷1  – t2   ​



4 = __ ​   ​  (​  sin–1(t) + ÷ ​ 1  – t2   ​ )​ + c 3



x3 x3 2 4 = __ ​   ​  ​ sin–1 ​ __ ​   ​   ​ + ​ 1 – ​​ __ ​   ​   ​​  ​ ​  ​ + c 3 4 4

( 

______



(1 – t) a2 = __ ​   ​  Ú  ​ ​ ______   ​ ​ dt 2 (1 + t)



(1 – t) 1____ a2 –t = __ ​   ​    ​ ​ ______     ​  × ​        ​ ​  dt 2 (1 + t) 1 – t

÷ 

(  (  ) ÷  (  ) )

232. We have, sec2x dx

dx

​       ​ = Ú  ​______________        ​ Ú _________ 3 + 4sin2x 3 sec2x +  4 tan2x



=

________

_____________

__

÷ 



– t) a2 (1_____ = __ ​   ​  Ú ​ ______      ​ dt 2 ÷ ​ 1  – t2   ​



__



7 1 ___ = ​ ____     ​× tan–1 ​ tan x​ __ ​   ​ ​    ​ + c 3 ​ 21 ​     ÷

233. We have,

( 

)

dt t a2 = __ ​   ​  ​ Ú ​______   _____     ​  –  Ú  ​______   _____      ​dt  ​ 2 2 ​÷1  – t    ​ ​÷1  – t2   ​

_______

÷  (  )



)

a2 x2 x 2 = __ ​   ​  ​ sin–1 ​ __ ​  2  ​  ​ + ​ 1 – ​​ __ ​ a ​  ​​  ​ ​  ​ + c 2 a



sec2x dx

dx

  2      ​ = Ú _________ ​       ​ Ú ​_____________ 3sin x + 4cos2x 3tan2x + 4 =



a2 = __ ​   ​  ​( sin–1(t) + ÷ ​ 1  – t2   ​ )​ + c 2

(  (  )

(  ÷  ) (  ÷  )

​ 7 ​    7 1 ÷ = __ ​   ​  × ___ ​   ​ tan–1 ​ t ​ __ ​   ​ ​    ​ + c 7 3 3 __

_____



( ÷  )



______



sec2x dx

​        ​ Ú __________ 3 +  7 tan2x

sec2x dx 1 = __ ​   ​  Ú ________ ​       ​ 7 3 tan2x + __ ​   ​  7 dt 1 __   = __ ​   ​  Ú  ​_________      ​ 7 2 3 2 t + ​​ ​ ​ __  ​ ​   ​​ ​ 2





(1 – t)2 a2 = __ ​   ​  Ú  ​ ​ ______      ​ ​ dt 2 (1 – t2)

)

________







4 x2dx = __ ​   ​  dt 3

_____

dx x = a Ú  ​_______   ______     ​ – Ú  ​________   _______    ​    dx 2 2 2  ​ ​÷a    –  x2 ​  ÷​ a  – x  







–x a – x a_____ –x    ​ ​ dx = Ú ​ ​ _____    ​   × ​       ​ ​ dx Ú ​ ​ aa_____ +x a+x a–x



Let x3 = 4t

_____

229. We have,



3

–x    ​ ​ dx Ú  x ​ ​ 44_____ + x3

______

__________



÷ 

______

2 

dt

​  2      ​ Ú ______ 3t + 4

Let tan x = t fi sec2 x dx = dt

dt 1 = __ ​   ​  Ú  ​_________     2   ​ 3 2 2 t + ​​ ___ ​  __  ​  ​​ ​ ​ 3 ​    ÷

(  )

Indefinite Integrals 

1 = __ ​   ​  × 3



__

(  ) (  ) __

​ 3 ​    ​ 3 ​    ÷ ÷ ___ ​   ​ tan–1 ​ ___ ​   ​  t  ​ + c 2 2 



__

​ 3 ​    ÷ 1 = ___ ​  __  ​ tan–1 ​ ___ ​   ​ tanx  ​ + c 2 ​ 3 ​    ÷





234. We have,

2

dx sec x dx     2 ​ = Ú ​ __________       ​ Ú  ​ _____________ (2sinx + cosx) (2tan x + 3)2



dt = Ú ​ _______      ​ (2t + 3)2



1 = – ​ ________      ​ + c 2(2t + 3)



1 = – ​ __________      ​ + c 2(2tanx + 3)



sec2x dx 1 = ​ __ ​  Ú  ​ _____________________         ​ 4 1 2 1 2 __ ___ ​ ​​​ tan x + ​   ​   ​​ ​+ ​ 1 – ​    ​  ​​​  ​ 4 16

[ ( 

) ( 

1 = ​ __ ​  tan–1 (tan2x) + c 2 2

dx sec x       ​ = Ú  ​ _________       ​ dx Ú  ​ _____________ (sin x + 2 cos x)2 (tan x + 2)2 =



dt     ​ Ú  ​ ______ (t + 2)2

sec2x dx 1 = __ ​   ​  Ú  ​ _________________       ​ 4 15 2 tan x + 1 2 ___ ​ ​​​ ​ _______  ​    ​​ ​+ ​   ​​ ​  ​ 4 16

[ ( 

) ] ​÷15 ​   1 Let ​( tan x + __ ​   ​  )​ = ____ ​   ​   tanq 4 4  





​ 15 ​     ___ dq 16 2 1 ÷ = __ ​   ​  × ____ ​   ​   × ​​ ​    ​  ​​ ​ Ú  ​ _____     ​ 4 4 15 sec2q



1 = – ​ _________      ​+ c (tan x + 2)



(  )

8 = ______ ​   3/2 ​  Ú  (2cos2q)dq (15) 8 = ______ ​   3/2 ​  Ú  (1 + cos2q)dq (15) sin 2q 8 = ______ ​   3/2 ​  ​ q + _____ ​   ​    ​ + c 2 (15)

( 

)

8 = ______ ​   3/2 ​  (q + sinq + cosq) + c, (15)

where

4 1 q = tan–1  ​ ____ ​  ___    ​  ​ tan x + __ ​   ​   ​  ​ 4 ​÷15 ​    

[  ( 

)]

237. We have, dx 1 __ ​    ​ Ú  ​ _____________     2 ​ 4 sin x ​​ ____ ​   ​   + sec x  ​​ ​ 2

)

2

sin x dx 2 sin x cosx       ​ = Ú  ​ ___________        ​ dx Ú  ​ ___________ sin4x + cos4x sin4x + cos4x

Divide the numerator and the denominator by cos4x we get



( 

(  )





fi sec2 x dx = dt

1 = – ​ ______      ​ + c (t + 2)

dx       ​ = Ú  ​ _____________ (sinx + 2 sec x)2

​÷15 ​     2 fi sec x dx = ____ ​   ​   sec q dq 4 2

238. The given integral is

Let tan x = t



)]

​÷15 ​     2 ____ ​   ​ sec     q 1 4 = __ ​   ​  Ú  ​ _________  ​    sec4q 4 15 2 ___ ​​ ​   ​   ​​ ​ 16



236. We have,



)

___

dt 1     ​ Let tan2x = t = ​ __ ​  Ú  ​ _____ 2 t2 + 1 fi 2 tan x  sec2 x dx = dt 1 = __ ​   ​  tan–1 (t) + c 2



( 

___





sec2x dx 1 = __ ​   ​  Ú  ​ ________________      2 ​ tan x 4 ​​ tan2x + ____ ​   ​   + 1  ​​ ​ 2



1 2tan x sec2x    ​ dx   = __ ​   ​  Ú  ​ __________ 2 tan4x + 1



)

___

tan x sec2x    ​ dx = Ú  ​ _________ tan4x + 1



( 



sin x cos x        ​ dx Ú  ​ ___________ sin4x + cos4x



sec2x dx 1 = __ ​   ​  Ú  ​ ___________       ​ 2 tan x 4 ​​ ________ ​        ​  ​​ ​ 2 + sec2x

___

235. We have,

1.67



2

sec x __________    ​ dx   Ú  ​ 2 tan x tan4x + 1 Let tan2x = t fi 2 tan x sec2x dx = dt



dt = Ú  ​ __2 ​  + 1 t = tan–1 (t) + c



= tan–1 (tan2x) + c

1.68  Integral Calculus, 3D Geometry & Vector Booster 239. The given integral is

dx       ​ Ú  ​ ______________ (2sinx + 3cosx)2

Divide the numerator and the denominator by cos2x, we get sec2x dx       ​ Ú  ​ ___________ (2 tan x + 3)2 Let 2 tan x + 3 = t fi 2 sec2 x dx = dt 1 dt = __ ​   ​  Ú  ​ __2 ​  2 t 1 = – ​ __  ​  + c 2t 1 = – ​ __  ​ (2 tan x + 3) + c 2



2

2

dx sec x dx sec x dx  2    ​ = Ú  ​ _________      ​ = Ú  ​ _________      ​ Ú  ​ ________ 2 2 + cos x 1 + 2 sec x 2tan2x + 3



Let tan x = t fi sec2 x dx = dt

dt = Ú  ​ ______     ​ 2 2t + 3



÷  2 = ​ __ ÷​  3 ​ ​  tan __

( ÷  ) ( ÷  ) ( ÷  )

__





__

2  ​ ​ __ ​   ​ ​   tan x  ​ + c 3

–1

sinx sin x   ​   dx = Ú  ​ _____________       ​ dx Ú  ​ _____ sin 3x 3 sin x – 4 sin3x dx = Ú  ​ _________      ​ 3 – 4sin2x



sec2x dx = Ú  ​ _____________       ​ 3 sec2x – 4 tan2x



sec2x dx = Ú  ​ ________      ​ 3 – tan2x

dt = – Ú  ​ _____     ​ t2 – 3

Let tan x = t sec2 x dx = dt



|  | __



sinx = Ú  ​ _____________       ​ dx 3 sin x – 4 sin3x



dx = Ú  ​ _________      ​ 3 – 4 sin2x



sec2x dx = Ú  ​ _____________       ​ 3 sec2x – 4 tan2x



sec2x dx = Ú  ​ ________________       ​ 3 + 3 tan2x – 4 tan2x



sec2x dx = Ú  ​ ________      ​ 3 – tan2x Let tan x = t fi sec2 x dx = dt



dt = – Ú  ​ _____     ​ 2 t –3



t–÷ ​ 3 ​    – 1 = ____ ​  __  ​   log ​ ​ ________   ​  ​ + c 2​÷3 ​    t+÷ ​ 3 ​   



t+÷ ​ 3 ​    1 = ____ ​  __    ​   log ​ ​ ________   ​  ​ 2​÷3 ​    t – ​÷3 ​   









|  | |  | |  | __

__

241. We have,

3

cosec x sinx dx = Ú  ​ _____      ​ dx Ú  ​ _______ cosec x ​   sin3x

tan x + ÷ ​ 3 ​    1 = ____ ​  __    ​   log ​ ​ ___________   ​  ​ + c 2​÷3 ​    tan x – ​÷3 ​    243. The given integral is

__

2 2 = ​ __ ​   ​ ​   tan–1 ​ ​ __ ​   ​ ​   t  ​ + c 3 3



|

__

dt __   = Ú  ​ _________    ​ 3 2 2 t + ​​ ​ __ ​   ​ ​    ​​ ​ 2







240. The given integral is

| 

__

tan x – ​÷3 ​    1__ = – ​ ____    ​   log ​ ​ ___________   ​  ​ + c 2​÷3 ​    tan x + ÷ ​ 3 ​    242. The given integral is

t – ​÷3 ​    1__ = – ​ ____    ​   log ​ ​ ________   ​  ​ + c 2​÷3 ​    t+÷ ​ 3 ​   

sec3x cosx dx = Ú  ​ _____      ​  dx Ú  ​ _____ secx ​    cos3x

cos x = Ú  ​ _____________       ​ dx 4 cos3x – 3 cos x dx = Ú  ​ _________      ​ 4 cos2x – 3 Divide the numerator and the denominator by cos2x we get, sec2x dx = Ú  ​ _________      ​ 4 – 3 sec2x



sec2x dx = Ú  ​ _____________       ​ 4 – 3  – 3 tan2x



sec2x dx = Ú  ​ __________       ​ 1  – 3 tan2x



Let  tan x = t  fi sec2 x dx = dt dt = Ú  ​ ______     ​ 1 – 3t 2

Indefinite Integrals 

 | | |  |



dt 1 = ​ __ ​    Ú  ​ __________      __  ​ 3 t2 – (​  1/​÷3 ​     )2​



1 t – ___ ​  __  ​  ​ 3 ​    ÷ 1 = ____ ​  __    ​   log ​ ​ ______   ​  ​ + c 1 2​÷3 ​    t + ___ ​  __  ​  ​ 3 ​    ÷ __

244. We have,

(  ) (  )

3 – dt 1 1 = ​ __ ​  Ú  ​ ________     ​ fi ​ __ ​  sec2 ​ __ ​    ​  ​ dx = dt 2 t2 – 2t – 2 2 2



dt 1 = – ​ __ ​    Ú  ​ _____________      2 ​ 2 (t – 1)2 – ​( ​÷__ 3 ​     )​



(t – 1)  – ÷ ​ 3 ​    1__ = – ​ ____    ​   log ​ ​ ___________   __ ​  ​ + c 2​÷3 ​    (t – 1) + ÷ ​ 3 ​   



__ x ​ tan ​ __ ​    ​  ​ – 1  ​ – ​÷3 ​    2 1__ = – ​ ____    ​   log ​ ​ ________________   __ ​ ​ + c x 2​÷3 ​    ​ tan ​ __ ​    ​  ​ – 1  ​ + ÷ ​ 3 ​    2

)



(  )

(  ) (  )



2dt = Ú  ​ _________     ​ 2 t + 4t + 1 dt = 2 Ú  ​ _____________      __  ​ (t + 2)2 – (​  ÷ ​ 3 ​     )2​



| 

__

|

(t + 2) – ÷ ​ 3 ​    2 = ____ ​  __    ​   log ​ ​  __________   __ ​  ​ + c 2​÷3 ​    (t + 2) + ÷ ​ 3 ​   



 |

(  ( 

(  ) ) (  ) )

__

245. We have,

dx       ​ Ú  ​ _____________ sin x + cos x + 1

( 

) ( 

dx = Ú  ​ _____________________________          ​ x x __ 2 tan ​ ​    ​  ​ 1 – tan2 ​ __ ​    ​  ​ 2 2 ​ __________ ​      ​  ​+ ​​ __________    x  x  ​  ​+ 1 1 + tan2 ​ __ ​    ​  ​ 1 + tan2 ​ __ ​    ​  ​ 2 2

(  ) (  ) (  ) (  ) x sec  ​( __ ​    ​ )​ dx 2 _____________________ = Ú  ​          ​ x x ​( 2 tan ​( __ ​    ​ )​ – tan  ​( __ ​    ​ )​ + 2 )​ 2 2 dt x 1 = __ ​   ​  Ú  ​ _________      ​ Let ​( __ ​    ​ )​ = t 2 2t – t + 2 2

)



2

2

(  ( 

|

(  ) ) (  ) )

dx      ​ Ú  ​ _________ 1 + 2 sin x dx = Ú  ​ _________________        ​ 2tan(x/2) 1 + 2 ​ ___________ ​         ​  ​ 1 + tan2 (x/2)

( 

)



sec2 (x/2)dx = Ú  ​ ____________________         ​ tan2 (x/2) + 4tan(x/2) + 1



Let tan(x/2) = t



x 1 fi ​ __ ​  sec2 ​ __ ​    ​  ​ dx = dt 2 2

2dt = Ú  ​ _________     ​ t2 + 4t + 1 dt = 2 Ú  ​ _____________      __  ​ (t + 2)2 – (​  ÷ ​ 3 ​     )2​

|  | 

__

(  )

|

(t + 2)  – ÷ ​ 3 ​    ​ ​ ___________   __ ​  ​ + c (t + 2) + ÷ ​ 3 ​   



1 = ___ ​  __  ​  log ​ 3 ​    ÷



(tan(x/2)  + 2) – ÷ ​ 3 ​    1 = ___ ​  __  ​  log ​ _________________ ​       __ ​  ​ + c ​ 3 ​    (tan(x/2) + 2) + ÷ ​ 3 ​    ÷

__

|

245. The given integral is dx dx    ​  =   ​ __________________        ​ Ú  ​ ________ 3cosx + 4 Ú 1 – tan2 (x/2) 3 ​​  ___________        ​ + 4  ​ 1 + tan2 (x/2)

( 

)



(1  + tan2 (x/2)) = Ú   ​ __________________________          ​ dx 4 + 4tan2 (x/2) +  3 – 3tan2 (x/2)



sec2 (x/2) = Ú  ​ ___________       ​ dx tan2 (x/2) + 7

2



 |

|

(1 + tan2 (x/2))dx = Ú  ​ ____________________         ​ 1 + tan2 (x/2) + 4tan(x/2)



|

__





x ​ tan ​ __ ​    ​  ​ + 2  ​  – ​÷3 ​    2 1 = ___ ​  __  ​  log ​ ​ ________________      __ ​ ​ + c x ​ 3 ​    ÷ ​ tan ​ __ ​    ​  ​ + 2  ​ + ​÷3 ​    2



| 

244. The given integral is

x Let tan ​ __ ​    ​  ​ = t 2 x fi sec2 ​ __ ​    ​  ​ dx = 2dt 2





(  ) (  )

 ​

2 tan ​ ​    ​  ​ 2 1 + 2​  ​ __________     ​  ​ x  2 __ 1 + tan  ​ ​    ​  ​ 2 x 2 __ sec  ​ ​    ​  ​ 2 = Ú  ​ ___________________    x    x  ​ dx 2 __ 1 + tan  ​ ​    ​  ​ + 4 tan ​ __ ​    ​  ​ 2 2





( 

dx dx      ​ =   ​ ________________       Ú  ​ _________ x 1 + 2 sin x Ú __

(  )



​ 3 ​     tan x – 1 ÷ 1 __ = ____ ​  __    ​   log ​ ​ __________     ​  ​ + c 2​÷3 ​    ​÷3 ​     tan x + 1



1.69



Let t = tan(x/2)





(  )

x 2dt = sec2 ​ __ ​    ​  ​ dx 2

1.70  Integral Calculus, 3D Geometry & Vector Booster

( 

)



2dt = Ú  ​ _____     ​ 2 t +7



1 1 1 1 = __ ​   ​  Ú  ​ _____ ​     ​  – ​ ______    ​   ​ dt + ​ __ ​  Ú  sec2 (x/2)dx 2 t2 – 1 (t + 1)2 2



t 2 = ___ ​  __  ​  tan–1 ​ ___ ​  __   ​  ​ + c ​ 7 ​    ​÷7 ​    ÷





)

t–1 1 __ 1 1 = ​ __ ​  ​   ​    ​ log ​ ​ ____   ​  ​ + ​ ______      ​  ​ + tan(x/2) + c 2 2 t+1 (t + 1)

tan(x/2) 2 __ ​   = ___ ​  __  ​  tan–1 ​ ​ ______  ​ + c ​ 7 ​    ​÷7 ​    ÷



cos x – 1 1 1 1 = __ ​   ​ ​  __ ​   ​  log ​ ​ ________     ​  ​ + _________ ​       ​  ​ 2 2 cos x + 1 (cosx + 1)

(  )

( 

246. The given integral is dx Ú  ​ _____________       ​ sinx + cosx + 1



dx = Ú  ​ ___________________________          ​ 2tan(x/2) 1___________ – tan2 (x2) ___________ ​        ​+​         ​ + 1 1 + tan2 (x/2) 1 + tan2 (x/2)



(  ) (  ) (  )

x Let tan ​ __ ​    ​  ​ = t 2 x 1 fi ​ __ ​  sec2 ​ __ ​    ​  ​ dx = dt 2 2 x fi sec2 ​ __ ​    ​  ​ dx = 2dt 2



2dt = Ú  ​ _____     ​ 2t + 2

( 

= Ú  dt/t + 1



x = log ​ tan ​ __ ​    ​  ​ + 1  ​ + c 2

| 

(  )

(1 + tan2 (x/2))dx = Ú ​  ____________________         ​ tan2 (x/2) – 4tan(x/2) + 1



sec2 (x/2)dx = Ú  ​ ____________________         ​ tan2 (x/2) – 4tan(x/2) + 1



Let tan(x/2) = t x fi sec2 ​ ​ __  ​  ​ dx = 2dt 2



dt = 2 Ú  ​ _________      ​ 2 t – 4t + 1 dt = 2 Ú  ​ _____________      __  ​ (t – 2)2 – (​  ÷ ​ 3 ​     )2​



|

| 

__

)

|

249. The given integral is

1 + sinx       ​ dx Ú  ​ ____________ sinx(1 + cosx)



dx dx = Ú  ​ ____________       ​ +   ​ _________      ​ sinx(1 + cosx) Ú (1 + cosx)



sin x dx = Ú  ​ _________________        ​+ (1 – cos2x)(1 + cosx)



dt = Ú  ​ ___________       ​ + 2 (t – 1)(1 + t)

(  )

x 1 __ ​   ​  Ú  sec2 ​ __ ​    ​  ​dx 2 2

(  )

x 1 __ ​   ​  Ú  sec2 ​ __ ​    ​  ​ dx 2 2



Let t = cos x



fi dt = – sin x dx



__

(tan(x/2) – 2) – ÷ ​ 3 ​    = log ​ ​ ________________      __ ​  ​ + c (tan(x/2) – 2) + ÷ ​ 3 ​   



247. The given integral is

( 

(  )

(t – 2) – ÷ ​ 3 ​    1 = 2 × __ ​   ​  log ​ ​  __________   __ ​  ​ + c 2 (t – 2) + ÷ ​ 3 ​   



= log |t + 1| + c

)







)

dx = Ú  ​ _________________        ​ 2tan(x/2) 1 – 2​ ___________ ​         ​  ​ 1 + tan2 (x/2)



(1 + tan2 (x/2))dx = Ú​  _________________________________           ​ 1 + tan2 (x/2) + 2tan(x/2) + 1 – tan2 (x/2) sec  (x/2)dx = Ú ​ ___________        ​ 2tan(x/2) + 2

|  | ) |  |

  + tan(x/2) + c 248. The given integral is dx      ​ Ú  ​ ________ 1 – 2 sin x

2



(  ( 

dt = Ú  ​ ___________       ​ + (t – 1)(t + 1)2

(  )

x 1 __ ​   ​  Ú  sec2 ​ __ ​    ​  ​ dx 2 2

dx       ​ Ú  ​ ________________ 3 sin x + 4 cos x + 5



dx = Ú  ​ _________________________________          ​ 2tan(x/2) 1___________ – tan2 (x/2) ___________ 3 ​ ​         ​  ​ + 4 ​ ​      ​  ​+ 5 1 + tan2 (x/2) 1 + tan2 (x/2)

( 

) ( 

)

(1 + tan2 (x/2))dx = Ú  ​ ____________________         ​ tan2 (x/2) + 6tan(x/2) + 9 2dt = Ú  ​ _________     ​ t 2 + 6t + 9 2dt = Ú  ​ ______     ​ (t + 3)2

Let tan(x/2) = t x fi sec2 ​ __ ​    ​  ​ dx = 2dt 2

(  )

Indefinite Integrals 

2 = – ​ ______      ​ + c (t + 3)

dx 1 = ___ ​  __  ​ Ú  ​ _______________       ​ 1__ 1 ​ 2 ​     ___ ÷ ​    ​  sinx + ___ ​  __  ​  cosx ​ 2 ​    ​÷2 ​    ÷



2 = – ​ ___________      ​ + c (tan(x/2) + 3)

dx 1 = ___ ​  __  ​   Ú  ​ _________      ​ p ​ 2 ​     sin ​ x + __ ÷ ​   ​   ​ 4 p 1__ ___ = ​    ​ Ú  cosec ​ x + __ ​   ​   ​ dx 4 ​ 2 ​    ÷



( 

250. The given integral is



dx       ​ Ú  ​ ___________ cos x + cos a dx = Ú  ​ _________________       ​, where k = cos a 2 1 – tan  (x/2) ​ ​ ___________     ​  ​ + k 1 + tan2 (x/2) [1 + tan2 (x/2)]dx = Ú  ​ __________________________          ​ 1 –  tan2 (x/2) + k[1 + tan2 (x/2)]

( 





)

sec2 (x/2)dx = Ú  ​ __________________________         ​ 1 – tan2 (x/2)  + k[1 + tan2 (x/2)]



(  ) (  )

2dt = Ú  ​ ________________      2  ​ 2 (1 – t )  + k(1 + t )

x Let tan ​ __ ​    ​  ​ = t 2 x fi sec2​ __ ​    ​  ​ dx 2 = 2 dt

2dt = Ú  ​ _______________       ​ (1 + k)  + (k – 1)t2



2dt 1 = ______ ​       ​    ​ __________       ​ (1 – k) Ú (1 + k) ______ ​     ​  – t2 (1 – k)



2dt 1 ______ = ______ ​       ​   ​ ___________       ​ – t2 (1 – k) Ú (1 + k) 2 ​​ ​ ​ ______     ​ ​  ​​ ​ (1 – k)

( ÷ 



)

 | | | ÷  ÷ 

______

(1 + k) ​ ​ ______ ​ ​    +t (1 – k) 1 1 ______  ​  ​+ c = ​ ______    ​  × ________ ​  ______      ​log ​ ​ __________ (1 – k) (1 + k) (1 + k) 2​ ​ ______ ​ ​    ​ ​ ______ ​ ​    –t (1 – k) (1 – k)



1 = ____ ​     ​   log sina



| 

÷ 

cot(a/2) +  tan(x/2) ​ ________________ ​        ​  ​ + c cot(a/2) – tan(x/2)

251. The given integral is



)

(  ) x p 1 = ___ ​    ​ log ​ tan ​( __ ​    ​ + __ ​   ​  )​  ​ + c 2 8 | | ​÷2 ​   __



253. We have,

1.71

dx __       ​ Ú  ​ ____________ ​÷3 ​     sinx + cosx dx 1 __ = ​ __ ​  Ú  ​ ______________       ​ 2 ___ ​÷3 ​    1 __ ​   ​  sinx + ​    ​ cosx 2 2 dx 1 _________ __ = ​   ​  Ú  ​       ​ p 2 sin ​ x + __ ​   ​   ​ 6 p 1 = __ ​   ​  Ú  cosec ​ x + __ ​   ​   ​ dx 2 6 p x ___ 1 __ __ = ​   ​  log ​​ tan ​ ​    ​ + ​    ​  ​ ​  ​ + c 2 2 12





( 



| 



)

(  ) (  ) |

257. We have, 2 sin x + cos x = l (3 sin x + 2 cos x) + m(3 cos x – 2 sin x) = (3l – 2m) sin x + (2l + 3m) cos x Comparing the co-efficients of sin x and cos x, we get 3l – 2 m = 2 and 2l + 3 m = 1 On solving, we get, l = 4/5 and m = – 3/ 5 4 3 sin x  + 2 cos x \ ​ __ ​  Ú  ​ _____________     ​ dx 5 3 sin x  + 2 cos x 3 3 cos x  – 2 sin x   + __ ​   ​  Ú  ​ _____________     ​ dx 5 3 sin x  + 2 cos x

( 

)



3 3 cos x –  2 sin x 4 = __ ​   ​  Ú dx – __ ​   ​  Ú  ​ ​ _____________    ​   ​ dx 5 5 3 sin x + 2 cos x



3 4 = __ ​   ​  x – __ ​    ​ log |3 sin x + 2 cos x| + c 5 5

258. We have,



dx       ​ Ú  ​ ______________ tanx  + 4cotx + 4





4sin x cos x = Ú  ​ _______________________         ​ dx sin2x +  4cos2x + 4sin x cos x



2 sin x 1 = __ ​   ​  Ú  ​ __________      ​ dx 2 sin x + cos x



1 (sin x  + cos x) + (sin x – cos x) = ​ __ ​  Ú  ​ _________________________          ​ dx 2 sin x + cos x

252. We have,

dx       ​ Ú  ​ __________ sinx + cosx

sin x       ​ dx Ú  ​ __________ sin x + cos x

1.72  Integral Calculus, 3D Geometry & Vector Booster

1 (1 +  cos x – sin x = __ ​   ​  Ú  ​ _______________        ​ dx 2 sin x + cos x)



1 1 = __ ​    ​ x + __ ​   ​  log |sin x + cos x| + c 2 2

259. The given integral is + 3 cos x _____________     ​ dx Ú  ​ 2 sin x 3 sin x + 4cosx



= (3l – 4m)sin x + (4l + 3m) cos x Comparing the co-efficients of sin x and cos x, we get (3l – 4m) = 2, (4l + 3m) = 3

On solving, we get 18 1 l = ___ ​   ​ , m = ___ ​    ​  25 25



The given integral reduces to 18 1 ___ ​   ​  (3 sin x +  4 cos x) + ___ ​    ​  (3 cos x – 4 sin x) 25 25 Ú  ​ ____________________________________           ​ dx (3 sin x + 4 cos x)

( 

cos x 1      ​ dx = Ú  ​ __________       ​ dx Ú  ​ _______ 1 + tan x sin x + cos x 2 cos x 1 = __ ​   ​  Ú  ​ __________      ​ dx 2 sin x + cos x

1 = ​ __ ​  (x + log |sin x + cos x|) + c 2 263. The given integral is

= l(3 sin x + 4 cos x) + m(3 cos x – 4 sin x)





we have 2 sin x + 3 cos x

1 = __ ​   ​  (x + log |sin x + cos x|) + c 2 262. The given integral is

)

18 1 (3cosx – 4sinx) = Ú  ​ ___ ​   ​ + ___ ​    ​ ​  _____________     ​ ​ dx 25 25 (3sinx + 4cosx) 18 1 = ___ ​   ​  x + ___ ​    ​  log |3 sin x + 4 cos x| + C 25 25



1      ​ dx Ú  ​ _______ 1 – tan x



cos x = Ú  ​ __________       ​ dx cos x – sin x



2 cos x 1 = __ ​   ​  Ú  ​ __________      ​ dx 2 cos x – sin x



1 (cos x  – sin x) + (cos x + sin x) = __ ​   ​  Ú  ​ _________________________          ​ dx 2 cos x – sin x



(cosx + sinx) 1 = ​ __ ​  Ú  ​1 + ​ ___________        ​ ​ dx 2 cosx – sinx



1 = ​ __ ​  (x – log |cos x – sin x|) + c 2

( 

)

264. The given integral is

260. The given integral is

1      ​ dx Ú  ​ _______ 1 + cot x



sin x       ​ dx Ú  ​ __________ sin x – cos x



cos x = Ú  ​ __________       ​ dx sin x + cos x



2 sin x 1 = __ ​    ​ Ú  ​ __________      ​ dx 2 sin x – cos x



2 cos x 1 = __ ​   ​  Ú  ​ __________      ​ dx 2 sin x + cos x



1 (sin x  – cos x) + (sin x + cos x) = __ ​   ​  Ú  ​ __________________________          ​ dx 2 sin x – cos x



1 (cos x +  sin x) + (cos x – sin x) = __ ​   ​  Ú  ​ __________________________          ​ dx 2 sin x + cos x



cos x + sin x 1 = __ ​   ​  Ú  ​1 + ​ __________     ​ ​ dx 2 sin x – cos x



(cos x – sin x) 1 = __ ​   ​  Ú  ​1 + ​ ___________       ​  ​ dx 2 sin x + cos x





1 = ​ __ ​  (x + log |sin x + cos x|) + c 2



cos x       ​ dx Ú  ​ __________ sin x + cos x

265. We have, 3 sin x + 2 cos x + 4 = l(3 cos x + 4 sinx+ 5)



2 cos x 1 = __ ​   ​  Ú  ​ __________      ​ dx 2 sin x + cos x

  + m(– 3 sin x + 4 cos x) + n



1 (cos x + sin x)  + (cos x – sin x) = __ ​   ​  Ú  ​ __________________________          ​ dx 2 sin x + cos x



(cosx – sinx) 1 = __ ​    ​ Ú  ​1  + ​ ___________       ​  ​ dx 2 sinx + cosx

  + (5 l + n) Comparing the co-efficients of sin x and cos x we get 4 l – 3 m = 3, 3 l + 4 m = 2 and 5 l + n = 4

( 

)

1 1 = __ ​   ​  x + __ ​   ​  log |sin x – cos x| + c 2 2 261. The given integral is

( 



)

( 

)

= (4 l – 3 m) sin x + (3 l + 4 m) cos x

Solving, we get

18 1 1 l = ___ ​   ​ , m = – ​ ___  ​,  n = __ ​   ​  25 25 5

Thus,

+ 2 cos x + 4 ________________        ​ dx Ú  ​ 3 sin x  3 cos x + 4 sin x + 5

( 

( 





))

( 

)

x –  tan–1 (4/3) 2 + ___ ​    ​  tan–1 ​ ____________ ​   ​       ​ + c. 2 25

269. We have,

|

271. We have,



dx 2   + ​ __ ​  Ú  ​ ________________       ​ 5 4 sin x + 3 cos x + 5 18 1 = ___ ​   ​  x – ___ ​    ​  log |4 sin x + 3 cos  x + 5| 25 25

| 

1.73

49(sinx  – cosx) – 5 1 = – ​ ___  ​  log ​ _________________ ​        ​  ​ + c 40 4(sinx  – cosx) + 5



18 4 cos x  – 3 sin x 1 = Ú  ​ ___ ​   ​ + ___ ​    ​  ​  ​ ________________       ​  ​  ​ dx 25 25 4 sin x + 3 cos x + 5



Indefinite Integrals 

Ú  (cos x – sin x)(2 + 3 sin x 2x)dx

dx       ​ Ú  ​ ____________ cos x + cosec x dx = Ú  ​ __________       ​ 1 cos x + ____ ​     ​  sin x sin x dx = Ú  ​ ___________      ​ cos x sin x + 1 2 sin x dx = Ú  ​ _____________       ​ 2 cos x sin x + 2



(sin x  + cos x) + (sin x – cos x) = Ú  ​ __________________________          ​ 2cos x sin x + 2



(sinx + cosx) = Ú  ​ ______________       ​ dx 2 cos x sin x  + 2



= Ú  (cos x – sin x)(2 + 3(–1 + 1 + sin 2x))dx



= Ú  (cos x – sin x)(–1 + 3(sin x + cos x)2)dx

(sin x – cos x)   + Ú  ​ _____________        ​  dx 2 cos x sin x +  2 (sin x + cos x) (sin x – cos x) = Ú  ​ ___________         ​ dx + Ú  ​ ___________         ​ dx 2 + sin 2 x 2 + sin 2 x



= Ú  (3t 2 – 1) dt Let t = sin x + cos x



fi dt = (cos x – sin x)dx

3

= (t – t) + c = (sin x + cos x)3 – (sin x + cos x) + c 270. We have,

sin x + cos x        ​ dx Ú  ​ ___________ 9 +  16 sin 2 x



sin x +  cos x = Ú  ​ ___________________         ​ dx 9 + 16(1 –  1 + sin 2x)



sin x + cos x = Ú  ​ ___________________         ​ dx 25 –  16(sin x – cos x)2



Let sin x – cos x = t



fi (cos x + sin x)dx = dt







dt = Ú  ​ ________      ​ 25 – 16t2 dt 1 = – ​ ___  ​  Ú  ​ ________   2   ​ 16 2 5 __ t – ​​ ​   ​   ​​ ​ 4

(  )

 | | |

5 t – __ ​    ​ 1 1 4 = – ​ ___  ​ × _____ ​       ​ log ​ ​ _____  ​  ​ + c 16 5 5 2 × __ ​   ​  t + __ ​    ​ 4 4 4t  – 5 1 = – ​ ___  ​  log ​​ ______   ​  ​ + c 40 4t  + 5

| 

(sin x +  cos x) = Ú  ​ _______________        ​ dx 3 – (sin x – cos x)2

(sin x – cos x)   + Ú  ​ ________________        ​ dx 1 +  (sin x + cos x)2

| 

__

|

(sin x  – cos x) – ÷ ​ 3 ​    1__ __ ​  ​ = – ​ ____    ​   log ​ _________________ ​     2​÷3 ​    (sin x  – cos x) + ÷ ​ 3 ​    –1

  – tan  (sin x + cos x) + c 271. The given integral is dx       ​ Ú  ​ ____________ cos x + cosec x

sin x cos x = Ú  ​ ___________       ​ dx sin x  + cos x



2 sin 2x 1 = __ ​   ​  Ú  ​ __________      ​ dx 4 sin x + cos x



2 2 1 (sin x + cos x)   – (sin x – cos x) = __ ​   ​  Ú  ​ ___________________________            ​ dx 4 sin x + cos x



(sin x – cos x) 1 = __ ​   ​  Ú  ​ (sin x + cos x) – ​ ___________       ​  ​ dx 4 sin x + cos x



1 1 = ​ __ ​ ​  (cos x – sin x) – __ ​   ​  (sin x – cos x)3  ​ + c 4 3

[ 

[ 

]

]

272. The given integral is

Ú  (sin x + cos x)(2 + 3 sin 2 x)dx = Ú  (sin x + cos x)[2 + 3{1 – (1 – sin 2x)}]dx

1.74  Integral Calculus, 3D Geometry & Vector Booster

= Ú  (sin x + cos x)(5 – 3(sin x – cos x)2)dx



Let sin x – cos x = t fi (cos x + sin x)dx = dt



= Ú  (5 – 3t2)dt 3

= (5t – t ) + c = (5(sin x – cos x) – (sin x – cos x)3) + c

273. The given integral is



Ú  (sin x – cos x)(3 – 4 sin 2 x)dx = Ú  (sin x – cos x)(7 – 4(1 + sin 2 x)) = Ú  (sin x – cos x)(7 – 4(sin x + cos x)2)dx = Ú  (cos x – sin x)(4(sin x + cos x)2 – 7)dx



Let sin x + cos x = t fi (cos x + sin x)dx = dt





= Ú  (4t2 – 7)dt



4t3 = ​ ___ ​   ​ – 7t  ​ + c 3

( 

)

( 

)

4(sin x + cos x)3 = ​​ _____________  ​      – 7(sin x + cos x)  ​ + c 3 274. The given integral is



cos x  – sin x       ​  ​ dx Ú  ​( ​ ___________ 3 +  2 sin 2 x )

cos x + sin x = Ú  ​ _________________        ​ dx 1 – 4(sin x  – cos x)2



Let sin x – cos x = t fi (cos x + sin x)dx = dt



dt = Ú  ​ ______     ​ 1 – 4t2



dt 1 = – ​ __ ​  Ú  ​ _________      ​ 4 t2 – (1/2)2



2t – 1 1 = – ​ __ ​  log ​ ​ ______     ​  ​ + c 2 2t  + 1



1 = __ ​   ​  log 2

|  |

| 

|

2(sin x  – cos x) – 1 ​ ​ ________________     ​  ​ + c 2(sin x  – cos x) + 1

276. The given integral is

+  sin x  ​ 2 cos x       ​  ​ dx Ú  ​(____________ 9 +  16 sin 2x )

3 1  ​ __ ​  (cos x  + sin x) + __ ​   ​  (cos x – sin x) 2____________________________ 2 = Ú ​             ​ dx 9 + 6 sin 2x 3 (cos x + sin x) 1 (cos x – sin x) = ​ __ ​  Ú  ​ ___________        ​ dx + __ ​   ​  Ú  ​ ___________     ​dx 2 2 (9 + 6 sin 2x) 9 + 6 sin 2x (cos x + sin x) 3 = __ ​   ​  Ú  ​ __________________        ​ dx 2 15 –  6(sin x – cos x)2 (cos x – sin x) 1   + ​ __ ​  Ú  ​ __________________         ​ dx 2 (3 + 6(sin x  + cos x)2)



(cos x  – sin x) = Ú   ​ ______________        ​ dx 1 + 2(1  + sin 2x)

Let sin x – cos x = t and sin x + cos x = z fi (cos x + sin x) dx = dt and (cos x – sin x) dx = dz



(cos x – sin x) = Ú  ​ _________________        ​ dx 1 +  2(sin x + cos x)2



3 dt dz 1 = __ ​   ​  Ú  ​ _______      ​ + __ ​   ​     ​ ______     ​ 2 15 – 6t2 2 Ú 6z2 + 3



dt dz 1 1 = ​ __ ​  Ú  ​ ______     ​ + __ ​    ​    ​ ______     ​ 2 5 – 2t2 6 Ú 2z2 + 1



dt dz 1 1 __    ​ + __ = – ​ __ ​  Ú  ​ __________   ​   ​  Ú  ​ ______     ​ 4 t2 – ​​( ​÷5 ​   / 2 )2​​ ​ 6 2z2 + 1



__ t – ​( ​÷5 ​    /2 )​ 1 1 __    ​  ​+ ____ = – ​ __ ​  log ​__________ ​  ​  __    ​   tan–1 ​( z​÷2 ​     )​+ C 4    t  + (​  ​÷5 ​    /2 )​ 6​÷2 ​

where

sin x – cos x = t and sin x + cos x = z



Let sin x + cos x = t fi (cos x + sin x)dx = dt

dt = Ú  ​ ______     ​ 1 + 2t2 dt 1 = ​ __ ​  Ú  ​ _________      ​ 2 ___ 1__ 2 2 ​​ ​    ​  ​​ ​ + t ​ 2 ​    ÷ 1__ –1 ( __ ) ___ = ​    ​  tan  ​  t ​÷2 ​     ​+ c ​ 2 ​    ÷ 1__ –1 __ = ​ ___   ​  tan  ​( ​÷2 ​   (  sin x + cos x) )​ + c ​ 2 ​    ÷ 275. The given integral is

(  )



+ sin x __________    ​  ​ dx Ú  ​( ​ cos x 5 – 4 sin 2x )

( 

)

cos x + sin x = Ú  ​​ ___________________         ​  ​ dx 5 –  4(1 – (1 – sin 2x))

| 

__

277. We have,



2

x +  1  ​  4  ​    dx Ú  ______ x +  1

( 

)

1 ​1 + __ ​  2  ​   ​ x = Ú  ​ _______   ​ dx 1 2 x + __ ​  2  ​  x

|

Indefinite Integrals 

( 

)

1 ​ 1 + __ ​  2  ​   ​ x = Ú  ​ ______________       ​ dx 1 2 1 ​​ x – __ ​ x ​  ​​ ​ + 2 ◊ x ◊ ​ __ x ​



( 

)

( 

)



1 Let ​ x – __ ​ x ​  ​ = t



1 fi ​ 1 + __ ​  2  ​   ​ dx = dt x

( 

​  dt __    ​ Ú  _________ 2 ( )2

=



t 1 = ___ ​  __  ​  tan–1 ​ ___ ​  __   ​  ​ + c ​ 2 ​    ​÷2 ​    ÷



1 1 1 = ___ ​  __  ​  tan–1 ​ ___ ​  __  ​ ​  x – __ ​ x ​  ​  ​ + c ​ 2 ​    ​÷2 ​    ÷

( 

))

( 

)

Ú  tan–1 ​( x – __​ 1x ​ )​ – __​ 23 ​  tan–1 (x3) + c

2

–  3x +   1  ​ dx Ú  ​ x__________ 4 2 x  + x + 1

(x2 – x + 1) –  2x

x + __ ​  2  ​  x

=

​  dx     ​ – Ú  _________ ​  2x     ​ dx Ú  ________ 2 4 2

=

dx  ​     ​  dt     ​ Let x2 = t __  ​, Ú  ________ Ú  ______________ 2 2 ​ 3 ​    2

(  )

1 ​ 1 – __ ​  2  ​   ​ x = Ú  ​ ______________       ​ dx 2 1 1 ​​ x + __ ​ x ​  ​​ ​ – 2 ◊ x ◊ ​ __ x ​

( 

)

( 

)

1 Let ​ x + __ ​ x ​  ​ = t 1 fi ​ 1 – ​ __2  ​   ​ dx = dt x

(  )



t  – ÷ ​ 2 ​    1 __  = ____ ​  __    ​   log ​ ​ ______  ​  ​ + c 2​÷2 ​    t  + ​÷2 ​   



__ 1 __ ​ x + ​    ​  ​  – ​ 2 ​    ÷ x 1 = ____ ​  __    ​   log |​ ​ ____________   __ ​  ​ + 1 2​÷2 ​    ​ x + __ ​ x ​  ​  + ÷ ​ 2 ​   

|  | __

 | | (  ( 

279. We have,

) )

(x2 – x +  1) x + x  + 1

x +x+1

x +x +1

x +x +1

(  ) (  )

t  + t + 1

fi 2x dx = dt

(  ) (  )



1 1 x + __ ​   ​  t + __ ​   ​  2__ –1 _____ 2 2 2 –1 _____ ___ ___ = ​    ​  tan  ​ ​  __  ​    ​ + ​  __  ​  tan  ​ ​  __  ​    ​ + c ​ 3 ​    ​___    ​÷3 ​    ​___    ÷ ÷3 ​ ÷3 ​ ​   ​  ​   ​  2 2



2x __ +1 2 = ___ ​  __  ​  tan–1 ​ ​ ______  ​    ​ + ​ 3 ​    ​÷3 ​    ÷



2x +__ 1 2x2 __ +1 2 2 = ___ ​  __  ​  tan–1 ​ ​ ______  ​    ​ + ___ ​  __  ​  tan–1 ​ ​ ______  ​    ​ + c ​ 3 ​    ​÷3 ​    ​÷3 ​    ​÷3 ​    ÷

(  ) (  )

( 

)

2t +__ 1 2 ___ ​  __  ​  tan–1 ​ ​ _____  ​    ​ + c ​ 3 ​    ​÷3 ​    ÷

( 

)

281. We have,

4

(x2 + 1)2  – 2x2 = Ú  ​ _____________     ​ dx   6 x + 1 (x2 + 1)2 –  2x2 = Ú  ​ _________________        ​dx (x2  + 1)(x4 – x2 + 1) (x   + 1)

2

(x   – x + 1)

x +1

​        ​ dx – 2 Ú  _____ ​  x      ​ dx Ú  ___________ 4 2 6

(  ) ÷  2

dx – x ___________    ​  ​ ​  __________       ​ Ú  ​ ​ 1 1 _____ 2 4 + x2 ​ 1 + x   +   x  ​

(  ) ) ÷  (  (  ) ) ÷(   



1 – x2 ​ 1 – __ ​  2  ​   ​ dx x _____________         ​ = Ú  ​ _____________________ 1 1 2 2 __ __ x ​ x + ​ x ​  ​ ​ x  ​ x + ​  2  ​     + 1  ​ ​ x



1 ​ 1 – __ ​  2  ​   ​ dx x ___________ = – Ú  ​ __________________         ​ 1 1 2 __ __ ​ x + ​ x ​  ​ ​ ​ x + ​  2  ​    + 1  ​ ​ x

x +  1

2

x + x +  1

÷ 1 ​​ x + __ ​   ​   ​​ ​ + ​​ ___ ​   ​  ​​ ​ 2 2

​ x +  1 ​    dx Ú  ______ 6

=

( 

   ​ dx Ú  _________ ​  2x     ​ dx Ú  ​ __________ 4 2 4 2





1 ​ 1 + __ ​  2  ​   ​ 2 2 x ​ __________      ​ dx – __ ​   ​  Ú  _____ ​  3x     ​ dx 2 6 3 x +1 1 ​​ x – __ ​ x ​  ​​ ​ + 1

=

= Ú  _________ ​  dt   ​ __   t2 – (​  ÷ ​ 2 ​     )2​



=

(  )   ) ( Ú  

(  )







)

​         ​ dx Ú  _______________ 4 2





=

x +1

=

1 ​  2  ​   ​  ​ 1 – __ x = Ú ​ ________ ​    dx 1 2



( 





2   – 1   ​ dx Ú  ​ x______ 4 x  + 1





1 ​ 1 + __ ​  2  ​   ​ 2 x 2 = Ú   ​ ___________      ​ dx – __ ​   ​  Ú  _____ ​  3x     ​ dx 6 3 x +1 1 ​ x2  + __ ​  2  ​  – 1  ​ x

(x   – x + 1)

280. We have,

278. We have,

=

t + ​  ​÷2 ​     ​

(  )

2

2 ​        ​ dx – __ ​   ​  Ú  _____ ​  3x     ​ dx Ú  ___________ 4 2 6 3



)



(x2  + 1)

1.75

( 

( 

)

)

1.76  Integral Calculus, 3D Geometry & Vector Booster

( 

)

1 dt    = – Ú  _______ ​  _____  ​ Let ​ x + __ ​ x ​  ​ = t 2 t ÷ ​ t  – 1 ​  1 fi ​ 1 – __ ​  2  ​   ​ dx = dt x = cosec–1 (t) + c 1 = cosec–1 ​ x + __ ​ x ​  ​ + c x = sin–1 ​ _____ ​  2      ​  ​ + c x +1 282. We have,

(  )

( 

( 



)

​÷x  +  x    + x ​

(  (  Ú  ( 

)





=

)

)

)

÷(   

)

) ÷(   

)

)

(  ) (  )

( 



​  2 tdt    ​ Ú  _______ 2

) ÷(    ) 1 Let ​( x + __ ​ x ​ + 1 )​ = t

(  )

=

_____ ​  tdt     ​ Ú  ________ 2 2



=

​  v dv    ​ Ú  ________ 2

2





= 2 tan–1 t + c



1/2 1 = 2 tan–1  ​​ x + __ ​ x ​ + 1  ​​ ​ + c



2









​÷x  + 1 ​  

x +1

dx x2 – 1  = Ú  ​ _______    ​ × ___________ ​  __________       ​ 1 1 __ 2 x​ x + ​ x ​  ​ ​ x   ​ x2 +    ​ __2  ​   ​ ​ x 2 dx x – 1 ___________ _________ = Ú  ​      ​ × ​  __________       ​ 1 1 x2  ​ x + __ ​ x ​  ​ ​ x2  ​ x2 +    ​ __2  ​   ​ ​ x

÷  (  ) (  ) ÷  (  )

( 

)

fi 2t dt = 2v dv

​  dv     ​ Ú  _______ 2

(v + 2) v 1 = ___ ​  __  ​  tan–1 ​ ___ ​  __  ​  ​ + c ​ 2 ​    ​÷2 ​    ÷

(  )

(  ) ( ÷  (  ) )



(t + 1)t

dx – 1   ​ × _______ ​  _____     ​ Ú  ​ x_____ 2 4

Let t2 – 2 = v2

(v + 2)v

1 1 1 __ = ___ ​  __  ​  tan–1  ​ ​ ___ ​  __  ​  ​  x2 +   ​  2  ​   ​ ​  ​ + c ​ 2 ​    ​÷2 ​    ÷ x

= Ú  ______ ​  2 dt    ​ (t2 + 1)



t  ​÷t  – 2 ​ 



=

283. We have,

(  )

2 ​  ÷​ t 2 –__ ​  1 = ___ ​  __  ​  tan–1  ​ ​ ______    ​ + c ​ 2 ​    ​÷2 ​    ÷



)

)

284. We have,

1 fi ​ 1 – ​ __2  ​   ​ dx = dt x

( 

=

( 

1 Let ​ x + __ ​ x ​  ​ = t 1 fi ​ 1 – __ ​  2  ​   ​ dx = dt x

___________

1 ​ 1 – __ ​  2  ​   ​ x dx = Ú   ​ ​ __________      ​  ​ × ____________ ​  ___________       ​ 1 1 __ __ ​ x + ​ x ​ + 2  ​ ​ ​ x + ​ x ​ +    1  ​ ​



t​÷t  –  2 ​ 

)

_____

dx x2 –  1  ​ ____________ ​  2      ​  ​ × ____________ ​  ___________       ​ 1 x(x +  2x + 1) ​ ​ x + __ ​ x ​ +    1  ​ ​

(  ( 

dt   ​  ​  ______ Ú  _______ 2





dx x2 – 1 = Ú   ​​ ____________       ​  ​ × ____________ ​  ___________       ​ 1 1 x2  ​ x + __ ​ x ​ + 2  ​ ​ ​ x + __ ​ x ​ +    1  ​ ​



=



)

÷(   



) ÷(   

( 



dx x2 – 1 = Ú   ​​ _______     ​  ​ × _____________ ​  ____________       ​ 1 (x + 1)2 2 ​ x   ​ x + __ ​ x ​   + 1  ​ ​ dx x2 – 1 = Ú   ​​ ________      ​  ​ × ____________ ​  ___________       ​ 2 1 x(x + 1) __ ​ ​ x + ​ x ​ +    1  ​ ​

÷  ( 





)

dx  x ​ x +– 11 ​  )​ × ___________ ​  __________       ​ Ú   ​(_____ 3 2



(  )

1 ​ 1 – __ ​  2  ​   ​ dx x = Ú  ​ _______ ​  × ____________ ​  ___________       ​ 1 1 2 __ ​ x + ​ x ​  ​ ​ ​​ x + __ ​ x ​  ​​ ​   –  2 ​



2

x –  1    ___________ Ú ​ ______________ 3 4 2

 ​dx x  ​÷2x   – 2x    + 1 ​ 2

x    – 1     ​ dx _____________ = Ú ​ ______________ 2 1 3 __ ​ x   ​ 2 – __ ​  2  ​  +    ​  4  ​   ​ ​ x x

) ÷  (  Ú  ) ÷(     ) ( Ú  ) ÷(   (  ( 

x2 –  1     ​ dx ___________ = ​ ______________ 2 1 __ x5 ​ ​ 2 – __ ​  2  ​  +   ​  4  ​   ​ ​ x x 1 1 ​ __ ​  3  ​  – __ ​  5  ​   ​ x x ___________ = ​ ____________        ​ dx 2 1 __ __ ​ ​ 2 – ​  2  ​  +   ​  4  ​   ​ ​ x x

)

2 1 Let ​ 2 – ​ __2  ​  + __ ​  4  ​   ​ = t2 x x 4 4 fi ​ __ ​  3  ​  – ​ __5  ​   ​ dx = 2t dt x x

1 2t dt = __ ​   ​  Ú  ____ ​      ​  t 4 1 = __ ​   ​  × t + c 2 1 2 1 1/2 = __ ​   ​  × ​​ 2 – __ ​  2  ​  – __ ​  4  ​   ​​ ​ + c 2 x x

( 

)

)

Indefinite Integrals 

285. We have,

( 

4



x –1 _________      Ú  ​​ ____________ 2 4 2



=

)

 ​  ​ dx x  ​÷x  + x + 1 ​  

 (   (  ÷

4

x –1 _____________       Ú  ​ ​ ________________ 1

)

 ​  ​ dx x  ​ x  ​ x + __ ​  2  ​     + 1  ​ ​ x 2

2

2

 ( (  ))  ( ( (  ) ) )

)

(  )

÷ 



÷ 



= Ú  ___ ​ t dt   ​  t



=



=t+c



1/2 1 = ​​ x + __ ​  2  ​  + 1  ​​ ​ + c x

Ú  dt

( 







)

2

– 1 ​ dx ​ x   – 3x    Ú  __________ 4 2 x  + x + 1

3 x2 – 1   = Ú ​ _________  ​ dx – __ ​   ​  Ú  _________ ​  2x     ​dx 4 2 x4 + x2 + 1 x + x2 + 1

(  )

1 ​ 1 – __ ​  2  ​   ​ x 3 2x  = Ú   ​ __________       ​ dx – __ ​   ​  Ú  __________ ​      ​ dx 1 2 x4 + x2 +  1 2 __ x + ​  2  ​  +  1 x 1 ​ 1 – __ ​  2  ​   ​ x 3 = Ú ​ ___________       ​ dx – __ ​    ​ Ú  _________ ​  2x     ​ dx 2 x4 + x2 + 1 1 2 __ ​​ 1 – ​ x ​  ​​ ​ –  1





( 

(  ) )

( 

)



1 Put ​ x + __ ​ x ​  ​ = t and x2 = z



1 fi ​ 1 + __ ​ x   ​   ​ dx = dt and 2x dx = dz 2

( 

)

3 ​  dt     ​ – __ ​   ​  Ú  ________ ​       ​ Ú  _____ 2 2 2 dz

t –1

z +z+1

( 

(  ) (  )

÷  ( 

))

÷(  

))

 ​ 1 x2  ​ x + ​ x2 ​ 1 + __ ​  2  ​    ​ ​  ​ x

)

) | ( 

 | |

dx    ​     _________ Ú  _________________

( 

( 

)

( 

1 ​ x + __ ​ x ​  ​ – 1 __ 2(x2) + 1 1 __ __________ __ ​   = ​   ​  log ​​         ​  ​ – ÷ ​ 3 ​     tan–1 ​ ​ ________   ​+ c 2 1 ​÷3 ​    ​ x + __ ​ x ​  ​ + 1

dx     ​ ________________ ​     _______ 1 2 x   ​ x + x ​ ​ 1 + __ ​  2  ​    ​ ​  ​ x 1 = ​ 1 + __ ​  2  ​   ​ = t2 x =

| 

2z + 1 3 t–1 1 2 __ ​   = __ ​   ​  log ​ ​ ____  ​  ​ – __ ​   ​  × ___ ​  __  ​ tan– 1 ​ ​ ______  ​ + c 2 t+1 2 ÷ ​ 3 ​    ​÷3 ​   

 ​ x  ​( x + ÷ ​ 1  + x    ​ )​

(  Ú   ( 

= log |t + 1| – t + c 1 1/2 1 1/2 = log ​ 1 + ​​ 1 + __ ​  2  ​   ​​ ​  ​ – ​​ 1 + __ ​  2  ​   ​​ ​ + c x x

1 ​       ​ – 1 )​ dt Ú  ​( ____ t+1

|  |

)

2

dx  ​     _____ Ú  _____________ 2 2 =



=

286. We have,

=



(  ) (  ) (  )







1 Let ​ x2 + __ ​  2  ​  + 1  ​ = t2 x 2 fi ​ 2x – __ ​  3  ​   ​ dx = 2t dt x 1 fi ​ x – __ ​  3  ​   ​ dx = t dt x



=

287. We have,

1 ​ x – __ ​  3  ​   ​ x ___________ = Ú   ​​ ____________       ​  ​ dx 1 ​  2  ​    + 1  ​ ​ ​ ​ x2 + __ x



​ – t dt  ​ Ú  ____ 1+t





x4 – 1 ​ ​ _____  ​    ​ x3 ____________ = Ú  ​​  ___________       ​  ​ dx 1 2 __ ​ ​ x + ​  2  ​    + 1  ​ ​ x

1.77

( 

288. The given integral is dx ​  4      ​  = Ú ___________ sin x + cos4x

=

4

sec x ​  4     ​ dx Ú ________ tan x + 1

Ú

(1 + tan2x) sec2x ​ ______________        ​ dx tan4x + 1



)

1 Put ​ 1 + __ ​  2  ​   ​ = t2 x 2 fi – ​ __3  ​  dx = 2t dt x dx ___ fi ​  3 ​ = – t dt x



Put tan x = t fi sec2 x dx = dt =

and then solve it. 289. The given integral is

)

2

+1    ​  dt Ú ​ t______ 4 t +1

dx 1 2 ​  4      ​ = __ ​    ​ Ú _______ ​       ​ dx Ú _____ x + 1 2 (x4 + 1)

1.78  Integral Calculus, 3D Geometry & Vector Booster

2 2 1 (x + 1) – (x – 1) = ​ __ ​  Ú ​  _______________     ​    dx 2 (x4 + 1)



1 = __ ​   ​  Ú 2

(x2 + 1) 1 ​ _______    ​   dx – __ ​   ​  Ú 4 2 (x + 1)

x2 – 1 ​ _______    ​  dx (x4 + 1)

and then you do it. 290. The given integral is 2

2

x dx 2x 1 ​  4     ​ = __ ​   ​  Ú _____ ​  4     ​ dx Ú _____ 2 x +1 x +1



2 2 1 (x + 1) + (x – 1) = __ ​   ​  Ú ​  ________________  ​       dx 2 x4 + 1



2

1 (x + 1) 1 = __ ​   ​  Ú ​ _______  ​  dx + __ ​    ​ Ú 2 2 x4 + 1



(  ) 4

=

2



x  ​÷x  + x    + 1 ​ 4

=

x –1 ______________        ​ dx Ú ​ ________________ 1



=

x –1 ____________        ​ dx Ú ​ ______________ 1



=

Ú

÷  (  ÷(  

2

4

)

x3 ​ ​ x2 + __ ​  2  ​  +   1  ​ ​ x 1 x – __ ​  3  ​  x ____________ ​ ____________       ​ dx 1 2 ​ ​ x + __ ​  2  ​  +   1  ​ ​ x

÷(  

) (  ) (  )

1 Put ​ x2 + __ ​  2  ​  + 1  ​ = t2 x



1 ​ x – ​ __3  ​   ​ dx = t dt x

= Ú dt



=t+c



(x2 + 1)2 – 2x2 ​  __________________        ​ dx (x2 + 1)  (x4 – x2 + 1)

Ú

=

3x 2      ​ dx – __ ​   ​  Ú _______ ​  3 2      ​ dx Ú ​ ___________ 4 2 3 (x – x + 1) (x ) + 1



(x2 + 1) 2 ​ ___________      ​ dx – __ ​   ​  tan– 1 (x3) + c 3 (x4 – x2 + 1)



=

(x2 + 1)

÷ 

__________

2

dx dx ​  2       ​ = Ú ___________ ​        ​ Ú __________ 1 3/4 5 __ x  (1 + x4)3/4

( 

dx dx ​  2       ​ = Ú ___________ ​        ​ Ú __________ 5 4/5 1 4/5 6 __ x  (1 + x )

( 

) (  )

x  ​​ 1 + ​  4  ​   ​​ ​ x

( 



= – Ú dt



= – t + c



1 1/5 = – ​​ 1 + __ ​  5  ​   ​​ ​ + c x

( 

296. The given integral is

–1 ​ ___5 ​ dx = t3 dt x = – Ú dt

x ​÷1  + x    ​



)

1 Put ​ 1 + __ ​  5  ​   ​ = t5 x 5 fi – ​ __6  ​  dx = 5t4 dt x 1 fi – ​ __6  ​  dx = t4 dt x

1 Let ​ 1 + __ ​  4  ​   ​ = t4 x

= – t + c

)

x  ​​ 1 + ​  5  ​   ​​ ​ x

and then you do it. 293. The given integral is



)

x2 ​ x2 ​ x2 + __ ​  2  ​    + 1  ​ ​ x

1 = ​ x2 + __ ​  2  ​    + 1 ​ + c x 295. The given integral is

(x + 1) – 2x



)

4



=



( 



       ​ dx Ú ​ _____________ (x6 + 1)

Ú

)

x –1 __________       ​  ​ dx Ú ​ ​ _____________ 2 4 2

(x – 1) ​ _______  ​  dx x4 + 1

x +1 ​  6    ​  ​ dx Ú ​ ______ x +1 2

294. The given integral is

2

and then you do it. 291. The given integral is 2 (x_______________ + 1) – (x2 – 1) 2dx _____ ​       ​  = ​   ​       dx Ú x4 + 1 Ú x4 + 1 2 (x2 + 1) (x – 1) _______ = Ú ​ _______  ​   dx – ​   ​  dx Ú 4 4 x +1 x +1 and then you do it. 292. The given integral is

( 

1 1/4 = – ​​ 1 + __ ​  4  ​   ​​ ​ + c x



( 

)

2

x _____ –1      ​  ​ dx Ú ​ ​ ________ 4

=

(x2 – 1)

_______       ​ dx Ú ​ __________ 1 2 2

÷ 

x  ​ x + __ ​  2  ​ ​   x

)

Indefinite Integrals 



Ú

=

(  )

1 ​ 1 – __ ​  2  ​   ​ x _______ ​ ____________       ​ dx 1 2 ​ ​​ x + __ ​ x ​  ​​  ​ ​ – 2

÷(   

)

( 

)

1 Let ​ x + __ ​ x ​  ​ = t 1 fi ​ 1 –  ​ __2  ​   ​ dx = t4 dt x



( 



Ú



dt ______ ​  _____     ​ 2 ÷​ t  – 2 ​ 

)



=



= log ​ t + ​÷t 2 – 2 ​  ​ + c

_____

| 

| ( 

)

|

÷ 

______

|

1 1 = log ​ ​ x + __ ​ x ​  ​ + ​ x2 + __ ​  2    ​ ​   ​ + c x



Ú

=

÷ 

2 __ ​  2  ​  x 1 = __ ​    ​ Ú __________ ​  __________       ​ dx 2 1 2 __ ​ x + ​  2  ​    + 3 ​ x

) (  )

1 1 ​ 1 + __ ​  2  ​   ​ – ​ 1 – __ ​  2  ​   ​ x x 1 _________ = __ ​    ​ Ú ​  _________________        ​ dx 2 1 2 __ ​ x + ​  2  ​    + 3 ​ x 1 = __ ​   ​   Ú 2

( 

)

(  )

1 1 ​ 1 – __ ​  2  ​   ​ ​ 1 + __ ​  2  ​  ​ x x 1 __________ __________       ​ dx ​ __________      ​ dx – __ ​   ​  Ú ​ ___________ 2 1 1 2 __ ​ x2 + __ ​  2  ​    + 3 ​ ​ x + ​  2  ​    + 3 ​ x x

÷ 

( 

÷ 

)

(  )

1 1 ​ 1 + __ ​  2  ​   ​ ​ 1 – __ ​  2  ​   ​ x x 1 1 ___________ ___________ = __ ​    ​ Ú ​ ____________       ​ dx – __ ​   ​  Ú ​ _____________      ​ dx 2 2 2 1 2 __ ​ ​​ x +  ​​1x    ​ ​ ​​ ​   + 1 ​ ​ ​​ x – ​ x ​  ​​ ​   + 5 ​

÷(    ) 1 1 = __ ​   ​  log ​ ​( x – __ ​ x ​ )​ + ​ x  2 ÷

| 

÷(   

__________ 2

|

1 + __ ​  2  ​    + 3 ​  ​ x

298. The given integral is

)

(  )

)



1 fi ​ 1 –  ​ __2  ​   ​ dx = dt x

( 



dt = – Ú _______ ​  _____      ​ 2 t​÷t  + 3 ​  



t dt = – Ú ________ ​  _____     ​ 2 2 t÷ ​ t  + 3 ​  

)

Let t2 + 3 = v2 fi 2t dt = 2v dv



v dv = – Ú ________ ​  2   ​  (v – 3)v



dv = – Ú _______ ​  2      ​ (v – 3)



v– ÷ ​ 3 ​    1__ __  = – ​ ____    ​ log ​_______ ​   ​   ​+ C 2​÷3 ​    v+÷ ​ 3 ​   



​÷t 2 + 3 ​  – ÷ ​ 3 ​    1__ _____    = – ​ ____    ​ log ​​ ___________    __ ​  ​ + c 2 2​÷3 ​    ​÷t  + 3 ​  + ÷ ​ 3 ​   



__ 1  ​ x2 + __ ​  2  ​    + 1 ​ – ​÷3 ​    x 1__ ____ ________________ = – ​     ​ log​ ​  _________      __ ​  ​ + c 2​÷3 ​    1 2 __ ​ x + ​  2  ​    + 1 ​ + ÷ ​ 3 ​    x

|  |

( 

)



__

_________

|

|

dx –1   ​ )​ × ___________ ​  ___________       ​ Ú ​( ​ x_____ x    4 2 2

​÷x  + 3x    + 1 ​

=



=

(  )   ÷ Ú (  ) (  

dx 1 ​  2  ​   ​ × __________ ​  __________       ​ Ú ​ 1 – __ 1 x 2

​ x + __ ​  2  ​    + 3 ​ x dx 1 ​ 1 – __ ​  2  ​   ​ × ____________ ​  _______       ​ 1 2 x ​ ​​ x + ​ __   ​  ​​ ​ ​ + 1 x  

| ( 

÷

)

÷ 

)

__________

|

1 1 = log ​ ​ x + __ ​ x ​  ​ + ​ x2 + __ ​  2  ​    + 3 ​  ​ + c x

300. The given integral is

2

​÷x  + x    + 1 ​

 |

_____

÷  ÷ 





dx +1    ​   ​ × ___________ ​  __________       ​ Ú ​ ​ x______ 2 4 2 1–x

| 

299. The given integral is



1 1 – ​ __ ​  tan–1 ​ x + __ ​ x ​  ​ + c 2



( 

1 Let ​ x – __ ​ x ​  ​ = t

__

x  ​ x + __ ​  2  ​    + 3 ​ x

÷ 

)



dx ​  __________       ​ Ú ____________ 1 2 2

( 

) ÷(   

( 



dx  ____________ ​  __________       ​ 4 x ​÷x  + 3x2   + 1 ​

÷ 

)

1 ​ 1 + __ ​  2  ​   ​ x dx = – Ú ​ _______   ​ × ____________ ​ __________       ​ 1 1 2 __ ​ x – ​ x ​  ​ ​ ​​ x – __ ​ x ​  ​​   ​ + 3 ​



297. The given integral is

( 

1.79

xx(x2x + 1) (ln x + 1)

    ​    dx Ú ​ _________________ (x4x + 1)



Let xx = t



fi xx(1 + ln x) dx = dt

1.80  Integral Calculus, 3D Geometry & Vector Booster



=

=

2

t +1 ​  4    ​ dt Ú ______ t +1

(Ú   )

1 ​ 1 + __ ​  2  ​   ​ t ​ _______ ​    dt 1 2 t + __ ​  2  ​  t

Ú

=

x ​        ​ dx Ú __________ (1 + x2)1006



=

x ​        ​ dx Ú ______________ 1 1006 2012 __



(  )

1 ​ 1 + __ ​  2  ​   ​ t ​ __________       ​ dt 1 2 __ ​​ t – ​   ​   ​​ ​+ 2 t

=



1 1 1 = ___ ​  __  ​ tan– 1 ​ ___ ​  __  ​ ​  t – __ ​   ​   ​  ​ + c t ​ 2 ​    ​÷2 ​    ÷



1 1 = ___ ​  __  ​ tan– 1 ​ ___ ​  __  ​  (x x – x– x)  ​ + c ​÷2 ​    ​ 2 ​    ÷

(  )

=

(  (  ) ) (  )

2



=



1 1 ​ __ ​  3  ​  – __ ​  5  ​   ​ x x ____________ ​  ___________        ​ dx 2 1 __ __ ​ ​ 2 – ​  2  ​  +   ​  4  ​   ​ ​ x x

1 = __ ​   ​  Ú 2 1 = __ ​    ​ Ú 2 1 = __ ​   ​  t 2

dt 1 = – ​ __ ​  Ú ____ ​    ​  2 t1006



t– 1005 1 = – ​ __ ​  × ______ ​     ​  +C 2 – 1005



1 = __________ ​       ​ + C 2010 × t1005

÷ 

__________









( 

2009

(2x + 1) dx

=

(2x + 1) dx

       ​ Ú ​ _______________ 4 __ 1 3/2 3 __

( 

)

)

x  ​​ 1 + ​ x ​ + ​  2  ​   ​​ ​ x

2x4 – 2x2 + 1 = ​ ​ ____________  ​ ​         +c 2x2 x ​        ​  ​ dx Ú ​ __________ (1 + x2)1006

)

       ​ Ú ​ _____________ (x2 + 4x + 1)3/2

4 __ ​  4  ​   ​ dx = 2t dt x



302. The given integral is

( 

303. We have,

1 2 1 __ = __ ​   ​  ​ 2 – __ ​  2  ​  +   ​  4  ​ ​  + c 2 x x

÷ 

1 = ​ _________________      ​ + C 1 1005 __ 2010 × ​​ 1 + ​  2  ​   ​​ ​ x



=

Ú

1 2 __ ​  2  ​  + __ ​  3  ​  x x       ​ dx ​ _____________ 4 __ 1 3/2 __ ​​ 1 + ​ x ​ + ​  2  ​   ​​ ​ x

( 



)

( 

)

( 

1 __ ​  3  ​   ​ dx = – t dt x

4 1 Let ​ 1 + __ ​ x ​ + __ ​  2  ​   ​ = t2 x 4 2 fi – ​ __2  ​  – __ ​  3  ​ dx = 2t dt x x



+c

(  )

1 Let ​ 1 + ​ __2  ​   ​ = t x 2 __ fi – ​  3  ​  dx = dt x dx ___ dt ___ fi ​  3 ​ = ​    ​  – 2 x





dt

)



tdt ___ ​     ​  t

____________



1 __ ​  4  ​   ​ = t2 x

1 1 1 fi ​ __ ​  3  ​  – __ ​  5  ​   ​ dx = __ ​   ​  tdt 2 x x





) ÷(     ) ( Ú ) ÷(   (  ) (  ) (  ) __ x5 ​ ​ 2 – __ ​  2  ​  +   ​  4  ​  ​ ​ x x

4 fi ​ __ ​  2  ​  – x





(x – 1)

____________       ​ dx Ú ​ ______________ 2 1

2 Let ​ 2 – __ ​  2  ​  + x



( 



x2 – 1 ____________        ​ dx Ú​ _______________ x3 ​÷2x   4 – 2x2    + 1 ​ =

Ú

)



301. The given integral is



( 

2009

 ​​ 1 + ​  2  ​   ​​ ​ x dx ____________ ​        ​ 1 1006 3 x  ​​ 1 + __ ​  2  ​   ​​ ​ x x





2009



2 fi ​ __ ​  2  ​  + x t dt = – Ú ​ ___  ​  t3 dt = – Ú __ ​  2 ​  t 1 = ​ __ ​  + c t

)

Indefinite Integrals 

304. We have,

Ú

1 = __________ ​  __________      ​ + c 4 __ 2 ​ 1 + __ ​ x ​ +   ​  2  ​ ​  x

÷ 

( 

____

____

)

​ cot x    ​ – ​÷tan x    ​  ÷ ​ ​ ____________        ​  ​ dx 1 + 3 sin 2x



=

1 – tan x 1 ​  ____    ​ ​       ​  ​ dx Ú _____ ( ​ _____________ 1 + 6 sin x cos x ) ​÷tan x    ​ 

(  ( 

)



=

1 – tan x 1 ​  ____    ​ ​ ​ _____________      ​  ​ sec2x dx Ú _____ ​÷tan x    ​ sec2x + 6 tan x



=

1 – tan x 1 ​  ____    ​ ​ ​ ________________       ​  ​ sec2x dx Ú _____ ​÷tan x    ​ tan2x + 6 tan x + 1



=

1–t   ​   ​ 2t dt Ú __​ 1t ​ ​  ​ _________ t4 6t2 + 1

(  Ú ( 

)

2

2

)

(  )

1 __ ​  2  ​  – 1 t = 2 Ú ​ ​ _________      ​  ​ dt 1 2 t + __ ​  2  ​  + 6 t 1 __ ​  2  ​  – 1 t _______ = 2 Ú ​ ​       ​+ 4  ​ dt 12 ​​ t + __ ​   ​   ​​ ​ t dz 1 = 2 Ú ​ _____ ​  2      ​  ​ Let z = ​ t + __ ​   ​   ​ t z +4 1 2 fi dx = ​ 1 – __ ​  2 ​   ​dx t z 1 = 2 × __ ​   ​  tan– 1 ​ __ ​    ​   ​ + c 2 2

( (  ) ) (  )

(  )

( 

305. We have,

=

2t  dt ​  4      ​ Ú _____ t +1

=

 ​       Ú ​  _________________ t4 + 1

=

 ​     + Ú _________ ​  4  ​     Ú ​ ________ t4 + 1 t +1

2

(t2 – 1) + (t2 + 1) dt (t2 – 1) dt

(t2 + 1) dt

=

(Ú   )

(  )

=

(Ú   )

  ) ( Ú

1 1 ​ 1 – __ ​  2  ​   ​ dt ​ 1 + __ ​  2  ​   ​ dt t t ​ _________  ​    + Ú ​  _________  ​     1 1 2 __ t + ​  2  ​  t2 + __ ​  2  ​  t t

1 ​ 1 – __ ​  2  ​   ​ dt t ___________ ​         ​ + 1 2 __ ​​ t + ​   ​   ​​ ​ – 2 t

1 ​ 1 + __ ​  2  ​   ​ dt t ​  __________        ​ 1 2 __ ​​ t – ​   ​   ​​ ​ + 2 t

(  )

(  )

 | |  

( (  ) )

(  ) (  )

__ 1 1 ​ t + ​ __ ​   ​ – ​÷2 ​    ​ t – ​ __ ​   ​ t t 1 1 – 1 ___ ______ __ ​   = ____ ​  __    ​ log ​ ​ ___________        ​ + c __ ​  ​ + ​  __  ​ tan  ​ ​  1 2​÷2 ​    ​ 2 ​     ​ 2 ​     ÷ ÷ __ ​ t + ​   ​   ​ + ​÷2 ​    t

 | | ( ( 

) )

__ 1 ​ x2 + __ ​  2  ​   ​ – ​÷2 ​    x 1 = ____ ​  __    ​ log ​ ​  _____________       __ ​  ​ 1 2 2​÷2 ​    __ ​ x + ​  2  ​   ​ + ÷ ​ 2 ​    x

(  ) ) ( 

1 ​ x2 – __ ​  2  ​   ​ x 1 __  ​ tan–1 ​ ​ ________ __ ​   + ​ ___   ​+ c ​ 2 ​    ​÷2 ​    ÷

306. We have,

= tan–1





(  )

(  ) 1 1  ​( __ ​   ​ ​ ( t + __ ​   ​  )​ )​ + c t 2



t ◊ 2t dt ​  4    ​ Ú ______ t +1

)

1–t = 2  ​ ​ __________       ​  ​ dt t4 + 6t2 + 1



=

1.81



)

____ 1 ____ = tan–1 ​ __ ​   ​ ​ ÷ tan x ​ + ÷ ​ cot x    ​  ​ + c 2



____



  ​   dx Ú ​÷tan x 



Put tan x = t2









____

____

  ​ – ​÷cot x    ​) dx Ú (​÷tan x 

(  ) tan x – 1 = Ú ​( ​ _______ ​     ​ dx ​ tan x ​ ) =

____

1   ​ – _____ ​  ____    ​   ​ dx Ú ​ ​÷tan x  ​÷tan x    ​  ____   ÷ 



Put

tan x = t2

sec2x dx = 2t dt





sec2x dx = 2t dt

2t dt dx = _____ ​  2      ​ sec x





2t dt dx = _____ ​  2      ​ sec x



2t dt = ________ ​      ​ 1 + tan2x





2t dt = ________ ​      ​ 1 + tan2x



2t dt = _____ ​      ​ 1 + t4





2t dt = _____ ​      ​ 1 + t4

 | |  

1.82  Integral Calculus, 3D Geometry & Vector Booster

=



= =





=



=

(  ) Ú (  ) Ú (  ) 2

t –1 ​  4    ​   ​ 2t dt Ú ​ ______ t +1

Ú

Ú

(  )

1 1 – __ ​  2  ​  t ​ ​ __________       ​  ​ dt 2 1 __ ​​ t + ​   ​   ​​ ​ – 2 t

=

1 1 – __ ​  2  ​  t ​ ​ _____     ​  ​ dt 1 2 t + __ ​  2  ​  t

311.

 |( )|  



Ú

( 

____ ​ ​÷cot x    ​ –



)

1 ____ ​ _____    ​   ​ dx = ​ cot x    ​   ÷

__

____

2t dx = – ​ ______    ​  dt 1 + t4





|



= 2x + 2

2





( 

t2 + 1 = 2x + 2 Ú ​ ______ ​  4    ​  ​ dt Let tan x = t2 t + 1 fi sec2 dx = 2t dt

2

– cosec x dx = 2t dt



____

+1 ________ ____ ​    + 2  ​ dx Ú ​ ​ tan x ​÷tan x    ​ 

)

Let cot x = t

=

____

2t ​   4 ​  dt Ú ​( t 2 – __​ 1t ​  )​ × ______ 1+t

(  ) 2

t –1 = 2 Ú ​ ​ ______    ​   ​ dt t4 + 1

(  )

1 1 – __ ​  2  ​  t = 2 Ú ​ ​ _____     ​  ​ dt 1 t2 + __ ​  2  ​  t

( (  ) )

1 1 – __ ​  2  ​  t = 2 Ú ​ ​ ___________       ​  ​ dt 1 2 __ ​​ t + ​   ​   ​​ ​ – 2 t

 | | (  )

__ 1 ​ t + __ ​   ​   ​ – ​÷2 ​    t 1 = 2 × ___ ​  __  ​ log ​ ​ ___________       __ ​  ​ + c 1 ​÷2 ​    t + __ ​   ​  + ÷ ​ 2 ​    t

(  )

2t fi dx = _____ ​   4   ​dt 1+t

Ú

1 1 + __ ​  2  ​  t ​ ​ _____     ​  ​ dt 1 t2 + __ ​  2  ​  t

Ú

1 1 + __ ​  2  ​  t ​ ​ __________       ​  ​ dt 1 2 __ ​​ t – ​   ​   ​​ ​ + 2 t

cot x – 1 ​  ____ ​     ​ dx Ú ​ ________ ​÷cot x    ​ 





____

  ​ + ​÷cot x    ​ + 2) dx Ú (​÷tan x 

= 2x + 2

( 

|

(  )

(​÷tan x    ​ + ​÷cot x    ​) – ÷ ​ 2 ​    1 __ ​  ​ + c = ____ ​  __    ​ log ​ ​ ___________________         ____ ____ 2​÷2 ​    (​÷tan x    ​+ ÷   ​ cot x    ​) + ÷   ​ 2 ​   

307. Do yourself

__

____   ÷ 



|

____

) +1 = 2x + Ú ​(________  ​ tan x  ​     ​ dx ​ tan x ​ )

(  ) (  ) ____

____

____

4   ​ + ​÷ cot x    ​) 2 dx Ú (4​÷tan x 

=

( (  ) )

|

__

309. Do yourself 310. Do yourself

__ 1 ​ t + __ ​   ​   ​ – ​÷2 ​    t 1 = ____ ​  __    ​ log ​ ​ ​  ___________       __ ​  ​  ​ + c 1 2​÷2 ​    ​ t + __ ​   ​   ​ + ÷ ​ 2 ​    t

308.



(​÷cot x    ​ + ​÷tan x    ​) – ÷ ​ 2 ​    __ ​  ​ + c = ​÷2 ​     log ​​ ___________________         ____ ____ (​÷cot x    ​+ ÷   ​ tan x    ​) + ÷   ​ 2 ​   

2t dt t2 – 1 ____ ​ ​ ______    ​   ​ ​      ​  4 t t +1 t2 – 1 ​ ​ ______    ​   ​ dt t4 + 1

(  )



__ 1 ​ t + __ ​   ​   ​ – ​÷2 ​    t = ​÷2 ​     log ​ ​ ___________       __ ​  ​ + c 1 t + __ ​   ​  + ÷ ​ 2 ​    t __

( (  ) )

(  (  ) )

1 1 1 = 2x + 2 × ___ ​  __  ​ tan–1 ​ ___ ​  __  ​ ​  t – __ ​   ​   ​  ​ + c t ​ 2 ​    ​÷2 ​    ÷

( 

)

__ 1 = 2x + ​÷2 ​     tan–1 ​ ___ ​  __  ​  (tan x – cot x)  ​ + c ​ 2 ​    ÷

312. We have,

2

dx sec x ​  ____     4 ​ = Ú ___________ ​  ____       ​ dx ____ Ú ______________ (​÷sin x      ​+ ÷ ​ cot x    ​)  (​÷tan x    ​ + 1)4



Put tan x = t2



fi dt ​      ​ Ú ______ (t + 1)4



=



4 = – ​ _______    ​  +c (t + 1)3



4 = – ​ ___________  ​ + c ____     (​÷tan x      ​ + 1)3

sec2 x dx = 2t dt

Indefinite Integrals 

Integration by Parts 313. We have,

Ú  x ex dx = x Ú  ex dx – Ú  (1 ◊ ex) dx

1 = x log (x2 + 1) – 2 Ú  ​ 1 – _____ ​    2   ​  ​ dx 1+x



= x log (x2 + 1) – 2(x – tan–1 x) + c



Ú  x sin x dx = x Ú  sin x dx – Ú  (1 – cos x)dx



= x Ú  sin x dx + Ú  cos x dx



= – x cos x + sin x + c



x = tan–1 (x) Ú  dx – Ú  ​ _____      ​ dx 1 + x2 1 = x tan–1 (x) – __ ​   ​  log |1 + x2| + c 2

320. We have,

Ú  x2 sin x dx = x2 Ú  sin x dx – Ú  (2x  – cos x) dx



= – x2cos x + 2 Ú  cos x dx



= – x cos x + 2x Ú  cos x dx – 2 Ú  (1 sin x) dx



= – x2cos x + 2x sin x + 2 cos x + c

2

–x    ​   ​ dx Ú  cos–1 ​​ 1______ 1 + x2



= Ú  (2 tan–1 x) dx



= 2 Ú  tan–1 x dx



1 = 2 ​ tan–1 x Ú  dx Ú  ​ ______ ​    2   ​◊ x  ​ dx  ​ 1+x 



2x 1 = 2 ​ x tan–1 x – __ ​   ​    ​ ______ ​    ​   ​ dx  ​ + c 2 1 + x2



1 = 2 ​ x tan–1 x – __ ​    ​ log |x2 + 1|  ​ + c 2

(  ( 

2

316. We have,

Ú  log x dx = Ú  (log x ◊ 1) dx 1 = log x Ú  dx – Ú  ​ __ ​ x   ​ ◊ x  ​ dx



= log x Ú  dx – Ú  1 ◊ dx



= x log x – x + c



)

__

Ú  ​e​​ x ​​ dx ÷   

Let x = t2 fi dx = 2 t dt

Ú  (log x)2 dx = Ú  {(log x)2 ◊ 1} dx

( 

)



= 2 Ú t et dt



= 2  t Ú  et dt – Ú  (1 ◊ et) dt



 1 = (log x)2 Ú  dx – Ú  ​ 2 log x ◊ ​__  x ​  ◊ x  ​ dx



= 2 (t et – et) + c



= x (log x) – 2 Ú  log x dx + c



​÷x    ​  = 2 (​÷x    ​ ​  e​ ​– e ​ ​÷​ x   ​ ​) + c



= x (log x)2 – 2 (x log x – x) + c

2



Ú  log (x2 + 1) dx = Ú  (log (x2 + 1) ◊ 1) dx 1 = log (x2 + 1) Ú  dx – Ú  ​ _____ ​  2      ​ ◊ 2x ◊ x  ​ dx x +1

( 

(  )

x2 = x log (x2 + 1) – 2 Ú  ​ _____ ​  2      ​  ​ dx x +1

)

__

__

__

322. We have,

318. We have,

) ) ) )

( 



317. We have,

(  Ú ( 

321. We have,

(  )



(  )



315. We have,

Ú  tan–1 x dx = Ú  {tan–1 x ◊ 1}dx



314. We have,

)



319. We have,

= xex – ex + c



( 

1.83

x + sin x    ​   ​ dx Ú  ​(​  ________ 1 + cos x )

x sin x = Ú  ​ ________    ​  dx + Ú  ​ ________   ​  dx 1 + cos x 1 + cos x x x 2 sin ​ __ ​    ​  ​ cos ​ __ ​    ​  ​ 2 2 x ________ ______________ = Ú  ​   x  ​  dx + Ú  ​      ​ dx x   2 cos2 ​ __ ​    ​  ​ 2 cos2 ​ __ ​    ​  ​ 2 2

(  ) (  ) (  ) (  ) x x 1 = __ ​   ​  Ú  x sec  ​( __ ​    ​ )​ dx + Ú  tan ​( __ ​    ​ )​ dx 2 2 2 2

1.84  Integral Calculus, 3D Geometry & Vector Booster

[ 

(  (  ) ) ]

(  )

x x 1 = __ ​   ​  ​ x Ú  sec2 ​ __ ​    ​  ​ dx – Ú  ​ 2 tan ​ __ ​    ​  ​  ​ dx  ​ 2 2 2



(  )

x + Ú  tan ​ __ ​    ​  ​ dx 2 x x x 1 = __ ​   ​ ​  2x tan ​ __ ​    ​  ​  ​ – Ú  tan ​ __ ​    ​  ​ dx + Ú  tan ​ __ ​    ​  ​ dx + c 2 2 2 2

[ 

(  ) ]

(  )

(  )

(  )

x = x tan ​ __ ​    ​  ​ + c 2 323. We have,

( ÷  )



1–x      ​ ​   ​ dx Ú  tan  ​ ​ ​ _____ 1+x



fi dx = – sin q dq

( ÷ 

_________

)

1 – cos q = – Ú  tan  ​ ​ ​ _________     ​   ​ sin q dq 1 + cos q –1

( ÷ 

__________

( 

) ] 4 1 = __ ​ p ​ ​[ q Ú  sin 2q dq + __ ​   ​  Ú  cos 2q dq ]​ – x + c 2 4 – q cos 2q = __ ​ p ​ ​[ ​( ________ ​   ​     )​ + __​ 14 ​  sin 2q ]​ – x + c 2 4 __ 1 1 __ = ​ __ p ​​[ – ​ 2 ​ (q (1 – 2 sin  q)) + ​ 2  ​ sin q cos q ]​– x + c 4 __ 1 1 __ = ​ __ p ​​[ – ​ 2 ​  (sin x (1 – 2x )) + ​ 2 ​  x ​÷1  – x  ​ ]​– x + c 2

–1

_____

2

2



325. We have,

Let x = cos q





______

–1



[ 

cos 2q 4 = __ ​ p ​​ q Ú  sin 2q dq – Ú  ​ 1 ◊ – ______ ​   ​    ​dq  ​– x + c 2

)



2

x      ​ dx Ú  ​ ______________ (x sin x + cos x)2



x cos x = Ú  ​ ____________      ​  ◊ x sec x dx x sin x + cos x x cos x = x sec x Ú ​ ____________      ​ dx x sin x + cos x



2 sin2 (q/2) = – Ú  tan–1 ​ ​ ​ _________      ​ ​  ​ sin q dq 2 cos2 (q/2)





q = – Ú  tan–1 ​ tan ​ __ ​   ​   ​  ​ sin q dq 2

(sec x + x sec x tan x)   – Ú  ​ –  ​ _________________         ​  ​ dx x sin x + cos x



1 = – ​ __ ​  Ú  q sin q dq 2



x sec x = ___________ ​        ​ +   sec x dx + c x sin x + cos x Ú



1 = – ​ __ ​  ​ q Ú  sin q  q – Ú  (1  – cos q) dq  ​ 2



x sec x = ​ ___________       ​ + log |sec x + tan x| + c x sin x + cos x



1 = – ​ __ ​  [– q cos q + sin q] + c 2

326. We have,

(  (  ) )

[ 

( 

]





1 = __ ​   ​  [q cos q – sin q] + c 2



1 = __ ​   ​ ​ [ x cos–1 x – ​÷1  – x2   ​ ]​ + c 2

_____

324. We have, __





( 

( 

)

)



Let x = sin2q



fi dx = sin 2q dq



–1

x tan  x    ​  dx Ú  ​ _________ (1 + x2)3/2



Let x = tan q



fi dx = 2 sec2q dq



tan q a tan–1 (tan q) = Ú  ​ _______________         ​◊ sec2q dq sec3q



= Ú  q cos q dq



= q Ú  cos q dq – Ú (1 . sin q) dq



= q sin q + cos q + c



x 1 _____ = ​ _______      ​ ◊ tan–1 x + ______ ​  ______      ​ + c. 2  ​   – x2 ​  ÷​ 1  + x   ÷​ 1  

__

–1 sin–1 ​÷x     ​ – cos  ​÷x     ​        ​ dx Ú  ​ ________________ –1 __ –1 __ sin  ​÷x     ​ – cos  ​÷x     ​ __ p –1 __ __ sin–1 ​÷x     ​ – ​ ​   ​  – sin  ​÷x    ​   ​ 2 = Ú  ​ _____________________      ​    dx p __ ​   ​  2 p 2 –1 __ __ __ = ​ p ​ Ú  ​ 2 sin  ​÷x     ​ – ​   ​   ​ dx 2 __ 4 = __ ​ p ​ Ú  sin–1 ​÷x     ​ dx – Ú  dx

4 = __ ​ p ​ Ú  sin–1 (sin q) sin 2q dq – x + c 4 = ​ __ p ​ Ú  q sin 2q dq – x + c

)

327. We have,

_____

x ​          ​ ​  ​ dx Ú sin–1 ​( ​÷_____ a  + x )



( ÷ 

Put x = a tan2q fi dx = 2a tan q sec2q dq

__________

=

Ú sin

)

a tan2q  ​ ​ __________ ​          ​  ​ 2a tan q sec2q  dq a +  a tan2q

–1

1.85

Indefinite Integrals 



= 2a Ú sin–1 (sin q) tan q sec2q dq

Let

x = t2 dx = 2t dt



= 2a Ú q  tan q sec2q dq



= 2 Ú t sin t dt



= 2  t Ú  sin t dt + Ú cos t dt + c



= 2 [– t cos t + sin t] + c



= 2 [– ​÷x    ​  cos ​÷x    ​  + sin ​÷x    ​]  + c



Let tan q = t



fi sec2q dq = dt



= 2a Ú t tan–1 t dt



t2 1 __ = 2a ​ tan–1 t  Ú t dt – Ú ​ _____ ​    2   ​  ​ ​   ​  dt  ​ 1+t 2

[  [ 

2

(  ) ] Ú (  )]



t 1 1 = 2a ​ ​ __ ​  tan–1 t – __ ​    ​    ​ 1 – _____ ​    2   ​  ​ dt  ​ 2 2 1+t



= a [t2 tan–1 t – t + tan–1 t] + c



= a [(t2 + 1) tan–1 t – t] + c



= a [(tan2q + 1)q – tan q] + c

[ ( 

__





÷  ÷  ]

x2 1 = log (1 + x)  Ú  x dx – __ ​   ​  Ú ​ ______     ​ dx 2 (x + 1)



2 x2 1 (x – 1)  +  1 = __ ​   ​  log (1 + x) – ​ __ ​  Ú  ​ __________     ​ dx   2 2 (x + 1)



x2 1 1 = __ ​   ​  log (1 + x) – __ ​   ​  Ú ​ x – 1 + _____ ​       ​  ​ dx 2 2 x+1



x2 1 x2 = ​ __ ​  log (1 + x) – ​ __ ​ ​  __ ​   ​ – x + log |x + 1|  ​+ c 2 2 2



x = log (1 + x) Ú dx – Ú ​ _____     ​ dx x+1

( 

)



= x log (1 + x) – (x – log|x + 1|) + c

x –  sin x    ​ dx Ú ​ 1________ – cos x x dx sin x = Ú ​ ________     ​ – _______ ​      ​ dx 1 – cos x Ú 1 – cos x 2 sin (x/2) cos (x/2)

x dx ​     ​  – Ú ________________ ​          ​ Ú _________ 2 sin2 (x/2) 2 sin2 (x/2) dx

=



x 1 = ​ __ ​    Ú  x cosec2 (x/2) dx – Ú cot ​ __ ​    ​  ​ dx 2 2



1 = __ ​   ​  ​   x     cosec2 (x/2)dx + 2 Ú cot (x/2) dx  ​ 2 Ú

(  )

[ 

  – Ú cot (x/2) dx + c 1 = __ ​   ​  (– 2x cot (x/2)) + Ú  cot (x/2) dx 2

  – Ú  cot (x/2) dx + c



__

)

Ú  (sin–1 x)2 dx –1 2x sin  x ______ ​  = (sin–1 x)2 Ú  dx – Ú  ​ ________   dx ÷​ 1  – x2 ​ 



–1 x sin  x ______   = x (sin–1 x)2 – 2  Ú  ​ _______  ​ dx  ​ ÷​ 1  – x2 



= x (sin–1 x)2 – 2 Ú q  sin q dq, Let sin–1 x = q



= x (sin–1 x)2 – 2 Ú q sin q dq



= x (sin–1 x)2 – 2 [q sin q dq + q cos q dq] + c



= x (sin–1 x)2 – 2 [– q cos q dq + cos q]



= x (sin–1 x)2 – 2 [– ​÷1  – x2 ​   sin–1 x + x] + c



= x (sin–1 x)2 + 2  Î​÷1  – x2    ​sin–1 x – x˚ + c

______

333. The given integral is x  –  sin x    ​ dx Ú  ​ ________ 1 – cos x x sin x = Ú  ​ _______      ​ dx – Ú ​ ________     ​  dx 1  –  cos x 1 –  cos x

= – cot (x/2) + c

Ú  sin ​÷x   ​  dx

( 

______

]

330. The given integral is

)

x _____ ​ ______    ​  dx = dq ÷​ 1  – x2 ​ 





( 



329. The given integral is



Ú  x log (1 + x) dx

332. The given integral is

Ú log (1 + x) dx 1 = x log(1 + x) – Ú  ​ 1 – _____ ​       ​  ​ x+1



__



__





__

331. The given integral is

x x x = a ​ ​ __ ​ a ​ + 1  ​ tan–1 ​ __ ​ a ​ ​  – ​ __ ​ a ​ ​   ​ + c 328. The given integral is

)

__



x = Ú  ​ ________  x  ​   dx – 2 sin2 ​ __ ​    ​  ​ 2

(  )

Ú

(  ) (  ) (  )

x x 2 sin ​ __ ​    ​  ​ cos ​ __ ​    ​  ​ 2 2 ______________ ​      ​ dx x   2 sin2 ​ __ ​    ​  ​ 2

1.86  Integral Calculus, 3D Geometry & Vector Booster

(  ) (  ) x x 1 = __ ​   ​ ​ [ x Ú  cosec  ​( __ ​    ​ )​ dx – 1 ◊ ​( – 2 cot ​( __ ​    ​ )​ )​ dx ]​ 2 2 2 x   – Ú cot ​( __ ​    ​ )​ dx 2 x x 1 = __ ​   ​ ​ [ x ​( – 2 cot ​( __ ​    ​ )​ )​ + Ú ​( 2 cot ​( __ ​    ​ )​ )​ dx ]​ 2 2 2 x – Ú  cot ​( __ ​    ​ )​ dx + c 2 x = – x cot ​( __ ​    ​ )​ + c 2

x x 1 = __ ​   ​  Ú  x cosec2 ​ __ ​    ​  ​ dx – Ú cot ​ __ ​    ​  ​ dx 2 2 2 2



334. The given integral is

Ú x sin3x dx cos3x = x Ú sin3x dx – Ú ​ _____ ​   ​   – cos x  ​ dx 3

(  ) )

(  ( 

)

(  ( 



= Ú (2 tan–1 x) dx



= 2 Ú tan–1 x dx



x = 2 ​ tan–1x Ú dx – Ú ​ _____      ​ dx  ​ 1 + x2

]

[ 

]

1 = 2 ​ x tan–1x – __ ​   ​  log ​| 1 + x2 |​  ​ + c 2 338. The given integral is



) )

[ 

x3 sin–1 (x2)

______     ​ dx   Ú  ​ _________ 4

​÷1    –  x    ​

–1 2  (x ) ×  x2 1 2x sin______ = __ ​   ​  Ú   ​ ______________     ​ dx    2  ​ ÷​ 1  – x4 



Let sin–1 (x2) = t 2x ______ fi ​ ______     ​  dx = dt ÷​ 1  – x4 ​ 



cos3x cos3x = x ​ _____ ​   ​   – cos x  ​ – Ú ​ _____ ​   ​   – cos x  ​ dx 3 3





cos3x sin3x 1 = x ​ _____ ​   ​   – cos x  ​ – __ ​    ​ ​ sin x – _____ ​   ​    ​ 3 3 3



1 = __ ​   ​  Ú t sin t dt 2



= Ú [t Ú  sin t dt + Ú  cos t dt] + c

  + sin x + c 335. The given integral is

( 

)

sec 2x  –  1 ​   ​   ​ dx Ú  x ​ _________ sec 2x + 1 1  – cos 2 x = Ú  x ​ _________ ​     ​   ​ dx 1 + cos 2 x

( 



)



= Ú x tan x dx



=





= x  Ú sec2x dx – Ú  tan x dx – x + c



= x tan x – log |sec x| – x + c

336. The given integral is

(  )

2x ​   2   ​  ​ dx Ú  sin–1 ​ 1_____ +x



= Ú (2 tan–1 x) dx



= 2 Ú  tan–1x dx



= 2 ​ tan–1x Ú dx – Ú _____ ​  x     ​ dx  ​ 1 + x2

[  [ 

]

]

1 = 2 ​ x tan–1x – __ ​   ​  log ​| 1 + x2 |​  ​ + c 2 337. The given integral is 2x ​   2   ​  ​ dx Ú tan–1 ​ 1_____ –x

(  )

1 = __ ​   ​  [– t cos t + sin t] + c 2 __________ 1 = ​ __ ​ ​  – sin–1 (– x2) ​÷1  – x4  +    x2 ​  ​ + c 2

[ 

]

339. The given integral is

2

Ú x(sec2x – 1) dx = Ú x sec2x dx – Ú dx





sec x (2  +  sec x)

 ​        ​ dx Ú ______________ (1 + 2 sec x)2



2 cos x + 1 = Ú​ __________       ​ (cos x +  2)2



cos x (cos x  + 2) + sin x = Ú ​ ___________________      ​     (cos x + 2)2



cos x sin x = Ú ​ __________      ​  dx + Ú  ​ __________       ​ (cos x  +  2) (cos x + 2)2



sin x 1 = _________ ​       ​  cos dx – Ú ​ __________       ​ (cos x + 2) Ú (cos x + 2)2

sin x   + Ú ​ __________       ​  (cos x + 2)2 sin x = ________ ​      ​ + c cos x + 2 340. The given integral is

1–x      ​ dx. Ú ​ e_____ x +x (1 + ex)  –  (x + ex) = Ú ​ _______________     ​ dx    (ex + x)

+c

Indefinite Integrals 

( 

)



(1 + ex) = Ú ​ ​ _______    ​ – 1  ​ dx (ex + x)



= log |(ex + x)| – x + c

341. We have,

Here, f (x) = sin x fi f ¢(x) = cos x Thus,

Ú  e  (sin x + cos x) dx = e  sin x + c x

x

342. We have,

x

x e     ​  dx Ú  ​ (x_______ + 1)2

Ú

ex (x  +  1 – 1) ​ ____________     ​  dx (x + 1)2



=



x+1 1 = Ú e x ​ ​ _______      ​ – _____ ​       ​  ​ dx 2 x +1 (x + 1)

( 

343. We have,

)

( 

( 

e x x = ​ _________     ​ + c (1 + x2)1/2

( 

)

2

x +1    ​   ​ dx Ú ex ​​ _______ (x  +  1)2

(  (  ( 

)



x2  –  1 + 2 = Ú  e x ​ ​ _________  ​      ​ dx (x + 1)2



(x  +  1)(x – 1) + 2 = Ú e x ​ ​ ________________     ​     ​ dx (x + 1)2



(x – 1) _______ 2 = Ú e x ​ ​ ______   ​ + ​       ​  ​ dx (x + 1) (x + 1)2



(x – 1) = e x ​ ​ ______   ​  ​ + c (x + 1)



( 

) )

)

)

(  (  ) )

}

ex = __ ​ x ​  + c

347. The given integral is x ​       ​  ​ dx Ú ex ​ (x_______ + 1)2

( 

)

( 

)

sin 2 x 2 = Ú  e x ​ _________ ​       ​ + _________ ​       ​  ​ dx 1 + cos 2 x 1 +  cos 2 x

( 

{ 

1 1 1 ​  2  ​   ​ dx = Ú ex ​ __ ​ x ​ + ​ – ​ __2  ​   ​  ​ dx Ú ex ​ __​ 1x ​ – __ x x



2 +  sin 2 x ​     ​  ​ dx Ú e x ​ _________ 1 + cos 2 x





346. The given integral is

1 1 = – Ú e x ​ _____ ​       ​ – _______ ​       ​  ​ dx x + 1 (x + 1)2 ex = – ​ _____     ​ + c x+1



x 1 = Ú e x ​ _________ ​       ​ + _________ ​       ​  ​ dx (1 + x2)1/2 (1 + x2)3/2



Ú ex [ f (x) + f ¢(x)] dx = ex f (x) + c

)



345. We have,

Ú ex (sin x + cos x) dx

We know that,

( 

1.87

)

( 

)

)



(x + 1)  –  1 = Ú ex ​ __________ ​      ​   ​ dx (x + 1)2



1 1 = Ú ex ​ ______ ​       ​ – _______ ​       ​  ​ dx (x + 1) (x + 1)2



ex = Ú ​ ______     ​ + c (x + 1)

( 

)



2 sin x cos x 2 = Ú  e x ​ ______ ​   2  ​  + _________ ​         ​  ​ dx 2 cos x 2 cos2x



= Ú e x (sec2 x + tan x) dx





= Ú e x (tan x + sec2 x) dx



sin x 1 = Ú ex ​ _______ ​       ​ – _______ ​      ​  ​ dx 1 – cos x 1 – cos x



2 sin (x/2) cos (x/2) 1 = Ú ex ​ _________ ​     ​  – ________________ ​         ​  ​ dx 2 2 sin  (x/2) 2 sin2 (x/2)

x



= e  tan x + c

344. We have,

348. The given integral is

( 

)

+  x + x3  ​   ​ dx Ú ex ​ ​ 1_________ (1 + x2)3/2

( 



)



1 +  x (1 + x2) = Ú e x ​ ​ ____________        ​  ​ dx (1 + x2)3/2



x 1 = Ú e x ​ _________ ​       ​ + _________ ​       ​  ​ dx (1 + x2)3/2 (1 + x2)1/2

( 



)



1  –  sin x ​    ​   ​ dx Ú ex ​{ ________ 1 – cos x }

( 

)

(  ( 

)

)

1 = Ú ex ​ __ ​    ​ cosec2 (x/2) – cot (x/2)  ​ dx 2 1 = Ú ex (cot (x/2) + ​ – ​ __  ​ cosec2 (x/2)  ​ dx 2 x x __ = – e  cot ​ ​    ​  ​ + c 2

(  )

349. The given integral is

( 

)

1.88  Integral Calculus, 3D Geometry & Vector Booster

2 +  sin 2 x ​     ​  ​ dx Ú  ex ​{ _________ 1 + cos 2 x }



( 

)

ex = _______ ​      ​ + c (x + 1)2

sin 2 x 2 = Ú  e x ​ _________ ​      ​ + __________ ​       ​  ​ dx 1 +  cos 2 x 1 + cos 2 x 2 sin x cos x 2 = Ú  e x ​ ______ ​   2    ​ + _________ ​         ​  ​ dx 2 cos  x 2 cos2 x

354. The given integral is 1 1 ​       ​ – ______ ​     ​   ​ dx Ú ​ ____ log x (log x)2



= Ú  e x (sec2x + tan x) dx





= Ú  e  (tan x + sec  x) dx



= e x tan x + c



( 



)



x

( 

( 

)

)

2 – 1)  +  2 x2 + 1 x _______ x (x __________ e  ​ ​       ​  ​  d x = e  ​ ​   ​   ​ dx Ú  (x + 1)2 Ú  (x + 1)   2

( 

)

( 

)

(x – 1) = e  ​ ​ ______   ​  ​ + c (x + 1) x

351. The given integral is

log x __________       ​ dx Ú ​ (1 + log x)2 t

t e = Ú  ​ ______     ​ dt (t + 1)2

Let log x = t dx fi dt = ____ ​  log x    ​ e



[(t + 1)  –  1]et = Ú ​ ____________        ​dt (t + 1)2



1 1 = Ú  et ​ ____ ​       ​ + ​ – ​ ______      ​  ​    ​dt t+1 (t + 1)2



[ 

( 

e = ____ ​       ​ + c t+1 x = ________ ​       ​  + c log x + 1

Ú e x ​( log x + __​ 1x ​ )​ dx = e x log x + c



( 

)

x–1     ​  ​ dx Ú e  ​​ (x_______ + 1)3

( 

)



(x + 1)  –  2 = Ú ex ​ ​ __________     ​   ​ dx (x + 1)3



1 2 = Ú  ​ ex ​ _______      ​ + ​ – ​ _______      ​  ​  ​ dx (x + 1)2 (x + 1)3

[ 

( 

)]

( 

)

1–x      ​  ​​ ​ dx Ú ex ​​​ ______ 1 + x2 2

(  ( 

)

(1 – x)2 = Ú  ex ​ ​ ________    ​   ​ dx (1 +  x2)2



(1 + x2  –  2x) = Ú  ex ​ ​ ___________        ​  ​ dx (1 + x2)2



– 2x 1 = Ú  ex ​ _______ ​       ​ + ​ _______ ​      ​  ​  ​ dx (1 + x2) (1 + x2)2



ex = _______ ​       ​ + c (1 + x2)

[ 

( 

)

)]

356. The given integral is

–x    ​  ​​ ​ dx Ú  ex ​​( 11​ _____ + x) 2

(  (  ( 

)



(1 – x)2 = Ú ex ​ ​ _______2   ​  ​ dx (1 + x)



(1  +  x2) – 2x = Ú ex ​ ​ ___________     ​   ​ dx (1 + x)2



x2 – 1 –  2 (x – 1) = Ú ex ​ _______________ ​      ​     ​ dx (x + 1)2



2 (x  –  1) x2 – 1 = Ú e x ​ ​ _______     ​ – ________ ​   ​   ​ dx 2 (x + 1) (x + 1)2



2 (x –  1) x2  –  1 = Ú e x ​ _______ ​       ​ – ________ ​   ​   ​ dx 2 (x + 1) (x + 1)2



2(x – 1) x–1 = Ú ex ​ ​ _____ ​     ​  ​ – _______ ​   ​   ​ dx x+1 (x + 1)2

353. The given integral is x

dx fi dt = ____ ​  log x    ​ e



t

352. The given integral is





)]

Let t = log x

355. The given integral is

(x – 1) _______ 2 = Ú  ex ​ ​ ______   ​ + ​       ​  ​ dx (x + 1) (x + 1)2



(  )

}

1 1 = Ú e t ​ __ ​   ​  – __ ​    ​   ​ dt, t t2 et = ​ __ ​  + c t x = ​ ____    ​ + c log x

2

350. The given integral is

{ 



(  (  ( (  ( ( 

)

)

) ) )

) 2 (x  + 1 – 2) x –  1 = Ú e  ​ ​ _____ ​     ​ )​ – ​ ___________     ​   ​ dx x+1 (x + 1) ) 4 = Ú e  ​  ​( ​ _____  ​       ​  ​ dx ( xx +– 31 ​ )​ – (x_______ + 1) ) x

2

x

2

Indefinite Integrals 

( 

)

x–3 = Ú ex ​ _____ ​     ​  ​ + c x+1 357. The given integral is

( 



x +1 _______      ​  ​ dx Ú ex ​ ​ (1 + x)2



(  ( 



x –  1  + 2 = Ú ex ​ ​ _________  ​     ​ dx (x + 1)2



x2 – 1 2 = Ú e  ​ ​ _______     ​ + _______ ​       ​  ​ dx (x + 1)2 (x + 1)2



x–1 2 = Ú e  ​ ​ _____ ​     ​  ​ + _______ ​       ​  ​ dx x+1 (1 + x)2



x–1 = ex ​ _____ ​     ​  ​ + c x+1

x

x

​ Ú ​ecos

( (  )

( 

)

( (  ( 

) ( 

)

)

= esin x (x + sec x) + c

( 

)

1 362. Ú e x  ​ log x + __ ​  2  ​   ​ dx x _____

)



Let cos–1 x = t



dx ______ fi ​ ______     ​ = – dt ÷​ 1  – x2 ​ 

)

{ ( 

( 

)

)}

1 1 __ 1 __ = Ú ex ​ ​ log x – ​ __ x ​  ​ + ​ ​ x ​ + ​ x2  ​   ​  ​ dx 1 = e x ​ log x – __ ​ x ​  ​ + c 1 363. Ú ​ log (log x) + ______ ​    2 ​   ​ dx (log x)

+ 1)  + ​÷1     –  x2 ​)   x (x ______ ​ ​ ​ _______________       ​ ​ dx (x + 1)2 ÷ ​ 1     –   x2 ​ 

(  ( 

))

1 = et ​ sin–1 t + ______ ​  _____    ​   ​+ c  ​ ÷​ 1  – t2 

358. The given integral is

( 

t 1 1 = Ú et ​ ​ sin–1 t + ______ ​  _____      ​  ​ – ​ ______ ​  _____      ​ + ________ ​       ​  ​  ​ dt 2 2 (1 – t2)3/2  ​ ​÷1  – t    ​ ÷​ 1  – t  

)

(  )

–1

fi cos x dx = dt

t = Ú et ​ sin–1 t – ________ ​       ​  ​ dt (1 – t2)3/2

)

2

)

x –  tan x = Ú esin x ​ _______ ​     ​   ​ cos x dx cos2x Let sin x = t



)

2

( 

( 

{ 

)

( 

}

)

1 = Ú  et ​ log t + __ ​  2  ​   ​ dt, t



Let

t = log x



dx dt = ____ ​  logx  .  ​ e



1 +  cos t + sin t = – Ú  et ​ ​ _____________        ​  ​ dt (1 + cos t)2



sin t 1 = – Ú et ​ _________ ​       ​ + _________ ​      ​  ​ dt (1 + cos t) (1 + cos t)2



1 = Ú  et ​ ​ log t – __ ​   ​   ​ + t



et = – ​ _______      ​ + c 1 + cos t



1 = et ​ log t – __ ​   ​   ​ + c t





e​ cos ​  x​ = – ​ _____   ​+ c 1+x

1 = x ​ log (log x) – ​ ____    ​  ​ + c log x



)

–1

359. We have,

Ú e  (2sec x – 1) tan x dx 2

x

= Ú  e x (2 sec2x tan x – tan x) dx = Ú  e x [(sec2x – tan x) + (2 sec2x tan x – sec2x)] dx = Ú e x (sec2x – tan x) + c 360. We have,

Ú ex (log (sec x + tan x) + sec x) dx



= ex log (sec x + tan x) + c 361. We have,

( 

3

)

x cos x  –  sin x Ú e sinx ​ ____________ ​      ​   ​ dx cos2x

1.89

= Ú esin x (x cos x – sec x tan x) dx

( 

[ ( 

)

( 

( 

) ​( __​ 1t ​  + __​ t1  ​  )​ ]​ dt 2

)

)

x4 + 2 364. Ú ex ​​ _________   ​   ​ dx (1 + x2)5/2

( 

)

(1 + x2)2 + 1 – 2x2 = Ú e x ​ ​ ________________        ​  ​ dx (1 + x2)5/2 x 1 = Ú ex ​ ​ _______ ​  _____      ​ – ________ ​       ​  ​ ​ 2 (1 – x2)3/2 ​ ​÷1  + x    ​

( { 

{ 

}

})

x 1 – 2x2  ​ + ​ _________ ​       ​ + ​ _________      ​  ​  ​ dx 2 3/2 (1 + x2)5/2 ​ (1 + x )

( 

)

x 1 = ex ​ _______ ​  ______      ​ + ________ ​       ​  ​ + c 2 3/2 2 ÷​ 1  + x  ​  (1 – x ) esin x (x cos3x –  sin x) 365. Ú  ​ _________________        ​ dx cos2x





= Ú esin x (x cos x – sec x tan x) dx

1.90  Integral Calculus, 3D Geometry & Vector Booster

Let sin x = t fi cos x dx = dt dt dt dx = ____ ​ cos x   ​ = ______ ​  _____     ​   –  t2   ​ ÷​ 1 



( 

)

t = Ú e  ​ sin  t – ________ ​       ​  ​ dt (1 – t2)3/2 t



(  ( 

–1

)

)

1 _____ = et ​ sin–1 t – ​ ______    ​   ​+ c   – t2   ​ ÷​ 1  

(  ( 

( 

)

3

x   –  x – 2 ​  2  ​     ​ dx Ú ex ​ _________ (x + 1)2

)

( { 

}

{ 

})

2

1–x – 2x  ​ + ​ ​ _______      ​ + _______ ​  2  2   ​  ​  ​ dx 2 2 (x + 1) (x + 1) ​

(  ( 

)

x 1 = Ú ex ​ _______ ​  2      ​ + _______ ​       ​  ​ + c (x + 1) (x2 + 1)

)

x+1 = ex ​​ _______   ​   ​+ c (x2 + 1)

368. We have, e2x (sec2x + 2 tan x) dx = Ú e2x (2 tan x + sec2x) dx



= Ú e2x [2 cos x + (– sin x)] dx



= e2x 2 cos x + c

= e  2 tan x + c

( 

(  ) sin 2 x 1 = Ú e  ​( _________ ​       ​ + _________ ​      ​  ​ dx 1 + cos 2 x 1 + cos 2 x ) 1 + sin 2 x = Ú e2x ​​ __________      ​  ​ dx 1 +  cos 2 x 2x

( 

)



2 sin x cos x 1 = Ú e2x ​ __________ ​       ​ + _________ ​         ​  ​ dx 2 1 + 2cos x 2 cos2x



1 = Ú e2x ​ __ ​   ​  sec2x + tan x  ​ dx 2



1 = __ ​   ​    Ú  e2x (sec2x + 2 tan x) dx 2



1 = __ ​   ​    Ú e2x (2 tan x + sec2x) dx 2



e2x 2 tan x = ________ ​   ​   + c 2

( 

)

)

( 

________

)

x – ​ __  ​ ​÷1   – sin x ​   ​e​ 2 ​ ​ _________ ​     ​  ​ dx

Ú

1  +  cos x

( 

)



x – ​ __  ​ cos(x/2) – sin (x/2) = Ú ​e​ 2 ​ ​ ________________ ​         ​  ​ dx 2 cos2 (x/2)



x – ​ __  ​ 1 x x x 1 = Ú ​e​ 2 ​ ​ __ ​   ​  sec ​ __ ​    ​  ​ – ​ __ ​  sec ​ __ ​    ​  ​ tan ​ __ ​    ​  ​  ​ dx 2 2 2 2 2

(  (  ) (  ) (  ) ) x x x 1 1 = Ú ​e​ ​ ​( – ​ __ ​  sec ​( __ ​    ​ )​ + __ ​   ​  sec ​( __ ​    ​ )​ tan ​( __ ​    ​ )​ )​ dx 2 2 2 2 2 x – ​ __  ​ 2

(  )

x – ​ __  ​ x = Ú ​e​ 2 ​ sec ​ __ ​    ​  ​ + c 2



2 sin 4 x  –  4 ​         ​ ​ dx Ú e2x ​ ___________ 1 – cos 4 x

( 

1 + sin 2 x ​     ​  ​ dx Ú e2x ​( 1_________ + cos 2 x )



2x

369. We have,

Ú e2x (– sin x + 2 cos x) dx





Ú e3x (3 sin x + cos x) dx = e3x sin x + c





372. We have,

367. We have,



= e2x cot 2x + c



)

x 1 = Ú  ex ​ ​ ​ _______      ​ + _______ ​  2      ​  ​ ​ 2 (x + 1) (x + 1) ​







x (x2 + 1) + (x2 + 1) + (1 – 2x2) – 2x = Ú e  ​ ________________________________ ​        ​      ​ dx (x2 + 1)2



= Ú e2x (2 cot 2 x  + (– 2 cosec22x)) dx



(x3 + x) + (x2 + 1) + (1 – 2x2) – 2x = Ú ex ​ _______________________________ ​        ​      ​ dx (x2 + 1)2 x



371. We have,

= esin x (x – sec x) + c



)

4 sin 2 x cos 2 x _______ 4 = Ú e2x ​ ____________ ​          ​ – ​  2   ​   ​ dx 2 sin22x 2sin 2x

370. We have,

t 1 1 = Ú et ​ sin–1 t + ______ ​  _____      ​ – ______ ​  _____      ​ – ________ ​       ​  ​ dt 2 2 (1 – t2)3/2 ÷​ 1  – t  ​  ​÷1  – t  ​ 

366. We have,

( 



373. We have,

)

2 sin 4 x 2 = Ú e x ​ _________ ​       ​ – _________ ​       ​  ​ dx 1 – cos 4 x 1 – cos 4 x



Ú e2 x [2 × log (sec x + tan x) + sec x] dx = e2 x (log (sec x + tan x)) + c

1.91

Indefinite Integrals 

= Ú e– 2t sin t dt,

374. We have,

Ú e  sin 3 x dx x



ex = ______ ​  2   2   ​ (1 ◊ sin 3 x – 3 cos 3 x) + c 1 +3 ex = ___ ​    ​   (sin 3 x – 3 cos 3 x) + c 10

375. We have,

Ú  e4x cos 3 x dx e4x = ______ ​  2  2   ​ (4 cos 3 x + 3 sin 3 x) + c 4 +  3



4x

e = ___ ​   ​  (4 cos 3 x + 3 sin 3 x) + c 25



Ú  e2x sin 3 x dx



e2x = ___ ​   ​  (2 sin 3 x – 3 cos 3 x) + c 13

e– 2 log x = ______ ​   ​  [2 sin (log x)     + cos (log x)] + c 5 1 = – ​ ___ 2 ​  [2 sin (log x) + cos (log x)] + c 5x



x x = __ ​    ​ ​÷ 4 – x2 ​  + 2 sin–1 ​ __ ​    ​  ​ + c 2 2

382. We have,

1 dx = 3 Ú  ​ ​​(   __ dx Ú  ​÷1  – 9x  ​  ÷ ​ 3 ​  )​​ ​ – x2 ​   2

(  ÷ 

(  ) x  ​( ___ ​     ​  )​ )​ + c 1/3

(  ÷ 

x 1 1 = 3 ​ __ ​    ​ ​ __ ​   ​  – x2 ​  – ___ ​    ​  sin–1 2 9 18



e = ______ ​      ​ (– cos x + sin x) + c (1 + 1)

383. We have, _____

– x

e = ​ ___ ​  (– cos x + sin x) + c 2



)

1 __ ______ ​   ​  9 x __ x 1 2 __ __ = 3 ​ ​    ​  ​ ​    ​ – x  ​  – ​   ​  sin–1 ​ ___ ​     ​  ​  ​ + c 2 9 2 1/3 ______

– x

______

_____

|​ + c Ú ​÷x  2 + 1 ​  dx = __​ 2x  ​ ​÷ x2 + 1 ​ + __​ 12 ​  log ​| x + ​÷x  2 + 1 ​  

384. We have, _______



Ú e– x cos (3x + 4) dx





e2x = ​ _______     ​ [2 cos (3x + 4) + sin (3x + 4)] + c 3(4 + 1)



379. We have,

  2 + 1 ​  dx Ú  ​÷3x

÷  x 1 1/3 =÷ ​ 3 ​ ​   ( __ ​    ​ ​ x  + ​ __ ​ ​  + ​ ___ ​    log ​ x + ​ x  + ​ __ ​ ​  2÷ 3 2 | ÷ 13  |​ )​+ c ______

__ 1 = ​÷3 ​     Ú  ​ x2 + ​ __ ​ ​   dx 3

Ú  e

x

=



=



=



=

380. We have, 1   ​  sin (log x) dx Ú  ​ __ x3

______ 2





385. We have,

1 __ ​   ​  Ú  ex (2cos2x) dx 2 1 __ ​   ​  Ú  ex (1 + cos 2 x) dx 2 1 __ ​   ​  Ú (ex + ex cos 2 x) dx 2 ex 1 ​ __ ​ ​  ex + __ ​   ​  (cos 2 x + 2 sin 2 x)  ​ + c 2 5

[ 

2



2

cos x  dx

______

__







(  )

________

2



378. We have,



______

x x 4   – x2   ​ dx = __ ​    ​ ​÷ 4 – x2 ​  + __ ​   ​  sin–1 ​( __ ​    ​ )​ + c Ú  ​÷4   2 2 2



Ú e– x cos x dx



_____



_______

377. We have,



e– 2t = ____ ​   ​     (– 2 sin t – cos t) + c 5 e– 2t = – ​ ____  ​     (– 2 sin t + cos t) + c 5

______

e2x = ______ ​      ​ (2 sin 3 x – 3 cos 3 x) + c (4 + 9)



= Ú e– 2t sin t dt

381. We have,

376. We have,

Let t = log x dx fi dt = ____ ​  logx    ​ e

]

______



dx Ú ​÷x  2 – 9 ​   ______

______

| 

|

9 x = ​ __  ​ ​÷x  2 – 9 ​  – __ ​    ​ log ​ x + ÷ ​ x  2 – 9 ​   ​+ c 2 2

386. We have,

_______



  2 – 1 ​   dx Ú ​÷4x

________

÷  (  )



1 2 = 2 Ú ​ x2 – ​​ ​ __ dx x ​  ​​ ​ ​   



x 1/4 1 ___ 1 = 2 ​ __ ​    ​  ​ x2 – ​ __ ​ ​   – ​   ​   log ​ x + ​ x2 – ​ __ ​ ​    ​  ​ + c 2 4 2 4

(  ÷ 

______

| 

÷ 

______

|)

1.92  Integral Calculus, 3D Geometry & Vector Booster

(  ÷ 

_____

1 = ​ x ​ x   – __ ​     ​ ​  – 4



2

| 

÷ 

_____

1 __ ​   ​  log ​ x + ​ x2  – 4

|)

1 __ ​     ​ ​   ​  ​ + c 4

387. We have,

______________



= Ú  ​÷– {(x   – a)2 –   a2} ​ dx



= Ú ​÷a  2 – (x  –   a)2 ​ dx



(x – a) ________2 __ a2 x  –  a = ​ ______  ​   ​÷2ax   – x  ​  + ​   ​  sin–1 ​ _____ ​  a    ​  ​ + c 2 2

___________

__________



+ 3 ​ dx Ú  ​÷x  2  + 2x    _______________ (x2 + 2x + 1)   + 2 ​  dx

= Ú  ​÷ 



=



=

________

Ú ÷ 

|

c

__________

| 

_______________

= Ú  ​÷– (x   2 + 4x –    3) dx ​ = Ú ​÷ 



= Ú  ​÷7  – (x +    2)2 ​  dx

_______



___________



=

dx Ú  ​÷x  – 4x2 ​   

(x + 2) __________ ​ ______  ​  ​    ÷3  – 4x –   x2 ​ + 2

(  )

x+2 7 __ ​   ​  sin–1 ​ _____ ​  __ ​    ​ + c 2 ​÷7 ​   



________________



Ú

=

2

2



fi 2dx = dt

÷(   ) t 1 1 = __ ​    ​  ​ ___ ​     ​ – t  ​ + ___ ​    ​ sin  (4t) + c 4 ÷16 32 1 ​( 2x – __ ​   ​  )​ 4 ___ 1 1 = ​ _______  ​   ​ ​     ​ – ​​( 2x – __ ​   ​  )​​ ​ ÷16 4 4 1 1  ​   + ​ ___  ​  sin  ​[ 4 ​( 2x – __ ​   ​  )​ ]​ + c 32 4

(  2 )

__________ x+1 2 ​ ​ _____  ​    ​ ​÷ x + 2x     +  3 ​

| 

1 1 2 = ​ __ ​  Ú  ​ ​​ __ ​   ​   ​​ ​ – t2 ​   dt 2 4 _______

__________

2

|

388. We have,

–1



_____________ 2

  

__________  ​÷3  – 4x –   x2 ​dx



Ú



= Ú  ​÷– (x   2 + 4x    – 3) ​ dx



= Ú  ​÷– {(x   + 2)2    – 7} ​ dx

–1

____________

_____________

392. We have,

__________ 7 – (x +    2)2 ​ dx



__________



= Ú  ​÷ 



(x + 2) _________2 __ x +__ 2 7 = ​ ______  ​   ​÷3     – 4x – x    ​ + ​   ​  sin–1 ​ ​ _____  ​    ​ + c 2 2 ​÷7 ​   

(  )

389. We have, ________

  – x2 ​  dx Ú  ​÷2ax __________



2

  

________

1   + __ ​   ​    log ​ (x + 1) + ÷ ​ x  2 + 2x    +  3 ​  ​ + c 2



2



______________ __

= Ú ​÷(x   + 1)2 + (​     )  2 ​  dx ÷2 ​



1 2 1 2 __ = Ú ​ ​​ __ ​   ​   ​​ ​ – 4 ​​ x –   ​   ​   ​​ ​ ​  dx 4 8

________

__________  ​÷x  2 + 2x    + 3 ​ dx



÷(   ) (  ) 1 1 = Ú  ​ ​​(   __ ÷ ​ 4 ​  )​​ ​ – 4 ​​( 2x – __​ 4 ​  )​​ ​ ​  dx 1 1 1 = __ ​   ​  Ú ​ ​​(   __ ​    ​  ​​ ​ – t  ​  dt, Let ​( 2x – __ ​   ​  )​ = t 2 ÷ 4) 4 _______________

387. We have,

|

391. We have,

______________ – {(x2 + 2)2    – 7} ​ dx



___________

= Ú ​÷(x   + a)2 –   a2 ​  dx



  x2 ​ dx Ú  ​÷3  – 4x  –  



  + x2 ​    dx Ú  ​÷2ax

(x + a) ________ = ​ ______  ​   ÷ ​ x  2 + 2ax   ​ 2 ________ a2   + ​ __ ​  log ​ (x + a) + ÷ ​ x  2 + 2ax ​   ​+ c 2

388. We have,

)

390. We have,

______________ __   ​ (x + 1)2 + (​     )  2 ​  dx ÷2 ​ __________ log ​ (x + 1) + ÷ ​ x  2 + 2x    + 3 ​  ​ +

| 

( 

= Ú  ​÷– (x   2 – 2ax) ​     dx

+ 4 ​  dx Ú  (2x + 1) ​÷x  2 + 3x    __________ = Ú  ((2x + 3) – 2) ÷ ​ x  2 + 3x    + 4 ​  dx __________ = Ú  ((2x + 3)) ÷ ​ x  2 + 3x    +  4 ​ dx __________   –  2 Ú  ​÷x  2 + 3x    +  4 ​  dx

Let x2 + 3x + 4 = t2 fi (2x + 3) dx = 2t dt

÷(  

___________________

) (  )

9 3 2 = Ú  (2t) t ◊ dt – 2 Ú ​ ​​ x + __ ​   ​   ​​ ​ +    ​ 4 – __ ​   ​   ​ dx ​ 2 4

Indefinite Integrals 

÷(   2 ) (  2 )

= 2 Ú t  dt – 2 Ú ​ 2

__________________ __ ​÷7 ​    2 3 2 __ ___ ​​ x + ​   ​   ​​ ​ + ​​ ​      ​  ​​ ​  dx ​

(  ) [  (  )

_________

__________

_________ 2

__________

)

|]

3 7  ​ + __ ​   ​  log ​ ​ x + __ ​   ​   ​ + ​÷x  2 + 3x    +  4 ​  ​  ​ + c 4 2 ​

[  (  )

395. We have,

__________ 3 __ ​   ​   ​ ​÷ x2 + 3x    +  4 ​ ​

1 – 2 ​ __ ​   ​ ​  x + 2 2

| ( 

_________





__________

)

|]

392. We have, __________

__________

2

__________

= Ú (2x + 3) ÷ ​ x  2 + 3x +    4 ​  dx – 2 Ú  x2 + 3x + 4 dx 2

Let x + 3x + 4 = t

396. We have,

÷(   2 ) (  2 )

_______________ __ ​÷7 ​    2 3 2 ___ ​​ x + __ ​   ​   ​​ ​  + ​​   ​   ​  ​​ ​ ​ dx

(  ) 7 –  ​[ __ ​   ​  log ​ ​( x + __ 4 | ​ 32 ​  )​ + ​÷x 

_________

|]

__________ 2 + 3x    +  4 ​  ​  ​ +

c



_________

1 = __ ​   ​  Ú  (2x – 2 ______ 1 = __ ​   ​  Ú  ((2x + 1) – 11) ÷ ​ x  2 + x ​  dx 2 ______ 1 = __ ​   ​  Ú  (2x + 1) ÷ ​ x  2 + x ​  dx 2

÷(   ) (  )

_____________

11 1 2 1 2   – ​ ___ ​ Ú  ​ ​​ x + __ ​   ​   ​​ ​ –    ​​ __ ​   ​   ​​ ​ ​ dx 2 2 2 and then you do. 394. We have,

÷(   ) (  )

​÷5 ​    2 1 1 2 __   + ​ __  ​ Ú  ​ ​​ ___ ​   ​  ​​ ​ – ​​ x –   ​   ​   ​​ ​ ​dx 2 2 2 and then you do it.

Partial Fractions 397. We have,

 ​ dx Ú  (3x – 2) ​÷x  2 + x +  1 

(  ) 3 4 = __ ​   ​    Ú ​( 2x – __ ​   ​  )​ ​÷ x 2 3

_________



2 = 3 Ú ​ x – __ ​   ​   ​ ​÷ x2 + x + 1 ​   dx 3 _________ 2 + x + 1 ​   dx

(2x + 1)dx

       ​ Ú​ ____________ (x + 2)(x + 3)

(2x + 1) A B fi ​ ____________       ​ = ______ ​       ​ + ​ ______      ​ (x + 2)(x + 3) (x + 2) (x + 3)

_________



1 = – ​ __ ​    Ú  (1 – 2x)  ​÷1     + x – x2   ​ dx 2

_______________ __

______ 10) ​÷x  2 + x ​    dx



1 = – ​ __ ​  Ú (– 2x) ​÷1  + x  –  x2   ​  dx 2 _________ 1 = – ​ __ ​  Ú  ((– 2x) – 1) ​÷1  + x  –  x2   ​  dx 2



______



1 = ​ __ ​  Ú  (2x) ​÷1  +  x  – x2   ​  dx 2



dx Ú  (x – 5)  ​÷x  2 + x ​   



 ​  dx Ú  x ​÷1  + x – x2  _________

393. We have,

_________



__________ 2 (x2 + 3x  + 4)3/2 3 = _______________ ​   ​      – ​ x + __ ​   ​   ​ ​÷x  2 + 3x    + 4 ​ 3 2



2

  

and then you do it.

2

fi (2x + 3) dx = 2t dt

= 2 Ú  t2 dt – 2 Ú ​

_________ 2  

____________

= Ú  (2x + 3 – 2) ​÷x  2 + 3x    + 4 ​  dx



(  ) 3 = 2 Ú  ​( (2x – 1) + __ ​   ​  )​  ​÷ x – x –  2 ​ dx 2 3 = 2 Ú ​( (2x – 1) + __ ​   ​  )​  ​÷ x – x  –  2 ​  dx 2 3   + 3 Ú ​ (x ÷  – 1) – ​​( __​ 2 ​  )​​ ​ ​  dx 1 = 2 Ú ​ 2x + __ ​   ​   ​ ​÷x  2 – x –  2 ​    dx 2



_________ 2  

+ 4 ​ dx Ú  (2x + 1) ​÷x  2 + 3x   



dx Ú (4x + 1) ​÷x  2 – x  –  2 ​   

_________

3 7   ​ + __ ​   ​  log ​ ​ x + __ ​   ​   ​ + ÷ ​ x  2 + 3x    + 4 ​  ​  ​ + c 2 ​ 4





__________________ __ 2 ÷    2   

and then you do.

2 = __ ​   ​  (x2 + 3x + 4)3/2 3

( (  ) ) 3 7 4 = __ ​   ​  Ú ​( ​( 2x + __ ​   ​  )​ – __ ​   ​  )​  ​÷ x +  x  + 1 ​ dx 2 3 3 ​ 3 ​ 7 1   +  ​ __  ​ Ú  ​ ​​(   x + __ ​   ​  )​​ ​ + (​​  ___ ​   ​  )​​ ​  dx ​ 2 ÷ 2 2 3 7 4 = __ ​   ​  Ú ​ ​ 2x + __ ​    ​  ​ – __ ​   ​   ​ ​÷ x2 + x + 1 ​    dx 2 3 3



3 t3 1 = 2 ​ __ ​   ​   ​ – 2 ​ __ ​   ​ ​  x + __ ​   ​   ​ ​÷x  2 + 3x    +  4 ​ ​ 3 2 2 ​

| ( 

1.93



(2x + 1) A(x + 2) + B(x + 3) ​ ____________       ​ = _________________ ​         ​ (x + 2)(x + 3) (x + 2) (x + 3)



2x + 1 = A(x + 3) + B (x + 2)

When

x = – 2, A = – 4 + 1 = – 3

1.94  Integral Calculus, 3D Geometry & Vector Booster and

x = – 3, B = – 6 + 1 = – 5

Thus,

       ​ Ú  ​ ____________ (x +  2)(x + 3)



dx dx = – 3 Ú  ​ _____     ​ – 5  Ú  ​ _____     ​ x+2 x+3



= – 3 log |x + 2| – 5 log |x + 3| + c

dx dx 1 1   + ​ __ ​  Ú  ​ ____________       ​ – __ ​   ​   ​____________         ​ 6 (x +  2) (x + 3) 6 Ú (x  +  1) (x + 2)

(2x + 1)dx



( 

)

1 1 = Ú ​ _____ ​     ​  – _____ ​       ​  ​ dx x  – 2 x – 1



= log |x – 2| – log |x – 1| + c



x–2 = log ​ _____ ​     ​  ​ + c x–1

|  |

dx Ú  ​ _________________        ​ (x  + 1)(x + 2)(x + 3) ((x + 3) – (x + 1)) 1 = __ ​   ​  Ú​  __________________         ​ 2 (x + 1)(x +  2)(x + 3) dx 1 = __ ​   ​  Ú  ​ ____________       ​ – 2 (x  + 1)(x + 2)

dx 1 __ ​   ​  Ú  ​ ____________       ​ 2 (x + 2)(x  +  3)

)

( 

)

|  | |  | | (  ) (  ) |

x+1 x+2 1 1 = __ ​   ​  log ​ _____ ​   ​  ​ – __ ​   ​  log ​_____ ​     ​  ​ + c 2 x+2 2 x+3

) ( 

)|

400. We have, dx Ú  ​ _______________________         ​ (x + 1)(x + 2)(x + 3)(x + 4)

((x + 4) – (x + 1)) dx 1 = __ ​   ​    Ú  ​  _______________________          ​ 3 (x + 1)(x + 2)(x + 3)(x + 4)



dx 1 = __ ​   ​  Ú  ​ __________________        ​ 3 (x + 1)(x  +  2)(x + 3)



(x + 1)  – 2 = Ú ​____________        ​ dx (x + 1) (x – 2)



dx 2 = Ú ​______       ​ –  ​____________        ​ dx (x – 2) Ú (x + 1) (x – 2)



dx 1 1 = Ú ​______       ​ – 6 Ú ​ _____ ​       ​ – _____ ​       ​  ​ dx (x – 2) x–2 x+1



= log |x – 2| – 6 log |x – 2| + 6 log |x + 1| + c



= 6 log |x + 1| – 5 log |x – 2| + c

1 ((x + 4) – (x + 2)) dx = – ​ __ ​    Ú  ​ __________________        ​ 6 (x + 2)(x + 3)(x + 4)

)

2x – 1

       ​  dx Ú​ __________________ (x – 1) (x + 2) (x – 3)



(2x – 1) Now ​ __________________        ​ (x – 1) (x +  2) (x – 3)



(2x – 1) = A (x + 2) (x – 3)



+ B (x – 1) (x – 3) + C (x – 1) (x + 2)

When

x = 1,



x = – 2, then B = –1/3

and

x = 3,

  

then A = – 1/6 then C = 1/2

dx dx dx 1 1 1 – ​ __ ​  Ú ​______       ​ + __ ​    ​  ​______       ​ + __ ​    ​  ​______       ​ 6 (x – 1) 3 Ú (x + 2) 2 Ú (x + 3) 1 1 1 = – ​ __ ​  log |x – 1| + __ ​   ​  log |x + 2| + __ ​   ​  log |x + 3| + c 3 2 6 403. We have,

)

x k 1  ​ _________  n – 1   ​ + 2(n – 1) Ú  ​ _________ ​  2  n –1 ​  – ​ _______      ​  ​ dx 2 2 (x + k) (x + k) (x + k)n dx 1 = __ ​   ​  Ú ​ ____________       ​ – 6 (x +  2) (x + 3)

( 

Thus, the given integral reduces to

dx 1   – ​ __  ​  Ú  ​ __________________        ​ 3 (x + 1)(x  +  2)(x + 3)

( 

x–1

C A B ​ ______     ​ + ______ ​       ​ + ______ ​       ​ (x – 1) (x + 2) (x – 3)

x+3 x  +  1 _____ 1 = __ ​   ​  log ​ ​ _____ ​     ​  ​ ​ ​   ​  ​  ​ 2 x+2 x+2





402. We have,

1 1 1 1 1 1 = __ ​   ​  Ú  ​ _____ ​       ​ – _____ ​       ​  ​ dx – __ ​   ​  Ú  ​ _____ ​       ​ – _____ ​       ​  ​ dx 2 x+1 x+2 2 x+2 x+3



| ( 

      ​ dx Ú​ ____________ (x  + 1) (x – 2)

399. We have,

( 

)|

401. We have,

dx       ​ Ú  ​ ____________ (x –  1)(x – 2)



) ( 

x + 2 _____ x+2 1   + ​ __  ​ log ​ ​ _____ ​   ​  ​ ​ ​   ​  ​  ​ + c x+3 x+1 6

398. We have,

| ( 

x  +  2 _____ x+4 1 = ​ __ ​    log ​ ​ _____ ​   ​  ​ ​ ​   ​  ​  ​ x+3 x+3 6



1 dx  __ ​    ​ Ú ____________ ​      ​ 6 (x +  3)(x + 4)



x3

        ​  dx Ú ​____________ (x –  1) (x – 2) x3 = Ú ​__________  2       ​  dx x   –  3x + 2

(  Ú ( 

)

Indefinite Integrals 

|  | |  |



7x – 6 = Ú ​ x – 3 + ​ __________      ​  ​ dx x2 – 3x + 2



t+2 = log ​ _____ ​     ​  ​ + c t+3



7x – 6 =  ​ x – 3 + ​ ____________       ​  ​  dx (x – 1)(x – 2)

) )



sinq + 2 = log ​________ ​   ​   ​+ c sinq + 3



( 

2

406. We have,

7x – 6 x = __ ​   ​  – 3x Ú ​​ ____________       ​  ​  dx 2 (x – 1) (x – 2)





1.95

(1 – cos x)

       ​ dx Ú​ _____________ cos x (1 + cos x)

7x – 6 A B Now, ​ ____________       ​ = ______ ​       ​ + ​ ______     ​ (x – 1) (x – 2) (x – 1) (x – 2)



(1  +  cos x – 2 cos x) = Ú ​ ________________        ​dx cos x (1  +  cos x)



(7x – 6) = A (x – 2) + B (x – 1)



When

x = 1, then A = –1

dx dx = Ú ​____  cos x    ​ – 2 Ú ​_________        ​ (1 + cos x)

and

x = 2, then B = 8



1  – cos x = Ú sec x dx – 2 Ú ​ ________ ​        ​  ​ dx sin2x



= Ú sec x dx – 2 Ú (1 – cosec2 x – cosec x cost x) dx



= log |sec x + tan x| – 2(cosec x – cost x) + c

( 

Thus, the given integral reduces to

( 

) (  (  )

)

8 x2 –1 ​      ​ + ______ ​       ​  ​ dx ​ __ ​   ​  – 3x  ​ + Ú ​ ______ 2 (x – 1) (x – 2) x2 = ​ __ ​   ​ – 3x  ​ – log |(x – 1)| + 8 log |x – 2| + c 2



2x

  2       ​ dx Ú ​______________ (x + 1) (x2 + 2)

Let x2 = t fi 2x dx = dt Thus, the given integral reduces to

dt 2 Ú  ​___________         ​ (t + 1) (t + 2)

( 

  

407. We have,

404. We have,

)

dx

       ​ Ú ​___________ sin x – sin 2x



dx = Ú ​_______________        ​ sin x  –  2sin x cos x



dx = Ú ​______________         ​ sin x (1 – 2cos x)



sin x dx = Ú ​______________   2       ​ sin x (1 – 2cos x)



sin x dx = Ú ​ ___________________         ​ (1  –  cos2x) (1 – 2cos x)



1 1  ​ – ____ ​       ​  ​  dt = 2 Ú ​ ____ ​      t+1 t+2

)





(t + 1) = 2 log ​______ ​     ​  ​ + c (t + 2)

dt = Ú ​_____________         ​, where cos x = t (1 – t2) (1 – 2t)



dt = – Ú ​__________________           ​ (t – 1) (t + 1) (2t – 1)



(x2  +  1) = 2 log ​ ​ _______    ​  ​ + c (x2 + 2)

1 Now, ​ __________________        ​ (t  – 1) (t + 1) (2t – 1)

   

405. We have,

|  |

|  |

c A B ​ ______     ​ + ______ ​       ​ + _______ ​       ​ (t – 1) (t + 1) (2t – 1)

cosq            ​  dq Ú ​__________________ (2 + sinq ) (3 + sinq)



– 1 = A (t + 1) (2t – 1) + B (t – 1) (2t – 1) + c (t 2 – 1)



Let sinq = t





fi cosq dq = dt

Put

t =1,



t = –1, then B = 1/10



t =1/2, then C = 4/3

Thus, the given integral reduces to

dt         ​ Ú ​___________ (t +  2) (t + 3)

( 

)

1 1 = Ú ​ _____ ​     ​ – _____ ​     ​  ​ dt t+2 t+3

then A = –1/2

The given integral reduces to

dt 1 – ​ __ ​    Ú ​______       ​ + 2 (t – 1)

dt 1 ___ ​    ​ Ú ​____       ​ + 10 t + 1

dt 4 __ ​   ​  Ú ​_______       ​ 3 (2t – 1)

1.96  Integral Calculus, 3D Geometry & Vector Booster 1 1 = – ​ __ ​  log |t – 1| + ___ ​    ​ log |t + 1| 2 10 4   + ​ __ ​  log |2t – 1| + c 3 1 1 = – ​ __ ​  log |cos x – 1| + ___ ​    ​ log |cos x + 1| 2 10

When Put and

x = – 2, A = – 3 x = 3, C = 7/5 x = 0, 9A – 6B + 2C = 1



6B = 14/5 – 27 – 1



B = – 21/5

4   + ​ __ ​  log |2cos x – 1| + c 3

2x + 1 Thus, ​ _____________       ​  dx (x +  2)(x – 3)2

408. We have,

dx = – 3 Ú ​_____       ​ – x+2





dx

        ​ Ú ​_____________ (x + 1) (x + 1)2

dx dx 7 21 ___ ​   ​ Ú ​_____     ​  + __ ​    ​  ​_______       ​ 5 x – 3 5 Ú (x – 3)2

7 21 = – 3 log |x + 2| – ___ ​   ​ log |x – 3| –  ​ _______      ​ + c 5 5 (x – 3) C 1 A B Now, ​ ____________     ​= ​ ______    ​  + ​ ______    ​  + ​ _______    ​  (x + 1) (x – 1)2 (x + 1) (x – 1) (x – 1)2 415. We have, (2x + 3) dx       ​ 1 Ú​ (x_____________ _____________ fi ​     2 ​ + 1) (x2 + 4) (x + 1) (x – 1) (2x + 3) Bx + C A Now, ​ _____________        ​ = ______ ​       ​ + ​ _______      ​ A (x – 1)2 + B (x2 – 1) + C (x – 1) 2 2 (x + 1) = _____________________________ ​            ​ (x  + 1)(x + 4) (x + 4) (x + 1) (x – 1)2 fi 2x + 3 = A(x2 + 4) + Bx (x + 1) + C (x + 1) fi 1 = A (x – 1)2 + B (x2 – 1) + C (x + 1) When x = –1, A = 1/5 When x = –1, A = 1/4 and x = 0, 4 A + C = 3 x = 1, C = 1/2 fi C = 3 – 4 A = 3 – 4/5 = 11/5 and x = 0, A – B + C = 1 Also x = 1, 5A + 2B + 2 C = 5 fi B = 3/4 – 1 = –1/4 fi 2B = 5 – 5A – 2C = 5 – 1 – 22/5 = – 2/5 dx Thus,       2 ​ Ú ​_____________ fi B = – 1/5 (x  + 1) (x + 1) dx dx dx 1 1 1 = __ ​   ​  Ú ​______       ​ – __ ​   ​   ​______       ​ + __ ​   ​   ​_______       ​ 4 (x + 1) 4 Ú (x – 1) 2 Ú (x – 1)2 1 1 1 = __ ​   ​  log |x + 1| – __ ​   ​  log |x – 1| – _______ ​       ​ + c 4 4 2 (x – 1) 409. We have,

2x + 1       ​  dx Ú ​_____________ (x + 2)(x – 3)2

2x + 1 ​ _____________       ​ (x  +  2)(x – 3)2

C A B = ______ ​       ​ + ______ ​       ​ + _______ ​       ​ (x + 2) (x – 3) (x – 3)2

2x + 1 ​ _____________       ​ (x + 2) (x – 3)2 fi

(2x + 3) dx Thus, Ú ​ _____________        ​ (x + 1)(x2 + 4) dx xdx dx 1 1 11 = __ ​   ​  Ú  ​ _____     ​ – __ ​    ​   ​ _____     ​ + ___ ​   ​ Ú  ​ _____     ​ 5 x + 1 5 Ú x2 + 4 5 x2 + 4 1 1 1 = __ ​   ​  log |x + 1| – ___ ​    ​ |x2 + 1| + __ ​   ​  tan–1 (x) + c 10 5 5 416. We have,

(3x – 2) dx

       ​ Ú​ _____________ (x  –  1)(x2 + 9)

(3x – 2) Bx + C A Now, ​ ____________       ​ = ______ ​       ​ + ​ _______     ​ (x – 1)(x2 + 9) (x – 1) (x2 + 9) fi

(3x – 2) = A (x2 + 9) + Bx (x – 1) + C (x – 1)

A (x – 3)2 + B (x2 – 9) + C (x + 2) = _____________________________ ​            ​ (x + 2) (x – 3)2

When

x = 1, A = 1/10

and

x = 0, 9 A – C = – 2

2x + 1 = A (x – 3)2 + B (x2 – 9) + C (x + 2)



C = 2 + 9 A = 2 +9/10 = 29/10

Indefinite Integrals 

Also

x = –1, 10A + 2B – 2 C = – 5

421. We have,



2 B = 2 C – 10A – 5 = 29/5 –1 – 5





2B = –1/5

x       ​ dx Ú ​ _____________ (x2 – 1)(x2 + 1)



B = –1/10

Put

x2 = t

Thus,

(3x – 2) dx        ​ Ú​ _____________ (x  – 1)(x2 + 9)

2

t A Now, ​ ___________      ​ = _______________ ​       ​ (t – 1)(t + 1) (t – 1) + B (t + 1) A(t +  1) + B (t – 1) t fi ​ ___________      ​ = _________________ ​         ​ (t – 1)(t + 1) (t – 1)(t + 1)

29 dx xdx dx 1 1 = ___ ​    ​ Ú ​ _____     ​ – ___ ​    ​    ​ _____     ​ + ___ ​   ​    ​ _____     ​ 10 x – 1 10 Ú x2 + 9 10 Ú x2 + 9 fi 1 1 Put = ___ ​    ​ log |x – 1| – ___ ​    ​ log |x2 + 9| 10 20 Put



(  )

29 x   + ​ ___ ​  tan–1 ​ __ ​    ​  ​ + c 30 3 417. We have, 2x – 1       ​ dx Ú​ _____________ (x +  1)(x2 + 2)



Bx + C 2x – 1 A       ​ = ______ ​       ​ + _______ ​     ​ Now, ​ _____________ (x + 1) (x2  +  2) (x + 1) (x2 + 2)

(2x – 1) = A (x2 + 2) + Bx (x + 1) + C (x + 1)

When

x = –1, then A = –1

x = 0, then C = 1 and x = 1, then B = 1 Thus, the given integral reduces to

t = A (t + 1) + B (t – 1) t = 1, A = 1/2 t = –1, A = –1/2 2

Thus,

x       ​ dx Ú  ​ _____________ 2 (x   –  1)(x2 + 1)



dx 1 1 = __ ​   ​    Ú  ​ _____     ​ – __ ​   ​    ​ _____     ​ 2 x2 – 1 2 Ú x2 + 1



x–1 1 1 = __ ​   ​  log ​ ​ _____   ​  ​ – __ ​   ​  tan–1 (x) + c 4 x+1 2

|  |

426. We have,

(x2 + 3)(x2 + 1)

    ​dx Ú​ ______________ (x2 – 1)(x2 + 2)



x2 = t

Put

(t + 3)(t + 1) __________ t2 + 4t + c Thus, ​ ___________     ​ = ​  2    ​  (t – 1)(t + 2) t +t–2

dx dx x – Ú ​ ______     ​ +  ​ _______      ​ dx + Ú ​ _______     ​ (x + 1) Ú (x2 + 2) (x2 + 2)

(  )

x 1 1 ​  __  ​  tan–1 ​ ___ ​  __  ​  ​ + c = – log |x + 1| + __ ​    ​ log |x2 + 2| + ___ 2 ​ 2 ​    ​÷2 ​    ÷ x _____________      ​  dx 418. Ú ​  (x + 1)(x2 + 4)



1.97

( 

) ( 

)

– 3t + 5 – 3t + 5 = ​ 1 + ​ ________      ​  ​ = ​ 1 + ​ ___________      ​  ​ 2 (t + 1)(t – 2) t +t–2 – 3t + 5 A B Now, ​ ___________      ​ = ____ ​       ​ + ____ ​       ​ (t  +  1)(t – 2) t – 1 t – 2 fi

(– 3t + 5) = A(t – 2) + B(t – 1)

Bx + C x A Now, Ú ​ ____________      ​ = ______ ​       ​ + ​ _______      ​ (x + 1)(x2 + 4) (x + 1) (x2 + 4)

When

t = 1, then A = –2

and

t = 2, then B = –1

x = A(x2 + 4) + Bx (x + 1) + C(x + 1)

Therefore, the given integral reduces to

Let and Thus, the



dx dx     ​ – Ú  ​ _____     ​ Ú  dx – 2 Ú  ​ x_____ 2 –1 x2 – 2



x – ​÷2 ​    x–1 1 __  = x – log ​ _____ ​     ​  ​ – ____ ​  __    ​ log ​ ______ ​   ​  ​ + c x+1 2​÷2 ​    x + ​÷2 ​   

x = –1, then A = –1/5 x = 0, then C = 4/5 x = 1, then B = 1/5 given integral reduces to

427. We have,

dx dx x 1 1 4 – ​ __ ​  Ú ______ ​      ​ + __ ​   ​  _____ ​       ​ + __ ​    ​ _____ ​       ​ 5 (x + 1) 5 Ú x2 + 4 5 Ú x2 + 4

(  )

x 1 1 2 = – ​ __ ​  log |(x + 1)| + __ ​   ​  log |x2 + 4| + __ ​   ​  tan–1 ​ __ ​    ​  ​ + c 2 5 5 5 419. Do yourself 420. Do yourself

|  |



|  |

(x2 + 1)(x2 + 2)

    ​  dx Ú  ​ ______________ (x2 + 3)(x2 + 4)

x2 = t (t + 1)(t + 2) Now, ​ ___________        ​ = (t + 3)(t + 4) Put

t2 + 3t + 2 ​  __________        ​ t2 + 7t + 12

__

1.98  Integral Calculus, 3D Geometry & Vector Booster

( 

) ( 

)

( 

)

4t + 10 4t + 10 = ​ 1 – ​ __________      ​  ​ = ​ 1 – ​ ___________      ​  ​ 2 (t + 3)(t + 4) t + 7t + 12

Thus,

6 2 ​  2      ​ – ______ ​       ​  ​ dt Ú  ​ 1 + ______ (t + 2) (t2 + 4)

4t + 10 A B Again, ​ ___________      ​ = ​ ______     ​ + ​ ______     ​ (t  +  3)(t + 4) (t + 3) (t + 4)



__ t t = ​t + ÷ ​ 2 ​     tan–1 ​ ___ ​  __   ​  ​ – 3 tan–1 ​ __ ​    ​   ​  ​ + c 2 ​ 2 ​    ÷



(4t + 10) = A (t + 4) + B (t + 3)



When

t = – 4, then B = 6

and

t = – 3, then A = – 2

Hints

and





2



(  )

(  )

1 –  ​ __ ​  (sec x ◊ tan x + log |sec x + tan x|) + c 2



2I = sec3 x tan x 1 –  ​ __ ​  (sec x tan x + log |sec x + tan x|) + c 2 1 I = ​ __ ​  (sec3 x tan x) 2 1 –  ​ __ ​  (sec x tan x + log |sec x + tan x|) + c 4





(  ) )

solutions



Ú tan  x ◊ sec  x dx 4

(  )

__ x2 x2 = (x2 + ​÷2 ​     tan–1 ​ ___ ​  __  ​  ​ – 3 tan–1 ​ __ ​   ​   ​ + c 2 ​ 2 ​    ÷ 428. Do yourself.



( 

Let tan x = t fi sec2 x dx = dt = Ú t4dt



t5 = __ ​   ​  + c 5 5 (tan x) = ______ ​   ​   + c 5



2. Let I = Ú sec  x dx 3



4. Ú tan2  x sec4 x dx = Ú tan4 x (1 + tan2 x) sec2 x dx



Let tan x = t



fi sec2xdx = dt



= Ú t2 (1 + t2) dt



= Ú (t4 + t2) dt

= sec x ◊ tan x – Ú (sec x ◊ tan  x) dx



t 5 t3 ​   ​   ​ + c = ​ __ ​   ​  + __ 3 5

= sec x ◊ tan x – Ú (sec x (sec2 x – 1)) dx



tan5 x _____ tan3 x  + ​   ​    ​ + c = ​ _____ ​   ​  3 5

= sec x ◊ tan x – Ú sec3x dx + Ú sec x dx



= sec x ◊ tan x – I + log |sec x + tan x| + c



= Ú  tan3 x (1 + tan2 x)2 sec2 x dx

fi 2I = sec x ◊ tan x + log |sec x + tan x| + c 1 fi __ ​   ​  [sec x ◊ tan x + log |sec x + tan x|] + c 2



= Ú t3 (1 + t2) 2 dt,

= Ú sec2 x ◊ sec x dx = sec x Ú sec  x dx – Ú (sec x ◊ tan x) tan x dx 2

2



3. Let I = Ú sec5 x dx

(  ( 

)

)

5. Ú tan3 x sec6 x dx

Let tan x = t fi sec2x dx = dt



= Ú t3 (t4 + 2t2 + 1) dt



= Ú sec3 x ◊  sec2 x dx



= Ú  (t7 + 2t5 + t3) dt



= sec3 x Ú sec2 x dx – Ú (3 sec3 x ◊ tan x) ◊ tan x dx



t8 t3 __ t4 = ​ __ ​   ​  + __ ​   ​  + ​   ​   ​ + c 8 3 4



= sec  x ◊ tan x – 3 Ú sec  x (sec  x – 1) dx



= sec3 x ◊ tan x – 3 Ú sec5 x dx + 3 Ú sec3 x dx



tan8 x _____ tan3 x _____ tan4 x = ​ _____ ​   ​   + ​   ​   + ​   ​    ​ + c 8 3 4



= sec3 x ◊ tan x – I

3

3

2



(  ( 

6. Ú  tan3 x sec5 x dx

)

)

Indefinite Integrals 

1.99



= Ú sec4 x ◊ tan2 x sec x ◊ tan x dx

  – Ú (– cot x) (– cosec x ◊ cot x) dx



= Ú sec4 x (sec2 x – 1) sec x ◊ tan x dx



= – cosec x ◊ cot x – Ú (cosec2 x – 1) cosec x dx



= – cosec x ◊ cot x – I – Ú cosec3 x dx + Ú cose x dx



= – cosec x ◊ cot x – I + log |cosec x – cot x| + c



Let sec x = t



fi secx ◊ tan xdx = dt



= Ú t4 (t2 – 1) dt,



= Ú (t6 – t4) dt



2I = – cosec x cot x + log |cosec x – cot x| + c



t7 t5 = ​ __ ​   ​  – __ ​   ​   ​ + c 7 5



1 1 I = – ​ __ ​  cosec x cot x + __ ​   ​  log |cosec x – cot x| + c 2 2



sec7 x _____ sec5 x = ​ _____ ​   ​   – ​   ​    ​ + c 7 5

(  ( 



7. Ú  sec  x dx



8. Ú sec9 x dx



9. We have,

)

12. Ú cot2 x cosec4 x dx

)



4





Ú  cosec2 x ◊ cot2 x dx



Let cot x = t 2

fi cosec  x dx = – dt



= – Ú t  dx 3

t = – ​ __ ​  + c 3 3 (cot x) = – ​ ______  ​   + c 3 10. Let I = Ú cot3 x cosec3 x dx Let cosec x = t fi – cosec x ◊ cot x dx = dt fi cosec x ◊ cot x dx = – dt



2







= Ú cot3 x ◊ cosec3 x dx

= Ú cot2 x (1 + cot2 x) cosec2 x dx = –  Ú  t2 (1 + t2) dt, = –  Ú (t4 + t2) dt

( 

)

t5 t3 = –  ​ __ ​   ​  + __ ​   ​   ​ + c 3 5 x x 5 __ = – ​ cot  ​    ​ + cot3 ​ __  ​  ​ + c 3 5

( 

)

13. Ú tan– 5 x ◊ sec6 x dx

sec6 x = Ú ​ _____    ​ dx tan5 x



(1 + tan2 x)2 sec2 x = Ú ​ _______________        ​ dx tan5 x



(1 + t2)2 = Ú ​ ​ _______  ​    ​ dt t5



t4 + 2t2 + 1 = Ú ​ __________ ​   ​       ​ dt t5

(  ( 

)



= Ú cot2 x ◊ cot x ◊ cosec3 x dx



= Ú (cosec  x – 1) ◊ cosec  x (cosec x ◊ cot x) dx



= – Ú (t2 – 1) t2 dt



= Ú (t4 – t2) dt





t5 t3 = ​ __ ​   ​  – __ ​   ​   ​ + c 5 3

14. Ú cot3 x ◊ cosec– 8 x dx



cosec5 x _______ cosec3 x = ​ _______ ​   ​   – ​   ​    ​ + c 3 5

2

(  ( 

)

11. Let I = Ú cosec3 x dx

= Ú cosec2 x ◊ cosec x dx = cosec x Ú cosec2 x dx

2



)

Let cot x = t fi cosec2x dx = dt

(  (  ( 

)

)

1 2 __ 1 = Ú ​ __ ​   ​  + __ ​  3  ​  + ​  5  ​   ​ dt t t t 1 1 = ​ log |t| – __ ​  2  ​  – ___ ​  4  ​  ​ + c t 4t 1 1 = ​ log |tan x| – _____ ​  2     ​ – ______ ​   4  ​   ​+ c tan  x 4 tan  x

)



cot3 x = Ú ​ _______       ​dx cosec8 x



cos3 x = Ú ​ _____  ​   dx sin5 x



(1 – sin2 x) cos x = Ú ​ _____________     ​  dx sin5 x

)

1.100  Integral Calculus, 3D Geometry & Vector Booster

(  )

1 – t2 = Ú ​ ​ _____  ​    ​ dt, Let t = cos x t5 dt = – sin xdx



(  (  ( 

)

1 1 = Ú ​ __ ​  5  ​  – __ ​  3  ​   ​ dt t t 1 1 = ​ ___ ​  2  ​ – ___ ​  4  ​  ​ + c 2t 4t 1 1 = ​ ______ ​   2    ​ – ______ ​       ​  ​ + c 2 sin  x 4 sin4 x

|  |



t 1 = __ ​   ​  log ​ ____ ​       ​  ​ + c 4 t+1



x4 1 = __ ​   ​  log ​ _____ ​  4      ​  ​ + c 4 x +1

|  | |  |

x3 1 dx    20. Ú ​ ________  ​= __ ​   ​  log ​ _____ ​  3      ​  ​ + c x +1 x (x4 + 1) 3

)

dx  dx  21. Ú __________ ​     ​ = Ú ___________ ​     ​ 1 6/7 8 x2 (x7 + 1)6/7 x  ​​ 1 + __ ​  7  ​   ​​ ​ x

(  )

)

15. Ú cosec5 x dx



16. Ú cosec7 x dx



17. We have,

dx  ​  dx     ​ = Ú _________ ​      ​ Ú ________ 7 8 – 7



x (x + 1)

x  (1 + x )



Put

1 + x– 7 = t x– 8







dx 1 fi ​ ___8 ​ = – ​ __ ​  dt 7 x













– ​7​ ​ dx = dt

1 dt = –  ​ __ ​  Ú ​ __ ​  7 t 1 = –  ​ __ ​  log |t| + c 7 1 __ = –  ​   ​  log |1 + x– 7| + c 7





t6 dt = – Ú ​ ____  ​    t6 = – t + c

( 

dx dx       ​ = Ú ​ ___________       ​ Ú ​ x__________ 2 3/4 5  (1 + x) x  (1 + x– 4)3/4



Let 1 + x– 4 = t4



fi – 4x– 5 dx = 4t3 dt dx fi ​ ___5 ​ = – t3 dt x







dt = – Ú t3 ​ __3 ​  t = – Ú dt

)

( 

)

1 1/3 dx   dx ​ ​​  1 + __ 22. Ú ​ ___________    ​ = Ú ​ ___ ​  3  ​   ​​ ​ 3 3 1/3 4 x x  (1 + x ) x

( 



t2 dt = –  Ú ​ ____    ​  t



= –  Ú t dt t2 = – ​ __ ​  + c 2 1 1 2/3 = – ​ __ ​ ​​  1 + __ ​  3  ​   ​​ ​+ c 2 x



( 

)

23. We have,

= – t + c = – (1 + x– 4)1/4 + c

dt 1 = __ ​   ​  Ú ​ ______     ​,  Let x4 = t 4 t (t – 1) 4x3dx = dt

( 



)

1 Put ​ 1 + __ ​  3  ​   ​ = t3 x 3 fi – ​ __4  ​  dx = 3t2 dt x dx fi ​ ___4 ​ = – t2 dt x





dx x4 _________ 19. Ú ​ ________      ​ =  ​       ​ dx Ú x (x5 + 1) x5 (x5 + 1)



)

1 1/7 = – ​​ 1 + __ ​  7  ​   ​​ ​ + c x

18. We have,

( 

1 Let ​ 1 + __ ​  7  ​   ​ = t7 x 7 fi – ​ __6  ​  dx = 7t6 dt x dx ___ fi ​  6 ​ = – t6 dt x

)

1 1 ____ 1 = __ ​   ​  Ú ​ __ ​   ​  – ​       ​  ​ dt 4 t t+1



2

x     ​ dx Ú ​ _______ (x + 3)2



Let x + 3 = t fi dx = dt (t – 3)2 = Ú  ​ ______  ​ dt     t2 t2 – 6t + 9 = Ú ​ _________  ​ dt     t2 6 9 = Ú ​ 1 – __ ​   ​  + __ ​  2  ​   ​ dt t t

( 

)

1.101

Indefinite Integrals 

( 

)



9 = ​ t – 6 log |t| – ​ __ ​   ​ + c t



9 = ​ (x + 3) – 6 log |x + 3| – ______ ​       ​  ​ + c (x + 3)

( 



)

24. We have,



3

x  dx     ​ Ú ​ ________ (2x + 3)2





Let 2x + 3 = t





2 dx = dt





dx = 1/2 dt











(  )



3–t x = ​ ____  ​    2



( 

2

3

)



27 1 27 ___ = ___ ​    ​  Ú ​ ___ ​   ​ – ​     ​ + 9 – t  ​ dt t 16 t2



t2 27 1 = ___ ​    ​    ​ – ​ ___   ​ – 27 log |t| + 9t – __ ​   ​   ​ + c t 2 16

(  Ú ( 

)



)

4 1 (t + 2) = ____ ​     ​  Ú ​ ______  ​ dt     243 t3



t4 + 8t2 + 24t2 + 32t + 15 1 = ____ ​     ​  Ú ​ ______________________ ​       ​     ​ dt 243 t3



x2 25. Ú ​ _______     ​ dx (x + 2)3

Let (x + 2) = t



=



=



=

fi dx = dt (t______ – 2)2     Ú ​  t3 ​ dt t2 – 4t + 4 ​   ​       ​ dt Ú ​ _________ t3 Ú ​ __​ 1t ​  – __​ t42  ​  + __​ t43  ​   ​ dt 4 2 log |t| + __ ​   ​  – __ ​    ​  + c t t2 4 2 log |(x – 2)| + ______ ​       ​ – _______ ​       ​ + c (x + 2) (x + 2)2

( 

26. Ú x2 (ax + b)2 dx

)

)



( 

)

( 

)

15 1 24 32 ___ = ____ ​     ​  Ú ​ t + 8 + ___ ​     ​ + ___ ​  2 ​ + ​  3 ​   ​ dt t 243 t t 2 32 15 1 t = ____ ​     ​ ​ ​ __ ​  + 8t + 24 log |t| – ​ ___   ​ – ​ ___2  ​  ​ + c t 243 2 2t

( 

)

where t = (3x – 2) 29. We have,

dx dx       ​ = Ú ​ __________      ​ Ú ​ __________ +2 3 5 3x ______ x3 (3x + 2)3

( 

)

x  ​​ ​  x    ​  ​​ ​



Let ax + b = t 1 fi dx = __ ​ a ​ dt b fi x = t – __ ​ a ​

Let 3x – 2 = t dt fi dx = __ ​   ​  3 t____ +2 and x = ​   ​    3



where t = 2x + 3

( 

dt 1 = ​ __ ​  Ú  ​ ________      ​ where (x3 + 1) = t 3 t2 (t3 – 1)





=

)

x4 28. Ú ​ ________      ​ dx (3x – 2)3

1 (27 – 27t + 9t – t ) = ___ ​    ​   Ú ​ ​ _________________  ​         ​ dt 16 t2



( 

b2 1 = __ ​  2  ​ ​  (ax + b) – 2 log |(ax + b)| – _______ ​      ​  ​+ c (ax + b) a

2x = 3 – t



=

)

and then use partial fractions.

3 1 (3 – t) = ___ ​    ​  Ú ​ ______     ​  16 t2 dt



( 

dx x2 27. Ú  ​ _________  3 2   ​ = Ú  ​ _________      ​ dx x (1 + x ) x3 (1 + x3)2

3–t 3 ​​ ​ ____  ​    ​​ ​ 2 1 = __ ​   ​  Ú ​ ______  ​ dt     2 t2



2 1 (t – b) = __ ​  2  ​  Ú ​ ______  ​ dt     a t2 2 2 1 (t – 2bt + b = __ ​  2  ​  Ú ​ ____________  ​ dt      a t2 1 = __ ​  2  ​  Ú (1 – 2b/t + b2/t2) dt a b2 1 = __ ​  2  ​  ​  t – 2b log |t| – __ ​   ​   ​ + c t a







(  ( 

)

2 Let ​ 3x + __ ​ x ​  ​ = t 2 fi ​ 3 + __ ​ x ​  ​ = t 2 fi – ​ __2  ​  dx = dt x dx dt fi ​ ___2 ​ = – ​ __ ​  2 x

)

2 Also, ​ __ x ​ = t – 3 t–3 1 ____ fi ​ __   x ​ = ​  2 ​ 

1.102  Integral Calculus, 3D Geometry & Vector Booster

3 1 (t – 3) = ___ ​    ​  Ú ​ ______  ​ dt     16 t3



3 2 1 (t – 3t + 3t – 27) = –  ​ ___  ​  Ú ​ _________________  ​ dt      16 t3



3 3 ___ 27 1 = –  ​ ___  ​  Ú ​ 1 – __ ​   ​  + __ ​  2  ​  – ​  3 ​   ​ dt t 16 t t



3 27 1 = –  ​ ___  ​  ​  t – 3 log |t| – __ ​   ​  + ___ ​  2  ​  ​ + c t 16 2t



(  ( 

( 

dt 1 = – ​ __ ​  Ú ​ ________      ​ 2 ____ 2 3 3 ​​ ​       ​  ​​ ​ t t –1

(  )

3 1 (t – 1) = – ​ ___  ​  Ú ​ ______  ​ dt     16 t3 

)

)

)

3x + 2 where, ​ ______ ​  x    ​  ​ = t

( 

( 

)

x  ​​ ​  x      ​  ​​ ​

(  ) b fi ​( a + __ ​ x ​ )​ = t

b + ax Let ​ ______ ​  x      ​  ​ = t



b fi – ​ __2  ​  dx = dt x dx dt fi – ​ ___2 ​ = __ ​   ​  b x –a 1 t____ Also, ​ __ ​  x ​ = ​  b   

3 1 (t – a) = – ​ __4  ​  Ú  ​ ______  ​ dt     b t3

(  ( 

)

3a 3a2 __ a3 1 = – ​ __4  ​  Ú ​ 1 – ___ ​     ​ + ___ ​  2 ​ – ​  3 ​   ​ dt t b t t 3a2 1 = – ​ __4  ​ ​  t – 3a log |t| – ___ ​      ​  + t b b where ​ a + __ ​ x ​  ​ = t

)

a3 ___ ​  2  ​  ​ + c 2t

)

dx dx 31. Ú ​ _________      ​ = Ú ​ _________      ​ x+2 3 5 _____ x2 (x + 2)3 x  ​​ ​  x    ​  ​​ ​

(  )

)

)

dx dx 32. Ú  ​ __________     2 ​ = Ú  ​ _________       ​ 3 a + bx 2 5 ______ x  (a + bx) x  ​​ ​  x  ​    ​​ ​

( 

)

( 

)



a + bx Let ​ ______ ​  x      ​  ​ = t





a – ​ __2  ​  dx = dt x

dx fi ​ ___2 ​ = – ​ __ a ​  x a Also, x = ____ ​       ​ t–b

dt 1 ________ = – ​ __  ​ a ​ Ú  ​  ____ a  3 2  ​​ ​    ​     ​​ ​ t t–b 3 1 (t – b) = – ​ __4  ​  Ú  ​ ______  ​ dt     a t2 

(  Ú ( 

)

1 t3 – 3t2b + 3t b2 – b2 = – ​ __4  ​  Ú  ​ _________________ ​   ​        ​ dt a t2

)

3b2 __ b3 1 = – ​ __4  ​     ​ t – 3b + ___ ​      ​  – ​  2 ​   ​ dt t a t

( 

)

b2 1 t2 = – ​ __4  ​ ​  __ ​   ​  – 3bt + 3b2 log |t| + __ ​   ​   ​ + c t a 2

( 

(  )

x+2 Put ​ _____ ​  x  ​    ​ = t







)

1 __ ​  3  ​   ​ dt t

)

a + ax where ​ ______ ​  x    ​  ​ = t  





3 __ ​  2  ​  – t

(  )

3 2 2 3 1 (t – 3t a + 3ta – a ) = – ​ __4  ​  Ú ​ ___________________      ​ dt    b t3



(  ( 

3 1 = – ​ ___  ​  Ú ​ 1 – __ ​   ​  + t 16

2 where t = ​ x + __ ​ x ​  ​

dx dx       ​ = Ú ​ __________       ​ Ú ​ __________ b + ax 2 5 ______ x3 (b + ax)2

( 

)

3 1 1 = – ​ ___  ​ ​  t – 3 log |t| – __ ​   ​  + ___ ​  2  ​  ​ + c t 16 2t

30. We have,

( 

1 t3 – 3t2 + 3t – 1 = – ​ ___  ​  Ú ​ ______________ ​   ​       ​ dt 16 t3

2 – ​ __2  ​  dx = dt x

dx dt fi ​ ___2 ​ = – ​ __ ​  2 x 2 Also, 1 + __ ​ x ​ = t 2 fi x = ____ ​       ​ t –1

dx 33. Ú ​ _________     2 x  (1 + x2)3

( 

)

dx dx ______ a – bx 2 ___  ​ 34. Ú ​ _________       ​ =  ​   ​ ​​   ​  ​  ​​ ​ Ú x    x2 (a – bx)2  x2

( 

)



a – bx Let ​ ​ ______ ​  ​ = t x   



a fi ​ __2  ​  dx = – dt x

Indefinite Integrals 

dx dt fi ​ ___2 ​ = – ​ __ a ​  x a Also, ​ __ x ​ = t + b a fi x = ____ ​       ​ t+b

dt 1 ________ = – ​ __  ​ a ​ Ú ​  ____ a  2 2  ​​ ​    ​     ​​ ​ t t+b

(  )

)

)

)

a – bx where t = ​ ______ ​  x    ​  ​   dx dx 35. Ú ​ __________     2 ​ = Ú ​ __________       ​ 4 2x + 1 3 x  (2x + 1) x7 ​​ ​ ______    ​​ ​ x ​   2x + 1 Let ​ ​ ______ ​  ​ = t x   

( 

)





( 

)

dx fi ​ ___2 ​ = – dt x 1 Also, 2 + __ ​ x ​ = t 1 fi x = ____ ​       ​ t–2



(  )

( 

)

80 ___ ​  2 ​ + t

(  )



dt = – Ú ​ __3 ​  × (t – 1)5 t



(t – 1)5 = – Ú ​ ______  ​ dt     t3



(t5 – 5t4 + 10t3 – 10t2 + 5t – t5) = – Ú ​ ___________________________      ​ dt    t3 10 5 __ 1 = – Ú ​ t2 – 5t + 10 – ___ ​     ​ + __ ​  2  ​  – ​  3  ​   ​ dt t t t

( 

)

80 ___ ​     ​ – 40 + 10t – t2  ​ dt t

( 

(  )

)

dx dx _____________       ​= Ú ​ _______________       ​ Ú ​ _______________ 4 3 5 (x – 1)3/4 (x + 2)5/4 ​÷(x   – 1)  (x +   2)  ​

dx = Ú ​ ______________       ​ 3/4 x – 1 _____ ​​ ​     ​ ​​ ​ (x + 2)2 x+2



(  )



x–1 Let ​ _____   ​ = t x+2



dx fi ​ _______     ​ = dt (x + 2)2

16 ___ 80 t3 = – ​ ___  ​ + ​     ​ + 80 log |t| – 40t + 5t2 – __ ​   ​  + c 2 t 3 t 2x + 1 where t = ​ ______ ​  x   

1 dt Thus, __ ​   ​  Ú ​ ___   ​  3 t3/4

36. We have,







)

5 t3 5t2 1 = – Ú ​ __ ​   ​  – ___ ​   ​ + 10t – 10 log |t| – __ ​   ​  + ___ ​  2  ​  ​ + c t 3 2 2t x–1 where, t = ​ ​ _____   ​  ​ x–2





(t – 2)5 dt = – Ú ​ ________  ​    t3 (2 – t)5 dt = Ú ​ ________  ​    t3 32 – 80t + 80t2 – 40t3 + 10t4 – t5 = Ú ​ ____________________________ ​        ​     ​ dt t3

( 

dx = Ú ​ _____________       ​ x–1 2 _____ ​​ ​   ​  ​​ ​ (x – 2)7 x–2

37. We have,

dt = – Ú ​ ______   5   ​ t3 1 ​​ ____ ​       ​  ​​ ​ t–2

32 = Ú ​ ___ ​  3 ​ – t





b2 1 = – ​ __3  ​ ​  t + 2b log |t| – __ ​   ​   ​ + c t a

( 

(x – 2) ◊ 1 (x – 1) ◊ 1 fi ​ _______________     ​ dx    = dt (x – 2)2 – dx fi ​ _______     ​ = dt (x – 2)2



2t – 1 Also, x = ​ _____ ​   t–1 1 fi (x – 2) = ____ ​       ​ t–1 dx Thus, Ú ​ _____________       ​ (x – 1)3 (x – 2)4

2b b2 1 = – ​ __3  ​  Ú ​ 1 + ___ ​     ​ + __ ​  2 ​   ​ dt t a t

( 

(  )

x–1 Let ​ _____ ​   ​  ​ = t x–2





2 1 (t + b)  dt = – ​ __3  ​  Ú ​ ________  ​     a t2 2 2 1 (t + 2bt + b ) = – ​ __3  ​  Ú ​ ____________  ​ dt      a t2

( 

1.103

dx       ​ Ú ​ _____________ (x – 1)3 (x – 2)4





1 = __ ​   ​  Ú t– 3/4 dt 3 1 __ = ​   ​  (4t1/4) + c 3

(  )

4 x –  1 1/4 = ​ __ ​ ​​  _____ ​     ​  ​​ ​ + c 3 x+2

1.104  Integral Calculus, 3D Geometry & Vector Booster dx 38. Ú ​ _____________       ​ (x – 1)3 (x – 2)2 dx = Ú ​ _____________       ​ x+2 2 (x – 1)5 ​​ ​ _____   ​  ​​ ​ x–1

dx dx ______________ 42. Ú ​ ________________       ​= Ú ​ _______________       ​ 4/5 5 4 6 (x + 1)  (x + 3)6/5   + 1)  (x +   3)  ​ ÷​ (x

(  ) x+2 Put ​( ​ _____   ​  ​ = t x – 1)



(x – 1) ◊ 1 – (x + 2) ◊ 1 fi ​ __________________     ​ dx    = dt (x – 1)2







dx fi ​ _______     ​ = (x – 1)2



x+2 Also, ​ _____ ​     ​ ​ = t x–1













3 – ​ _______      ​ dx = dt (x – 1)2

( 

dt ___ ​    ​  – 3

)

x + 2 = tx – t t+2 x = _____ ​     ​ t–1 3 t+2 x – 1 = _____ ​     ​ – 1 = ______ ​       ​ t–1 (t – 1)

dt 1 = – ​ __ ​  Ú ​ ________      ​ 3 ____ 3 3 2 ​​ ​       ​  ​​ ​ t t–1



(  )

3 1 (t – 1)  dt = – ​ __4  ​  Ú ​ ________  ​     3 t2 3 2 1 (t – 3t + 3t – 1) dt = – ​ __4  ​  Ú ​ ________________  ​      3 t2



(  ( 

)

3 1 1 = – ​ __4  ​  Ú ​ – 3 + __ ​   ​  – __ ​    ​   ​ dt t t2 3 1 t2 1 = – ​ __4  ​ ​  ​ __ ​  – 3t + 3 log |t| + __ ​   ​   ​ + c t 2 3 x + 2 where t = _____ ​   ​  x–1

)

dx dx 39. Ú ​ _____________     5 ​ = Ú ​ _____________       ​ 4 x–3 4 (x – 3)  (x – 2) (x – 2)9 ​​ _____ ​     ​  ​​ ​ x–2

(  )

dx = Ú ​ ______________       ​ x + 1 4/5 2 _____ (x + 3)  ​​ ​   ​  ​​ ​ x+3



(  )

x–3 Put ​ _____ ​     ​ ​ = t and then you do it x–2

(  )

( 

( 

)

)

x+1 Put ​ _____ ​   ​   ​ = t5 and then you do it. x+3 43. We have,

2

dx x  dx  3   ​= Ú ​ __________       ​ Ú ​ _________ 3 x (2 + 3x ) x  (2 + 3x3)



3x2 dx 1 = __ ​   ​  Ú ​ __________      3 x3 (2 + 3x3)

 ​

dt – ​ __2 ​  t 1 = __ ​   ​  Ú ​ ________     ​ 3 __ 3 1 ​   ​  ​ 2 + __ ​   ​   ​ t t



dt 1 = – ​ __ ​  Ú ​ _____    3 2t + 3

 ​

1 = – ​ __ ​  Ú log |2t + 3| + c 6



1 2 = – ​ __ ​  log ​ __ ​  3  ​  + 3  ​ + c 6 x

( 

|  |

44. We have,

)

4

5x  dx dx 1       ​ = __ ​   ​  Ú ​ __________      ​ Ú ​ _________ 5 5 5 x (3 + 5x ) x  (3 + 5x5)



1 Let x5 = __ ​   ​  t



dt fi 5x4 dx = – ​ __2 ​  t

 ​

dt 1 = – ​ __ ​  Ú ​ _______    5 (3t + 5) 1 = – ​ ___  ​  log |3t + 5| + c 15 3 1 = – ​ ___  ​  log ​ __ ​  5  ​  + 5  ​ + c 15 x

|  |

dx x dx 45. Ú  ​ _________  2   ​ = Ú ​ __________       ​ 2 x (2 + 3x ) x  (2 + 3x2)

x – 3 3/2 dx 40. Ú ​ _______________       ​ = Ú dx ​​ _____ ​     ​   ​​ ​ (x – 2)5 3/2 7/2 x–2 (x – 3)  (x – 2)



Let

x2 = t

Put (x – 3/x – 2) = t2 and then you do it.





1 x dx = ​ __ ​  dt 2

dx dx _____________ 41. Ú ​ _______________       ​ = Ú ​ ______________       ​ 5 7 x – 2 5/2 6   – 2)  (x –   5)  ​ (x – 5)  ​​ _____ ​     ​  ​​ ​ ÷​ (x x–6 x–2 Put ​ _____ ​   ​  ​ = t2 and then you do it. x–6

( 

(  )

)



dt 1 = __ ​   ​  Ú  ​ ________      ​ 2 t (2 + 3t)



3 1 1 ______ = __ ​   ​  Ú  ​ __ ​   ​  – ​     ​   ​ dt 4 t 2 + 3t

( 

)

Indefinite Integrals 



1 = __ ​   ​  (log |t| – log |2 + 3t|) + c 4 t 1 = ​ __ ​ ​  log ​ ​ ______    ​   ​  ​ + c 4 2 + 3t

(  | 

dx 4x3 dx 1 49. Ú ​ _________      ​ = __ ​   ​  Ú ​ __________      4 4 x (3x + 1) 4 x  (3x4 + 1)

|)

x2 1 = __ ​   ​ ​  log ​ ______ ​      ​  ​  ​ + c 4 2 + 3x2

3x2 dx dx 1 46. Ú  ​ _________  3    ​ = __ ​   ​  Ú ​ __________      x (3 + 4x ) 3 x3 (3 + 4x3) Let x3 = t

 ​



 ​

2

3x dx = dt

dt 1 = __ ​   ​  Ú ​ ________     3 t (3 + 4t)

( 

)

1 1 __ 4 = __ ​   ​  Ú ​ __ ​   ​  – ​   ​  + 4t  ​ dt 9 t 3 1 = __ ​   ​  (log |t| –log |3 + 4t|) + c 9 t 1 = __ ​   ​ ​  log ​ ​ ______    ​    ​  ​ + c 9 3 + 4t

(  | 

(  | 

|)

|)

x3 1 = ​ __ ​ ​  log ​ _______ ​     ​    ​  ​ + c 9 3 + 4x3

 ​

dt 1 = __ ​   ​  Ú ​ ________     4 t (3t + 1)

 ​

3 1 1 _____ = __ ​   ​  Ú ​ __ ​   ​  – ​       ​  ​ dt 4 t 3t + 1



t 1 = __ ​   ​  log ​ _____ ​       ​ ​ + c 4 3t + 1



x4 1 = __ ​   ​  log ​ ______ ​  4    ​   ​+ c 4 3x + 1

 ​

Let x3 = t







Let

(x2 – 1) = t





2x dx = dt



Also, x2 = t + 1

3x2 dx = dt



2 1 (t – 1)  ​ dt     = __ ​   ​  Ú ​ ______ 2 t3



1 t2 – 2t + 1 ​   ​       ​ dt = __ ​   ​  Ú ​ __________ 2 t3



1 1 __ 2 1 ​   ​  – ​    ​  + __ ​    ​   ​ dt = __ ​   ​  Ú ​ __ 2 t t2 t3

 ​

dt 1 = – ​ __ ​  Ú ​ _______     3 t (5t – 2)



 ​

5 1 1 __ = __ ​   ​  Ú ​ __ ​   ​  – ​     ​ – 2  ​ dt 6 t 5t



(  | 

|)

x3 1 = __ ​   ​ ​  log ​ ______ ​  3      ​  ​  ​ + c 6 5x – 2

dx 4 3 dx 1 48. Ú ​ _________  4    ​ = __ ​   ​  Ú ​ _________      x (1 – 4x ) 4 x4 (1 – 4x4)

)

)

1 2 ​   ​  – = __ ​   ​ ​  log |t| + __ t 2

( 

)

1 ___ ​  2  ​  ​ + c 2t

)

(x2​)4​ ​ 4x dx

9

x 1       ​ = __ ​   ​    Ú ​ _________   Ú ​ ___________ 2 5 (2x + 3)  dx 4 (2x2 + 3)5



Let 2x2 + 3 = t

Thus,

fi 4x dx = dt

 ​

 ​

dt 1 = – ​ __ ​  Ú ​ _______     4 t (4t – 1)

 ​

1 1 _____ 4 = __ ​    ​ Ú ​ __ ​   ​  – ​       ​ ​ dt 4 t 4t – 1





t 1 = __ ​   ​  log ​ _____ ​       ​ ​ + c 4 4 –1



|  |

(  ( 



dt 1 = __ ​   ​  Ú ​ _______     4 t (1 – 4t)

)

( 

1 2 1 ​  2     = __ ​   ​ ​  log |x2 – 1| + _______  ​– _________ ​       ​  ​ + c 2 (x – 1) 2 (x2 – 1)2 51. We have,

 ​

( 

|  |

Ú x5 (x2 – 1)4 dx



dt 1 = __ ​   ​  Ú ​ _______     3 t (2 – 5t)



)

|  |

50. We have,





( 

(x2​)2​ ​ ◊ 2x x5 1 _______ __      ​ dx = ​     ​   ​     ​ dx Thus, Ú ​ ________ Ú 2 (x2 – 1)4 (x2 – 1)4 

3x2 dx dx 47. Ú ​ _________  3    ​ = Ú ​ _________      3 x (2 – 5x ) x  (2 – 5x3)

(  ) 1 = __ ​   ​ ​ ( log ​ _____ 6 | ​ 5t t–  2  ​ |​ )​ + c

x3 1 = __ ​   ​  log ​ ______ ​  3    ​   ​+ c 4 4x – 1



|)

(  | 

|  |

1.105

(  )

t –3 4 ​​ ____ ​   ​    ​​ ​ dt – 3)4 dt 2 1 1 (t________ ___ ​ __ ​    Ú ​ ________  ​     = ​     ​      ​      Ú 4 64 t5 t5 ​

4 3 2 1 (t – 12t + 54t – 108t + 81 = ___ ​    ​   Ú ​ ________________________      ​ dt    64 t5

( 

1 1 = ___ ​    ​   Ú ​ __ ​   ​  – 64 t

12 ___ ​  2 ​ + t

54 ___ ​  3 ​ – t

108 ____ ​  4 ​   + t

)

81 ___ ​  5 ​   ​ dt t

1.106  Integral Calculus, 3D Geometry & Vector Booster

( 

)

36 81 1 12 27 ___ = ___ ​    ​  ​  log |t| + ___ ​     ​ – ___ ​  2 ​ + ​  3 ​ – ___ ​  4  ​  ​ + c t 64 t t 4t



where 2x2 + 3 = t x3 52. Ú ​ ________      ​dx 2 (x + 1)4 

Let (x2 + 1) = t fi 2x dx = dt

2 1 x  (2x) dx = __ ​   ​    Ú ​ ________   2 (x2 + 1)4 1 (t – 1) = __ ​   ​    Ú ​ ______     2 t4 dt

 ​

( 

)



1 1 1 = __ ​   ​ ​  – ​ ___2  ​ + ___ ​  3  ​  ​ + c 2 2t 3t

1 __ ​  4  ​   ​ dt t



1 1 1 = __ ​   ​ ​  – ​ _________      ​ + _________ ​       ​  ​ + c 2 2 (x2 + 1)2 3 (x2 + 1)3

)

x5 53. Ú ​ ________      ​dx 2 (x – 3)4 

Let

(x2 – 3) = t





2xdx = dt

2 2 1 (x ​)​ ​ (2x) dx = __ ​   ​    Ú ​ __________      2 (x2 – 3)4 2 1 (t + 3)  dt  ​ = __ ​   ​    Ú ​ ________     2 t4

( 

)

)

3 3 __ ​  2  ​  – __ ​  3  ​   ​ + c t t 2 3 (x – 3) 3 3 1 = __ ​    ​ ​ ​ _______  ​   – ________ ​  2   2    ​– ________ ​  2   3    ​ ​ + c 2 3 (x – 3) (x – 3) )

( 

)

x7 54. Ú ​ _________      ​dx 2 (3x – 2)4 

2 3 1 (x ​)​ ​ (6x) dx = __ ​   ​    Ú ​ __________      6 (3x2 – 2)4

(  )

1 1 6 ___ 12 8 = ____ ​     ​   Ú ​ __ ​   ​  + __ ​  2  ​  + ​  3 ​ + __ ​  4  ​   ​ dt 162 t t t t



6 6 __ 1 2 = ​ ____    ​ ​ log |t| – __ ​   ​  – __ ​    ​  – ​    ​   ​ + c t t2 t3 162

( 

( 

) )

2 4 4 (x ​)​ ​ (6x) dx = __ ​   ​    Ú ​ __________      3 (3x2 – 2)5

(  )

t+2 4 ​​ ​ ____  ​    ​​ ​ dt 3 4  ​ = __ ​   ​    Ú ​ ________  ​     3 t5

Let 3x2 – 2 = t fi 6xdx = dt



+ 2)4 dt 4 (t________ = ​ ____    ​   Ú ​      243 t5

 ​

t4 + 8t3 + 24t2 + 32t + 16 4 = ____ ​     ​   Ú ​ _______________________ ​       ​     ​ dt 243 t5



8 24 ___ 32 16 4 = ​ ____    ​     ​ t + __ ​  2  ​  + ___ ​  3 ​ + ​  4 ​ + ___ ​  5 ​   ​ dt 243 Ú t t t t

(  ( 

( 

2

)

)

)

8 12 ___ 32 4 t 4 __ = ____ ​     ​  ​   ​   ​  – __ ​   ​  – ___ ​  2 ​ – ​  2  ​ – __ ​  4  ​   ​ + c t 243 2 t 2t t

where t = 3x2 – 2 56. Do yorself. 57. We have, 

9 6 1 = __ ​   ​    Ú ​ t2 + __ ​  3  ​  + __ ​  3  ​   ​dt 2 t t 1 t3 = __ ​   ​ ​  __ ​   ​  – 2 3





2 1 (t + 6t + 9) dt  ​ = __ ​   ​    Ú ​ ____________  ​      2 t4



3 + 6t2 + 12t + 8) dt 1 (t__________________ = ​ ____    ​   Ú ​       ​    162 t 4



)

( 

 ​

8x6 55. Ú ​ ________     ​ dx (3x2 – 2)5

1 1 = __ ​   ​    Ú ​ __ ​    ​  – 2 t3

( 

3 1 (t + 2)  dt = ____ ​     ​   Ú ​ ________     162 t4

where t = 3x2 – 2

 ​

( 



t+2 3 ​​ _____ ​   ​    ​​ ​ dt 3 1  ​ = __ ​   ​    Ú ​ _________  ​     Let 3x2 – 2 = t 4 6 t fi 6xdx = dt



2 sin x + 3        ​dx Ú ​ ___________ (3 sin x + 2)2 



2 sec x tan x + 3 sec2 x = Ú __________________  ​         ​dx (3 tan x + 2 sec x)2 



Let 2 sec x + 3 tan x = t



fi (2 sec x tan x + 3 sec2 x) dx = dt



dt = Ú ​ __2 ​  t 1 = – ​ __ ​  + c t 1 = – ​ ______________      ​ + c (2 sec x + 3 tan x)

58. Do yourself 59. Do yourself

1.107

Indefinite Integrals 

60. We have,

( 

)

4 cos x + 3        ​  ​dx Ú ​​ ___________ (3 cos x + 4)2 



( 



)

(4 cosec x cot x + 3 cosec2 x = Ú ​ ​ ______________________          ​  ​ dx (3 cot x + 4 cosec x)2

dx dt fi ​ ___________       ​ = _____ ​     ​  (2 + 3 cos x)2 5 sin x



3 – 2t Also, cos x =​  ______ ​  3t – 2

__ _____

Let 3 cot x + 4 cosec x = t fi – (3 cosec2 x + 4 cosec x cot x) dx = dt dt = – Ú ​ __2 ​  t 1 __ = ​   ​  + c t 1 = ________________ ​       ​+ c (3 cot x + 4 cosec x)



1 dt = __ ​   ​  Ú ​ ____    5 sin x

 ​

– 2) 1 (3t _____   = ____ ​  __    ​   ​ _______  ​dt Ú 2 5 ​÷5 ​     ÷ ​ t  – 1  ​ 



1 __ = __ ​   ​ ​ ÷ 5 ​ ​  3​÷t 2 – 1    ​– 2 log ​ t + ​÷t 2 – 1 ​  ​  ​ + c 5

( 

_____

)

fi 4ex + 6e– x = ex (9l + 9m) + e– x (– 6l + 6m)





__ _____ 2 ​÷________ 7 ​​   ÷    t – 1 ​  

cos x = ​ 

(3 – 4t)

   

( 

dx 1 dt       ​ = – ​ __ ​  Ú ​ ____    Ú ​ ___________ 7 cos x (3 + 4 sin x)2 3 – 4t 1__ ______ = – ​ ____    ​    ​  _____     ​dt Ú 7​÷7 ​     ​÷t 2 – 1  ​   _____ _____ 1__ = – ​ ____    ​   (3 log (t + ÷ ​ t 2 – 1 ​  ) – 4 ​÷t 2 – 1 ​  )+c 7​÷7 ​   

4 + 3 sin x where, ​ _________ ​   x=t 3 + 4 sin 64. Do yorself. 65. Do yorself.



5 13 9ex + 6e– x = – ​ ___  ​  Ú dx + ___ ​   ​  Ú ​ __________        ​dx 18 18 (9ex – 6e– x) 



5 13 = – ​ ___  ​x  + ___ ​   ​  log |(9ex – 6e– x)| + c 18 18

70. Do yorself. 71. Do yorself. 72. We have, 



( 

)

)

4ex + 6e– x Thus, Ú ​ _________ ​  x      ​  ​ dx 9e – 4e– x

 ​ Thus,

dx 66. Ú ​ __________       ​ = t (2 + 3 cos x)2

|)

68. Do yorself. 69. Let 4ex + 6e– x = l (9ex – 6– x) + m (9ex + 6e– x)

3t – 4 Also, sin x = ​ ______    ​ 3 – 4t





| 

4 + 3 sin x Let ​ _________     ​= t fi 9 (l + m ) = 4 and – 6 ( l – m ) = 6 3 + 4 sin x dx dt 5 13 fi ​ ___________       ​= – ____ ​ cos x   ​  fi l = – ​ ___   ​,  m = ___ ​   ​  18 18 (3 + 4 sin x)2



 ​

_____

( 

2 cos x + 3 where, t = ​ ​ _________   ​  ​ 2 + 3 cos x 67. Do yorself.

dx      Ú ​ ___________ (3 + 4 sin x)2

 ​



2 ​÷5 ​​   ÷    t – 1 ​   sin x = ​ ________ ​     (3t – 2)





61. Do yorself. 62. Do yorself. 63. We have,





dx Let ​ __________ ​        ​  ​ = t (2 + 3 cos x)2

 ​



5 sin x fi ​ ___________       ​dx = dt (2 + 3 cos x)2 



dx ______________      Ú ​ _______________ 5 3

 ​ ​÷(x   + 2)  (x +   1)  ​

dx ______________ = Ú ​ ________________       ​ x+1 3 8 _____ ​ (x + 2)  ​​ ​      ​  ​​ ​  ​ x+2 dx = Ú ​ ______________      x + 1 3/2 4 _____ (x + 2)  ​​ ​   ​   ​​ ​ x+2

÷ 

( 

)

(  ) x +1 Put ​( _____ ​     ​  ​ = t x + 2)

2

dx fi ​ ______     ​ = 2t dt (x + 2)2

1.108  Integral Calculus, 3D Geometry & Vector Booster

Also,

2t2 – 1 x = ______ ​    1 – t2

 ​



2t2 – 1 1 x + 2 = ​ ______  ​  + 2 = _____ ​    2   ​ 1 – t2 1 –t

Thus,

dx      Ú ​ _______________ + 1 3/2 4 x _____

 ​

(  )

( 

)

8t8 – 12t6 + 6t4 – t2 = – 2 Ú ​ ​ _________________     ​     ​ dt (3t2 – 2) and then you do it

(x + 1) 74. Ú ​ ______________       ​dx (x + 2) (x + 3)3/2 

(x + 2)  ​​ ​     ​  ​​ ​ x+2





(1 – t2)4 = Ú ​ _______  ​   × 2 t dt t3

(x + 2) – 1 = Ú​  ______________        ​dx (x + 2) (x + 3)3/2 





1 – 4t2 + 6t4 – 4t6 + t8) = 2 Ú ​ ​ ____________________      ​     ​ dt t2

dx dx = Ú ​ ________      ​– Ú ​ _____________      (x + 3)3/2 (x + 2) (x + 3)3/2



1 = 2 Ú ​ __ ​  2  ​  – 4 + 6t2 – 4t4 + t6  ​ dt t



t7 1 4 = 2 ​ – ​ __ ​  – 4t + 2t3 – ___ ​  5  ​ + __ ​   ​   ​ + c t 7 5t

( 

)

( 

( 

÷ 

_____

)

)

x+1 where t = ​ ​ _____    x+2

( 

)

dx x + 2 1/2  ___  ​ ​ 73. Ú ​​ ​ ______   ​   ​​ ​◊ ​ x  ​  2x + 3

 ​

dx dx = Ú ​ ________  3/2    ​– Ú ​ ____________       ​ x + 2 _____ (x + 3) ​ ​     ​  ​ (x + 3)2 x+3

(  ) x+2 Put ​( ​ _____   ​  ​ = t x + 3)



( 

)



(x + 3) ◊1 – (x + 2) ◊ 1 fi ​ ​ __________________      ​     ​ ◊ dx = dt (x + 3)2



dx fi ​ _______     ​ = dt (x + 3)2



x+2 Put ​ ______   ​  = t2 2x + 3



dt 2 _____ = – ​ ______      ​– Ú ​ __ ​  t ​ x  + 3    ​ ÷



(2x + 3 – 2x – 4) fi ​ _______________        ​ dx = 2t dt (2x + 3)2



x+2 2 _____ = – ​ ______      ​– log ​ ​ _____ ​  ​ + c x+3 ​ x  + 3    ​ ÷



dx fi ​ ________      ​= – 2t dt (2x + 3)2

dx 2–x 2 75. Ú ​ _______   2   ​ 3​ ​ _____       ​ ​dx = 2 Ú ​ ____________________         ​ 5/3 2 + x  (2 – x) (2 – x)  (2 + x/2 – x)1/3



– dx fi ​ ________     ​= – 2t dt (1 – 2t2)2





dx fi ​ _________      ​= 2t dt (2x2 – 1)2

÷ 

_____

3t2 – 2 Also, x =​  ______2  1 – 2t

(  )



(2 – x) ◊1 + (2 + x) ◊1 fi ​ __________________      ​    dx = dt (2 – x)2



dx dt fi ​ _______  2   ​ = __ ​   ​  4 (2 – x)

1 – 2t2 = Ú t ◊ ​ ​ ______  ​   ​ 2t (2t2 – 1)2 dt 2 3t – 2



t2 (1 – 2t2)3 = 2 Ú ​ _________    ​  dt 3t2 – 2) 

 ​



t2 (1 – 6t2 + 12t4 – 8t6) = 2 Ú ​ ___________________      ​ dt    (3t2 – 2)



4

6

4

(t – 6t + 12t – 8t ) = 2 Ú  ​ __________________      ​ dt    (3t2 – 2)

(  )

(  )



 ​

2

dx = 2 Ú ​ _______________       ​ 2 + x 1/3 (2 – x)2 ​​ _____ ​    ​   ​​ ​ 2–x 2+x Put ​ ​ _____   ​  ​ = t 2–x

dx = 2t (2t2 – 1)2 dt





|  |



1 dt = __ ​   ​  Ú ​ ___    2 t1/3 1 = __ ​   ​  t2/3 + c 3

( 

)

1 2 + x 2/3 = __ ​   ​ ​​  _____ ​   ​  ​​ ​ + c 3 2–x

dx 76. Ú ​ _______________       ​ _____ _____ 3 ​ x  + 1 ​  + ÷ ​ x  + 1 ​   ÷

Let x + 1 = t6





dx = 6t5 dt

1.109

Indefinite Integrals 



6t5 dt = Ú ​ _____     t3 + t2 3

dx 79. Ú ​ ________      ​ x1/2 + x1/3

Let x = t6 fi dx = 6t5 dt

 ​

t = 6 Ú ​ ____     ​ dt t+1





(t3 + 1) – 1 = 6 Ú ​ __________     ​ dt   t+1



t5 = 6 Ú ​ ______     ​dt 3 t + t2 



(t3 + 1) dt = 6 Ú ​ ______ ​ dt     – 6 Ú  ​ ____     ​ t+1 t+1



t3 = 6 Ú ​ _____     ​dt t + 1 



(t3 + 1) – 1 = 6 Ú ​ ​ _________     ​   ​ dt t+1



1 = 6 Ú ​ (t2 – t + 1) – ____ ​       ​  ​ dt t+1



t3 t2 = 6 ​ __ ​   ​  – __ ​   ​  + t – log |t + 1|  ​ + c 3 2



(t + 1) (t2 – t + 1) dt = 6 Ú ​ ________________  ​       dt – 6 Ú ​ ____     ​ t + 1  t+1 1 = 6 Ú ((t2 – t + 1) – ____ ​       ​) dt t+1

( 

t3 = 6 ​ __ ​   ​  – 3

)

t2 __ ​   ​  + t – log |t + 1|  ​ + c 2

_____

( 

)

( 

)

( 

)

where t = 6÷ ​ x  + 1 ​  

where t = (x)1/6

dx 77.  Ú ​ _________________ _____        ​ ​ x  + 1    ​– (x + 1)1/4 ÷

​ x     ​ ÷ __     80. Ú ​ _______  ​ dx 4 3 ÷​ x   ​ + 1

Put x = t4



fi dx = 4t3 dt

__



Let (x + 1) = t4



fi dx = 4t3 dt

2 × t3  = 4 Ú​  t______  ​dt 3 t + 1  t5 = 4 Ú ​ _____     ​ dt t3 + 1



4t3 dt = Ú ​ _____   t2 – t



 ​

t2 dt = 4 Ú ​ ____    t–1



( 



t2 = 4 Ú ​ t2 – _____ ​  3      ​  ​ dt t +1



t3 1 = 4 Ú ​ __ ​   ​  – __ ​    ​ log |t3 + 1|  ​ + c 3 3

 ​

)

1 = 4 Ú ​ t + 1 + ____ ​       ​  ​ dt t–1

( 

)

2



t = 4 ​ __ ​   ​  + t + log |t – 1|  ​ + c 2



(x + 1)2 = 4 ​ ​ _______  ​   + (x + 1) + log |x|  ​ + c 2

( 

(  Ú ( 

3

)

__

​÷x     ​ 81. Ú ​ ________      ​dx __ 3 __ ​ x     ​ + ÷ ​ x     ​  ÷

6

Let x = t fi dx = 6t5 dt 2

( 

)

where t = x1/4

)

1 + x1/2 – x1/3 78. Ú  ​ ____________        ​ dx 1 + x1/3

( 

) )



t3 × t5  = 6 Ú ​ ________  ​     t3 + t2



t6 dt = 6 Ú ​ ____   t+1

Let x = t6 fi dx = 6t5 dt



1+t –t 5 = 6 Ú ​ _________ ​   ​     ​ t  dt 1 + t2



 t8 – t7 + t5 = 6   ​ ​ __________     ​   ​ dt 1 + t2



t+1 = 6 Ú ​ t – t – t + t – t – t – 1 + ​ _____      ​  ​ dt t2 + 1

 ​

(t6 – 1) + 1 = 6 Ú ​ ​ _________     ​   ​ dt t+1

t7 t6 __ t5 t4 __ t3 t2 = 6 ​ __ ​   ​  ​ – __ ​   ​  – ​   ​  + __ ​   ​  – ​   ​  – __ ​   ​  – t 7​ 6 5 4 3 2 1 +  ​ ​__ ​  log |t2 + 1| + tan– 1 (t)  ​ + c ​2 __ where t = 6÷ ​ x     ​



1 = 6 Ú ​ 1 + t + t2 + t3 + t4 + t5 + ​ ____     ​  ​ dt t +1



t2 t3 __ t4 t5 __ t6 = 6 ​ t + __ ​   ​  + __ ​   ​  + ​   ​  + __ ​   ​  + ​   ​  + log |t + 1|  ​ + c 2 3 4 5 6



(  [ 

6

5

4

3

)

2

]

( 

( 

( 

where t = x1/6

)

)

)

1.110  Integral Calculus, 3D Geometry & Vector Booster dx_____ 82. Ú ​ ____________       ​ (x – 1) ​÷x  + 3    ​

x – 3 = t2



Let



fi dx = 2t dt Also, x – 1 = t2 – 3 – 1 = t2 – 4



= Ú _______ ​  2t dt   (t2 – 4) t

 ​

dt = 2 Ú ​ _______     (t2 – 22)

 ​

t–2 1 = __ ​   ​  log ​ ​ ____   ​  ​ + c 2 t+2



​ x  + 3    ​– 2 ÷ 1 = __ ​   ​  log ​ __________ ​  _____       ​  ​ + c 2 ​÷x  + 3    ​+ 2

|

_____



Let x + 2 = t2



fi dx = 2t dt

= 2 tan– 1 (t) + c



= 2 tan– 1 (​÷x  + 2 ​  )+c

_____



t 2__ – 1 ___ = ​ ___   ​  tan  ​ ​  __   ​  ​ + c ​ 3 ​    ​÷3 ​    ÷



x2 2 = ___ ​  __  ​  tan– 1 ​ ___ ​  __  ​  ​ + c ​ 3 ​    ​÷3 ​    ÷

Let x2 = t fi 2xdx = dt

(  ( 

(  ( 

)



)

)

)

x = 2 ​ __ ​   ​  – x2 + log |x2 + 1|  ​ + c 2

t dt  ​ = 2 Ú ​ ________     ​  ​ (t2 + 2) t = 2 Ú dt (t2 + 2)

Let (x – 2) = t2 fi 2xdx = dt

x2 = t



2xdx = dt

(  )

(  )

t dt = Ú ​ ______     ​ t 2 t +5 ​ _____ ​   ​    ​ 2

(  )

2x + 1 = t2 dx = t dt

t2 – 1 Also, x = ​ ____  ​    2 t2 + 5 t2 – 1 fi x + 3 = ​ ____  ​   + 3 = ​ _____  ​    2 2 dt = 2 Ú ​ ______     ​ 2 (t + 5) t 2__ – 1 ___ = ​ ___   ​  tan  ​ ​  __   ​  ​ + c ​÷5 ​    ​÷5 ​   

(  )

( ÷ 

______

t2 = 2 ​ __ ​   ​  – t + log |t + 1|  ​ + c 2 4



t2 dt = 2 Ú ​ ____    ​ t+1 2 (t – 1) + 1 = 2 Ú ​ ​ _________     ​   ​ dt t+1 1 = 2 Ú ​ (t – 1) + ____ ​       ​  ​ dt t +1

Let

dx______ 87. Ú ​ _____________       ​ (x + 3) ​÷2x   + 1 ​  



dx _____ 85. Ú ​ _______    x ​÷x  – 2 







__

​÷x     ​ 84. Ú ​ _____     ​ dx x +1



dt = 2 Ú ​ ______     ​ (t2 + 3)

Let

 ​







t dt = 2 Ú ​ _______    (t2 + 1) t dt = 2 Ú ​ ______    (t2 + 1)

 ​

x–2 = ​÷2 ​     tan  ​ ​ ​ ​ _____  ​      ​ ​  ​ + c 2 dx 86. Ú ​ _________  __    ​ (x + 3) ​÷x     ​

– 1

t dt = 2 Ú ​ _______     ​ 2 (t + 3) t

dx_____ 83. Ú ​ ____________       ​ (x + 3) ​÷x  + 2    ​



______

__



|  |

| 

(  ) ( ÷(   ) )

__ 1 = ​÷2 ​     tan– 1 ​ ___ ​  __  ​  ​ + c ​ 2 ​    ÷

)

2x + 1 2 = ___ ​  __  ​  tan– 1 ​ ​ ​ ______  ​ ​       ​ + c 5 ​÷5 ​   

dx 88. Ú ​ ________      ​ _____ x2 ​÷x  – 1 ​ 

Let

x – 1 = t2





dx = 2t dt



Also, x = t2 + 1



2t dt = Ú ​ ________    (t2 + 1) 2t

 ​

dt = 2 Ú ​ _______     2 (t + 1)2

dt  ​ Now, Ú ​ ______     ​ t2 + 1

Indefinite Integrals 

1.111



1 1 = _____ ​  2      ​ Ú dt – Ú ​ ________      ​× (– 2t) ◊ t dt t +1 (t2 + 1)2

x dx x dx 91. Ú ​ __________________             _____  ​ = Ú ​ _________________ _____ (x2 + 2x + 2) ​÷x  + 1 ​   ((x + 1)2 + 1 ​÷x  + 1 



(t2 + 1) – 1 t = _____ ​  2      ​ + 2 Ú ​ _________    ​  dt t +1 (t2 + 1)2 

 ​  ​



dt dt t = _____ ​  2      ​ + 2 Ú ​ _______      ​– 2 Ú ​ _______     t +1 (t2 + 1) (t2 + 1)2



(t2 – 1)t dt = 2 Ú ​ _________     (t4 + 1)t

 ​

t2 – 1 = 2 Ú ​ ______ ​  4    ​ ​ dt t +1



1 – (1/t2) = 2 Ú ​ _________  ​  2    ​   ​ dt t + (1/t)2



1–1  ​  ​ _____   t2 __________       ​  ​ dt = 2 Ú ​ ​  1 2 ​​ t + __ ​   ​   ​​ ​ – 2 t

__ 1 ​ t + __ ​   ​  – ​÷2 ​     ​ t 1 = ___ ​  __  ​  log ​ ​ ___________    __  ​  ​ + c 1 ​÷2 ​    ​ t + __ ​   ​  + ÷ ​ 2 ​     ​ t

dt t  ​ fi  2 Ú ​ ________      ​= ______ ​       ​+ 2 tan– 1 t + c (t2 + 1)2 t2 + 1 _____



_____ ​ x  – 1 ​  ÷ = ​ ______ ​ + 2 tan– 1 (​÷x  – 1 ​  )+c x   

dx 89. Ú ​ _____________       ​ _____ 2 (x – 4) ​÷x  + 1  ​  

Let (x + 1) = t2



fi dx = 2tdt

Let (x + 1) = t2 fi dx = 2tdt

(  )

( 

)

( (  ) )

 | | (  ( 



t dt = 2 Ú ​ ____________      ((x + 1)2 – 4) t



 ​

dt = 2 Ú ​ __________       ​ 2 (t + 2t – 3)

where t = ​÷x  + 1 ​  

_____



dt = 2 Ú ​ ___________      (t + 3) (t – 1)

 ​

1 1 1 = __ ​   ​  Ú ​ ____ ​       ​ – ____ ​       ​  ​ dt 2 t–1 t+3



t– 1 1 = __ ​   ​  log ​____ ​     ​  ​ + c 2 t+3



​ x  + 1 ​  – 1 ÷ 1 _____    = __ ​    ​  log ​ ​ __________    ​    ​ + c 2  ​÷x  + 1 ​  + 3

( 

)

|  |

dx 90. Ú ​ _________   __   ​ 2 (x + 1) ​÷x     ​

| 



Let

x = t2





dx = 2tdt



t dt = 2 Ú ​ _______    4 (t + 1) t

 ​

dt = 2 Ú ​ ______    3 (t + 1)

 ​

2 dt = Ú ​ ______    (t4 + 1)

 ​

(t2 + 1) – (t2 – 1) = Ú ​ ​ _______________     ​     ​ dt (t4 + 1)

(  Ú ( 

dx 92. Ú ​ _________   __  2 (x – 1) ​÷x     ​  ​

|

_____

) )

 ​  ​  ​

Let x2 = t fi 2xdx = dt

t dt = 2 Ú ​ _______    (t4 – 1)t dt = 2 Ú ​ ______    4 (t – 1) dt = 2 Ú ​ ____________      (t2 – 1) (t2 + 1) 1 1 = ​ _____ ​  2      ​ – _____ ​       ​  ​ dt t – 1 t2 + 1

( 

|  | |  |

)



t–1 1 = ​ __ ​  log ​ ​ ____   ​  ​ – tan– 1 (t) + c 2 t+1



__ ​ x     ​ – 1 ÷ 1 = ​ __ ​  log ​ ​ ______    ​  ​ – tan– 1 (​÷x    ​)  + c __ 2 ​÷x    ​ + 1

__

x dx 93. Ú ​ ________________       _____ 2 (x – 2x + 2) ​÷x  – 1 ​   ​

) )

2 (t2 + 1) (t – 1) ______ =  ​ ​ ______    ​ – ​     ​  ​ dt 4 4 (t + 1) (t + 1) and then you do it.

x dx = Ú ​ __________________       _____  ​ 2 (​  (x – 1) + 1 )​ ​÷ x – 1 ​  Let (x – 1) = t2



fi dx = 2t dt

2



(t + 1) 2t dt = Ú ​ __________      ​ (t4 + 1) t

1.112  Integral Calculus, 3D Geometry & Vector Booster

(t2 + 1) dt = 2 Ú ​ ________     t4 + 1)

 ​

1 ​ 1 + __ ​  2  ​   ​ dt t = 2 Ú ​ _________    1 2 __ ​ t + ​  2  ​   ​ t

 ​

 ​

1 where t = _____ ​       ​ x+1

(  ) (  ) (Ú   )

dx __________ 95. Ú ​ _________________       (x + 2) ​÷x  2 + 2x +    2  ​

1 ​ 1 + __ ​  2  ​   ​ dt t = 2   ​ __________       1 2 __ ​​ t – ​   ​   ​​ ​ + 2 t

(  )

(  )

dz 1 = 2 Ú ​ _____     ​   Let z = ​ t – __ ​   ​   ​ 2 t z +2 __ z ​  __   ​  ​ + c =÷ ​ 2 ​     tan– 1 ​ ___ ​ 2 ​    ÷

(  )

(  (  ) ) ( 



__ 1 1 = ​÷2 ​     tan– 1 ​ ___ ​  __  ​ ​  t – __ ​   ​   ​  ​ + c t ​ 2 ​    ÷



__ 1 _____ 1 = ​÷2 ​     tan– 1 ​ ___ ​  __  ​  (÷ ​ x  – 1 ​ – ______ ​  _____      ​  ​ + c ​ 2 ​    ​÷x  – 1 ​  ÷

)

dx_____ 94. Ú ​ _____________      (x + 1) ​÷x  2 + 1   1 Let  (x + 1) = __ ​   ​  t

 ​  ​

1 fi  dx = – ​ __2  ​  dt t 1–t 1 Also, x = __ ​   ​  – 1 = ​ ____     ​    t t





 ​



1 – ​ __2  ​  dt t ___________ = Ú  ​ ______________       1 1 2 __ ​   ​  ​ ​​ 1 – __ ​   ​   ​​ ​   + 1  ​ t t

÷(  

dt ____________ = – Ú ​ _____________       ​ 2   – 2t +   1)  ​ ÷​  (2t dt 1__ ___________ = – ​ ___   ​  Ú ​  __________       ​ ​ 2 ​    ÷ 1 2 __ ​ ​ t – t +   ​   ​   ​  ​ 2

)

dt 1__ ________________ = – ​ ___   ​   Ú ​  _______________       ​ ​ 2 ​    ÷ 1 2 1 2 ​  ​ ​​ t – __ ​    ​  ​​ ​ +    ​​ __ ​   ​   ​​ ​  ​  ​ 2 2

÷ ( (  ) (  ) ) 1 1 1 = – ​ ___  ​  log ​ ​( t – __ ​   ​  )​ + ​ t  – t + __ ​   ​ ​   ​ + c ÷ 2 2| | ​ 2 ​ 1 1 1 = – ​ ___  ​  log ​ ​( t – __ ​   ​  )​ + ​ t  – t + __ ​   ​ ​   ​ + c ÷ 2 2| ​ 2 ​ | _________



__ ÷    __

÷   

1 Put (x + 1) = __ ​   ​  t







2





 ​

dt ______ = – Ú ​ _______     ​ 2  ​ ÷​ t  + 1  



= – log ​ t + ​÷t 2 + 1 ​  ​ + c



1 1 ​  2  ​  + 1 ​    ​+ c = – log ​ __ ​ x ​ + ​ __ x



÷ 

_____

| 

| 

÷ 

|

______

|

dx _____ 96. Ú ​ ________     x ​÷x  2 + 4  1 Put x = __ ​   ​  t

 ​  ​







1 – ​ __2  ​  dt t _____    = Ú ​ ________ 1 1 __ ​   ​  ​ __ ​  2  ​  + 4  t t

 ​  ​

dx ______ = – Ú ​ _______      2 + 1  ÷​ 4t

 ​  ​

dt 1 _________ = – ​ __ ​  Ú ​ __________      2 ​ t 2 + (1/2)2 

 ​  ​

1 1 = – ​ __ ​  log ​ t + ​ t2 + __ ​   ​    ​ ​ + c 2 4



1 1 1 1 = – ​ __ ​  log ​ __ ​ x ​ + ​ __ ​  2  ​  + __ ​   ​ ​    ​+ c 2 4 x

÷

| 

| 

÷ 

______

÷ 

|

______

|

1 Put (x – 1) = __ ​   ​  t

 ​  ​





1 dx = – ​ __2  ​  dt t

÷ 

dx_____ 97. Ú ​ ____________      (x – 1) ​÷x  2 + 4 

_________ 2

1 dx = – ​ __2  ​  dt t

1 – ​ __2  ​  dt t    = Ú________ ​  _____ 1 1 __ ​   ​ ​ __ ​    ​  + 1 ​   t  t2

)

dt  = – Ú ____________ ​  ___________     ​   – 1)2 +   t2  ​ ÷​  (t

÷(  

 ​

1 __ ​  2  ​  dt t = Ú – ______________ ​  ____________       ​ 2 1 1 __ __ ​   ​  ​ ​​ ​   ​  + 1  ​​ ​   + 4  ​ t t

÷(  

)

1 dx = – ​ __2  ​  dt t

Indefinite Integrals 



dx ___________ = – Ú ​ _____________       ​   + t)2 +   4t2  ​ ÷​ (1



dt __________ = – Ú ​ ___________       ​ 2   + 2t    + 1  ​ ÷​ 5t



 ​

 ​  ​

÷ 

dt 1__ ______________ = – ​ ___   ​  Ú ​  _____________       ​ ​÷5 ​    1 2 2 2 ​ ​​ t + __ ​   ​   ​​ ​ +    ​​ __ ​    ​  ​​ ​  ​ 5 5

÷(   ) (  ) 1 = – ​ ___  ​  log ​ ​( t + __ | ​ 15  ​ )​ + ÷​ t  __​ 25 ​  t + __​ 15  ​ ​ |​ + c ​÷5 ​   ________



2

__

1 where t = ______ ​       ​ (x – 1) dx _____ 98. Ú ​ ______________      (2x – 1) ​÷x  2 + 1    ​  ​

( 

1 (2x – 1) = __ ​   ​  t dt dx = – ​ ___2   2t

 ​

dt _____________ = – Ú ​ ______________       ​ ​÷(1   – 2t)2 –   36t2  ​



dt ___________ = – Ú ​ ____________       ​ 32t2  ​ ÷​ 1  – 4t –   



( 

)

1 1 ​   ​  + 1  ​ Also, x = __ ​   ​ ​  __ 2 t





÷  ( 

)

dt 1__ _______________ = – ​ ____    ​         ​ Ú ​  ______________ 4​÷2 ​    t ___ 1 2 ​ – ​ t – ​ __  ​  –   ​    ​   ​  ​ 8 32

÷  { 

}

dt 1__ _____________________ = – ​ ____    ​           ​ Ú ​  ____________________ 4​÷2 ​    3 2 1 2 ___ ​ – ​ ​​ t – ​        ​  ​​ ​ – ​​ ___ ​    ​  ​​ ​  ​  ​ 16 16

÷  { ( 

) (  ) }

dt 1__ ________________ = – ​ ____    ​    ​  _______________       ​ Ú 2 4​÷2 ​    3 1 2 ___ ___ ​ ​​ ​    ​  ​​ ​ – ​​ t –   ​    ​  ​​ ​  ​ 16 16 1 ​ t – ___ ​    ​  ​ 16 1__ – 1 _______ ____ = – ​     ​   sin  ​ ​   ​    ​ + c 3 4​÷2 ​    ___ ​    ​  16

÷(   ) (  ) (  )

(  )



dt ___ ​  2  ​  2t ____________       ​ = – Ú ​ _______________ 2 1 __ 1 __ 1 __ ​   ​​ ​    ​ ​​ ​   ​  + 1  ​​   ​ + 1  ​ t   4 t



dt ___________ = – 2 Ú ​ _____________       ​   + t)2 +   4t2  ​ ÷​ (1





dt __________ = – 2 Ú ​ ___________      2   + 2t    + 1  ​ ÷​ 5t

dx ______ 100. Ú ​ _________     2 x  ​÷x  2 – 1    ​

dt 2__ ___________ = – ​ ___   ​  Ú ​  __________       ​ 2t __ 1 ​÷5 ​     2 __ ​ t + ​   ​     + ​   ​   ​ 5 5

 ​

Put

1 x = __ ​   ​  t





1 dx – ​ __2  ​  dt t

 ​



÷  ( 

)



÷ 

dt 2__ ______________ = – ​ ___   ​  Ú ​  _____________       ​ 2 ​÷5 ​    1 2 2 __ ​ ​​ t + ​   ​   ​​ ​ +    ​​ __ ​   ​   ​​ ​  ​ 5 5

÷(   ) (  ) 2 = – ​ ___  ​  log ​ ​( t + __ | ​ 15 ​  )​ + ÷​ t  + __​ 25 ​  t + __​ 1t ​ ​  |​ + c ​÷5 ​   __________



2

__



1 where t = _______ ​       ​ (2x – 1) dx _____ 99. Ú ​ ______________      (3x + 2) ​÷x  2 – 4 

  

)

1 1 Also, x = __ ​    ​ ​ __ ​   ​  – 2  ​ 3 t





Put

 ​



dt ___ ​  2  ​  3t ____________ = – Ú ​ _______________      2 1 1 __ 1 __ ​   ​  ​ __ ​   ​ ​​  ​   ​  – 2  ​​   ​ – 4  ​ t 9 t





1 (3x + 2) = __ ​   ​  t dt ___ dx = – ​  2   3t

Put

 ​

dx 1__ ___________ = – ​ ___   ​  Ú ​  __________      2 1 ​÷5 ​     2 __ ​ t + ​   ​  t    + __ ​   ​   ​ 5 5

1.113

( 

)

–1 1__ – 1 16t = – ​ ____    ​   sin  ​ ​ ______  ​    ​ + c 3 4​÷2 ​   

1 – t2 1 Also, x2 – 1 = __ ​  2  ​  – 1 = ​ _____  ​    t t2 1 – ​ __2  ​  dt dx t _____ _____ Thus, Ú ​ ________      ​ = Ú ​ ________    2 2 – t2 x  ​÷x  – 1 ​   1 1_____ __ ​  2  ​ ​  ​  2 ​ ​       t t



÷ 

 ​

– t dt _____ = Ú ​ ______     ​  ​ ÷​ 1  – t2 



= ​÷1  – t2    ​+ c

_____

1.114  Integral Calculus, 3D Geometry & Vector Booster _______

÷  (  )

t dt______ = – Ú ​ _____________       ​ 2 (1 – t ) ​÷1  + 2t2   ​



1 2 = ​ 1 – ​​ __ ​ x ​  ​​  ​ ​ + c





÷​ 1  – x2 ​  = ​ ______ ​ + c x  

v dv 1 = ​ __ ​  Ú ​ ___________       ​ Let (1 + 2t2) = v2 2 4 _____ v –1 ​ ​   ​   – 1  ​ v 2 fi 4tdt = 2v dv

_____



dx_____ 101. Ú ​ ____________      2 (x + 1 ​÷x  2 + 2  1 Put x = __ ​   ​  t dt fi dx = __ ​  2 ​  t

 ​  ​





dt – ​ __2 ​  t ______ = Ú ​ ______________       ​ 1 1 ​ __ ​  2  ​  + 1  ​ ​ __ ​  2  ​  + 2    ​ t t t dt______ = – Ú ​ ______________      2 (t + 1) ​÷1  + 2t2   ​

(  ) ÷ 

dv______ 1 = – ​ __ ​  Ú ​ _____________      ​ , where t2 = v 2 (v + 1) ​÷1  + 2v ​  fi 2tdt = dx  ​



Let



dv = z dz 2

z –1 Also, v = _____ ​      2

 ​

(1 + 2v) = z2

z dz 1 = – ​ __ ​  Ú ​ ___________      2 z2 – 1 _____ ​ ​   ​   + 1  ​ z 2

( 

 ​  ​

= cot– 1 (z) + c



= cot– 1 (​÷1  + 2v) ​   +c

)



dv 1 = __ ​   ​  Ú ​ _______    2 (v2 – 3)

 ​

v –÷ ​ 3 ​    1__ __  = ​ ____    ​   log ​ ​ ______  ​   ​ + c 4 ​÷3 ​    v+÷ ​ 3 ​   



​÷1  + 2t2   ​ – ÷ ​ 3 ​    1 ______    = ____ ​   __ ​   log ​ ​ ____________ __ ​  ​ + c 2 4 ​÷3 ​    ​÷1  + 2t    ​+ ​÷3 ​   

|  |

| 

__

______

__

 | | ÷  ÷ 

______

|

__ 1+2 ​ ​ _____  ​       ​– ​÷3 ​    2 x 1__ ____ ___________ = ​     ​   log ​ ​  ______     ​  ​ + c __ 4 ​÷3 ​    1+2 ​ ​ _____  ​       +  ​ ​ 3 ​    ÷ x2 dx ______ 103. Ú ​ _____________       ​ 2 (1 + x ) ​÷1  – x2    ​ 1 Put x = __ ​    t

 ​

dt fi dx = – ​ __2 ​  t



dt __ ​  2 ​  t ______ = – Ú ​ _____________       ​ 1 1 ​ 1 + __ ​  2  ​   ​ ​ 1 – __ ​  2  ​    ​ t t



t dt _____ = – Ú ​ _____________      2 (1 + t ) ​÷t 2 – 1  

)

dz = – Ú ​ _______    (z2 + 1)

( 

(  ) ÷ 

v dv  ​ = – Ú ​ ________     ​, 2 (v + 2) v  ​

______

_______

Let (t 2 – 1) = v fi 2tdt = dx



= cot– 1 (​÷1  + 2t2) ​   +c





2 = cot– 1 ​ ​ 1 + __ ​  2  ​ ​     ​+ c x

dv = – Ú ​ _______    (v2 + 2)

 ​

v 1__ – 1 ___ = – ​ ___   ​  cot  ​ ​  __  ​  ​ + c ​ 2 ​    ​÷2 ​    ÷



​÷t 2 – 1 ​  1 __ ​   = ___ ​  __  ​  cot– 1 ​ ​ ______  ​ + c ​ 2 ​    ​÷2 ​    ÷



1 1 1 = ___ ​  __  ​  cot– 1 ​ ___ ​  __  ​ ​  __ ​    ​  – 1 ​  ​ + c ​ 2 ​    ​÷2 ​     x2 ÷

( ÷  ) ______

dx______ 102. Ú ​ _____________      2 (x – 1) ​÷x  2 + 2    ​







dt __ ​  2 ​  t ______ = – Ú ​ _____________       ​ 1 1 ​ ​ __2  ​ – 1  ​ ​ __ ​  2  ​  + 2    ​ t t

(  ) ÷ 

(  ) _____

1 Let x = __ ​   ​  t

 ​

(  )

dt dx = – ​ __2 ​  t

(  ÷  ) _____

x dx_____ 104. Ú ​ _____________      4 (x – 1) ​÷x  4 + 3   ​  ​

Let x2 = t fi

2xdx = dt

1.115

Indefinite Integrals 

dt ______ 1 = __ ​   ​  Ú ​ _____________      2 (t2 – 1) ​÷t 2 + 3    ​



dy ___ ​  2 ​  y 1 1 ______  ​ = – ​ __ ​  Ú ​ ______________       ​ Let t = __ ​ y ​ 2 __ 1 1 ​ ​  2  ​ – 1  ​ ​ __ ​  2  ​  + 3 ​  dy y y fi dt = – ___ ​  2 ​  y

(  ) ÷ 

( 

)



t fi ​ _______ ​  _____      ​  ​ dx = dt 2 ÷​ x  + 1 ​ 



1 1 2 Also, x2 + 1 = __ ​    ​ ​​ t – __ ​   ​   ​​ ​ + 1 t 4



fi ​÷ x2

y dy 1 ______ = – ​ __ ​  Ú ​ _______________      2 (1 – y2) ​ 1  + 3y2    

v dv 1  ​ = – ​ __ ​  Ú ​ ________    ​  Let (3y2 + 1) = v2 2 4 (4 – v ) v  ​ fi 3ydy = 2vdu

2

2

( 

_____



)

(  (  ) )

1 1 __ ​   ​  ​  t + __ ​   ​   ​ t 2 ________ x = ​ ​      ​  ​ dt t

dv 1 = __ ​   ​  Ú ​ _______    4 (v2 – 4)





d

 ​

v–2 1 = ___ ​    ​  log ​ _____ ​   ​   ​+ c v+2 16





1 t2 + 1 dx = __ ​   ​ ​  ______ ​  2 ​    ​ dt 2 t



=

 |

|

_______ ​ 3y2 + 1   – ​ 2 1 ___ ______    ​  ​ + ​    ​  log ​ ​ ___________ 16 ​ 3y2 + 1 ​  +2

÷  ÷ 

 | | ÷  ÷ 

______

(  )

t2 + 1 1 1 ​ __ ​  Ú t10 ​ ​ _____  ​    ​ dt = __ ​   ​  Ú t8 (t2 + 1) dt 2 2 t2

dx __________ 105. Ú ​ __________________        ​ 2 (x – 1) ​÷x  2 + 4x +    5  ​

1 Let x = ​ __  t

 ​



dt dx = –  ​ __2 ​  t

dt – ​ __2 ​  t __________ = Ú ​ _________________       1 1 __ 4 __ __ ​ ​  2  ​ – 1  ​ ​ ​  2  ​  + ​   ​  +   5  ​ t t t

(  ) ÷ 

t dt __________ = Ú ​ __________________        ​ 2 (t – 1) ​÷5t   2 + 4t    + 1  ​

 ​

_____

1 = __ ​   ​  Ú (t10 + t8) dt 2



1 t11 = __ ​   ​ ​  ___ ​    ​ + 2 11

______

(x + ÷ ​ x  2 + 1 ​  )=t



Let



1 _____ × 2x fi ​ 1 + ​ ________      ​ ​ dx = dt 2 ​÷x  2 + 1 ​  



x+÷ ​ x  2 + 1 ​  fi ​ __________ ​  _____     ​   ​ dx = dt ÷​ x  2 + 1 ​ 

( 

( 

)

t9 __ ​   ​   ​ + c, 9

______

5 107. Ú (x – ​÷x  2 + 4) ​    dx

)

_____

)

_____



Put (x – ​÷x  2 + 4 ​   )=t



1 _____ × 2x fi ​ 1 – ​ ________      ​  ​ dx = dt 2 ​÷x  2 + 4 ​  



x fi ​ 1 – _______ ​  _____      ​  ​ dx = dt 2 ÷​ x  + 4 ​ 

10



( 

where (x + ​÷x  2 + 1 ​  )=t



106. ​Ú  ​ ​(x + ​÷x  + 1 ​   ) dx 2



_____





(  )

Thus, the given integral reduces to

c

3 ​ __ ​  2  ​  + 1    ​– 2 x 1 ______    = ___ ​    ​  log ​ ​ ___________     ​  ​ + c 16 3 __ ​ ​  2  ​  + 1    ​+ 2 x





÷​ x  2 + 1 ​  Thus, dx = ​ _______ ​      ​  ​ dt t



|  |

  

_______



÷

___________

______  



(  ) 1 1 + 1  ​= __ ​    ​ ​ ​​(   t – __ ​   ​  )​​ ​ + 4 t 2÷ 1 1 = __ ​   ​ ​  ​​(   t + __ ​   ​  )​​ ​  ​ t 2÷ 1 1 = __ ​   ​ ​ ( t + __ ​   ​  )​ t 2





( 

)

( 

( 

)

_____

)

2 + 4 ​  ÷​ x _____ fi ​ x – ​ _______    ​  ​ dx = – dt 2 ÷​ x  + 4 ​  t fi ​ _______ ​  _____      ​ ​ dx = – dt 2 ÷​ x  + 4 ​ 

( 

)

 ( (  ) )

t fi ​ _________ ​       ​  ​ dx = – dt t __ 2 __ – ​ ​    ​  + ​   ​   ​ t 2 fi

( 

1 t dx = __ ​   ​  ​ __ ​    ​  + t 2

)

2 __ ​   ​   ​ dt t

 ​

1.116  Integral Calculus, 3D Geometry & Vector Booster fi



(  )

1 2 dx = ​ __ ​   ​  + __ ​    ​   ​ dt 2 t2

{  (  ) } Ú (  ) (  )



3 = __ ​   ​ ​ ( t– 8/3 – t– 2/3 )​ + c 4 _____

where t = (x + ​÷x  2 – 4 ​   )

1 2 = Ú ​ t5 ​ __ ​   ​  + __ ​    ​   ​  ​ dt 2 t2

110. Do yourself.

5

t ​ __ ​   ​  + 2t3  ​ dt 2



=



t6 t4 = ​ ___ ​    ​ + __ ​   ​   ​ + c 12 2

dx_____ dx ______ 111. Ú ​ ____________       ​ = Ú ​ _____________       ​ 2 2 9 3 x  (x – ÷ ​ x  + 9 ​   x  ​ 1 – ​ 1 + __ ​  2    ​ ​   ​ x

(  ÷  )

_____

where t = (x – ​÷x  2 + 4 ​  ) 108. Ú (x +

______  ​)n dx ÷​ 1  + x2 

______

Put (x + ÷ ​ x  2 + 1) ​   =t





(  ) 2

1 t +1 dx = __ ​   ​ ​  ​ _____  ​    ​ dt 2 t2





(  )

t2 + 1 1 = __ ​   ​  Ú tn ​ ______ ​  2 ​    ​ dt 2 t



1 = __ ​    ​ Ú tn– 2 (t2 + 1) dt 2



1 = __ ​   ​  Ú (tn + tn– 2) dt 2



tn– 1 1 tn + 1 = __ ​   ​ ​  ​ _____     ​ + _____ ​      ​  ​ + c 2 n+1 n–1

( 

t 1 = __ ​   ​  Ú ​ ____     ​ dt 9 t–1



1 (t – 1) + 1 = ​ __ ​  Ú ​ ​ _________     ​   ​ dt 9 t–1

(  ( 

)

)

1 1 = __ ​   ​  Ú ​ 1 + ____ ​       ​  ​ dt 9 t–2 1 = __ ​   ​  (t + log |t – 1|) + c 9

÷ 

9 where t = ​ 1 + __ ​  2  ​    ​ x

______



Put (x + ÷ ​ x  2 – 4) ​   =t



1 ______ × 2x fi ​ 1 + ​ ________    ​   ​ dx = dt 2 ​÷x  2 – 4 ​ 

( 

)

(  ( 

)

( 



1 t __ 2 dx = __ ​   ​ ​ __ ​    ​  – ​   ​   ​ dt t  2 t





1 2 dx = ​ __ ​   ​  – __ ​    ​   ​ dt 2 t2

(  )

Let 2 + 3x = t x





2 x = ​ ____ ​       ​  ​ t –3





– 2 dt dx – ______ ​       ​ (t – 3)2

(  )

)

t – 5/3 = Ú ​ ____ ​   ​   – 2t– 11/3  ​ dt 2



_______ ​  – 2 dt    ​ (t – 3)2 _____________ = Ú​       2 1/2 3/2 3/2 ​​ ____ ​       ​ ​​ ​ t  x t–3

 ​

– 2 dt _______ ​       ​ (t – 3)2 _________________ = Ú ​       3/2 ​ 2 1/2  3/2 ____ 2 ​​ ____ ​       ​  ​​ ​t  ​​ ​       ​  ​​ ​ t –3 t –3



= – Ú t– 3/2 dt



2 = __ ​  _  ​ + c ​ t     ​ ÷

)



1 2 ​ __ ​   ​  – __ ​    ​   ​ 2 t2 _______ = Ú ​  5/3 ​ dt     t

 ​

)

x fi ​ 1 + _______ ​  ______    ​   ​ dx = dt 2 ÷​ x  – 4 ​  t fi ​ ______ ​  _____      ​ ​ dx = dt 2 ÷​ x  – 4 ​ 

( 



dx 112. Ú ​ ____________      x1/2 (2 + 3x)3/2

dx _____ 109. Ú ​ _____________       ​ (x + ÷ ​ x  2 – 4 ​  )5/3



)

______

where t = (x + ÷ ​ x  + 1 ​  )



t 1 = – ​ __ ​  Ú ​ ____      ​dt 9 1 – t 



2







)

_____



( 

9 Put ​ 1 + __ ​  2  ​   ​ = t2 x dx t ​ ___3 ​ = – ​ __  ​  dt 9 x

(  )

(  ) (  )

(  )

1.117

Indefinite Integrals 

2 = _______ ​  ______      ​+ c 2______ + 3x ​ ​  x    ​     ​



÷ 

115. Ú dx/x1/3 (2x + 1)5/3

dx 113. Ú ​ ____________      x2/3 (2 + 3x)4/3



Put (2x + 1) = t x

 ​

Let (2 + 3x) = t x



1 fi x = ____ ​      t–2



fi x (t – 3) = 2

 ​

dt fi dx = – ​ ______    (t – 2)2

2 fi x = ______ ​      (t – 3) – 2 fi dx = ​ ______     ​ dt (t – 3)2

 ​





2 ______ ​    2   ​ (t – 3) __________________ = – Ú ​          ​dt 2 2/3 4/3 ____ 2 4/3 ​​ ____ ​       ​  ​​ ​ t  ​​ ​       ​  ​​ ​  t–3 t–3

(  )

2 = – Ú ​ __ ​  × t– 4/3 dt 4



1 = – ​ __ ​  Ú t– 4/3 dt 2



3 = __ ​   ​  (t – 4/3) + c 2



(  )

( ( 



3 = __ ​   ​  (t– 2/3) + c 2

)



Put (3x – 1) = t x 1 fi x = – ​ ______      ​ (t – 3) 1 fi dx = ______ ​    2   ​ dt (t – 3)



1  ​ ______      ​ (t – 3)2 = Ú​ __________________         ​ dt  ​ _________________        ​ 3/4 5/4  1 5/4 1 ​​ ____ ​       ​  ​​ ​ t ​​ ____ ​       ​  ​​ ​ t –3 t –3

(  ) (  )

 ​

= Ú  t – 5/4 dt



= – 4t– 1/4 + c



4 = – ​ ___   ​ + c 4 _ ​ t     ​ ÷

dx      Ú ​ _____________ (x – 1)3 (x + 2)4 dx = Ú ​ _______________       ​ 3 (x – 1) ______ ​​ ​     ​  ​​ ​ (x + 2)7 (x + 2)

( 

)

(  )

x–1 Put ​ ​ _____   ​  ​ = t x+2



3 fi ​ _______      ​dx = dt (x + 2)2 



2t + 1 Also, x = ​ _____   ​ 1–t





3 x + 2 = ____ ​      1–t

dt 1 = __ ​  6  ​   Ú ​ ________      ​ 1 5 3 t3 ​​ ____ ​       ​  ​​ ​ t –1

(  )

5 1 (t – 1)  dt = __ ​  6  ​  Ú  ​ ________  ​     t3 3 5 – 5t4 + 10t3 – 10t2 + 5t – 1) dt 1 t____________________________ __ = ​     ​      ​          Ú  ​ t3 36



4 _______ = – ​ ________      ​ + c 1 4 ​ ​ 3 – __ ​ x ​   ​ ​

÷(   

( (  ) )

3 1 = __ ​   ​ ​  _________ ​     ​   ​+ c 2 1 2/3 ​​ 2 + __ ​ x ​  ​​ ​



 ​

dt = Ú ​ ___    t5/4

(  )

117. Do yourself. 118. We have,

 ​

 ​



= – Ú t– 5/3 dt

(  )

116. Do yourself

dx 114. Ú ​ ____________      3/4 x  (3x – 1)5/4







3 1 = __ ​   ​ ​  _________ ​    1/3   ​  ​ + c 2 2 ​​ 3 + __ ​ x ​  ​​ ​

)

 ​

dt ______ ​    2   ​ (t – 2) ___________________ = – Ú ​          ​ 1 1/3 5/3 ____ 1 5/3 ​​ ____ ​       ​  ​​ ​ (t)  ​​ ​       ​  ​​ ​ t –2 t –2

)



( 

10 1 = __ ​  6  ​  Ú  ​ t2 – 5t + 10 – ___ ​     ​ + t 3

5 __ ​  2  ​  – t

)

1 __ ​  3  ​   ​ dt t

1.118  Integral Calculus, 3D Geometry & Vector Booster

( 

)

5 5 1 t3 __ 1 = __ ​  6  ​ ​  __ ​   ​  – ​   ​  t2 + 10t – 10 log |t| – __ ​   ​  + ___ ​  2  ​  ​ + c t 2t 3 3 2 x–1 where t = ​ _____ ​   ​  ​ x+2

(  )

dx dx 119. Ú ​ _____________     2 ​ = Ú ​ ______________       ​ 3 x–2 2 5 _____ (x – 1)  (x – 2) (x – 1)  ​​ ​   ​  ​​ ​ x–1 x–2 Put ​ _____ ​   ​  ​ = t x–1

(  )

( 

1 dt = __ ​   ​  Ú ​ ___    3 t3/4 4 1 = __ ​   ​ ​  ___ ​  _  ​  ​ + c 3 4​÷t     ​



(  )

 ​

 (  (  ) ) ÷

4 _______ 1 = __ ​   ​ ​  _________ ​     ​   ​+ c 3 4 _____ x–1 ​  ​ ​   ​   ​ ​  x–2



)

(x – 1) ◊ 1 – (x – 2) ◊ 1 ​ ___________________      ​ dx    = dt (x – 1)2 dx ​ _______     ​= dt (x – 1)2 t–2 Also, x = ​ _____  t–1 t– 2 1  ​ (x – 1) = ​ ____   ​ – 1 = – ​ ______      ​ t–1 (t – 1) dt = Ú ​ ________     1 3 2 ____ ​​ ​       ​  ​​ ​ t t–1

(  )

dx dx 122. Ú ​ _________      ​ = Ú ​ ______________     ​ x 2  _____ x2 (x + 5)4 ​​ ​       ​  ​​ ​ (x + 5)6 x+5

( 

)

(  )



x Put ​ _____ ​     ​  ​ = t x+5



5 dx fi ​ _______     ​= dt (x + 5)2



dx fi ​ _______     ​= __ ​   ​  5 (x + 5)2



dt 1 = __ ​  5  ​  Ú ​ ________      ​ 1 4 2 5 t  ​​ ____ ​       ​  ​​ ​ 1–t

(  )

 ​

 (t – 1)3 dt = Ú ​ _________  ​    t2



4 1 (t – 1)  dt = __ ​  5  ​  Ú ​ _________  ​     t2 5



(t3 – 3t2 + 3t – 1) = Ú ​ _______________  ​ dt      t2



4 3 2 1 (t – 4t + 6t – 4t + 1) dt = __ ​  5  ​  Ú ​ ______________________      ​    t2 5



3 1 = Ú ​ t – 3 + ​ __ ​  – __ ​    ​   ​ dt t t2





t2 1 = ​ __ ​   ​  – 3t + 3 log |t| + __ ​   ​   ​ + c t 2

1 4 = __ ​  5  ​  Ú ​ t2 – 4t + 6 – __ ​   ​  + t 5



1 t3 1 = __ ​  5  ​ ​  __ ​   ​  – 2t2 + 6t – 4 log |t| – __ ​   ​   ​ + c t 3 5

(  ( 

( 

)

)

)

x–2 where t = ​ _____ ​   ​  ​ x–1

( 

dx dx ______________ 121. Ú ​ _______________       ​ = Ú ​ ________________       ​ 3/4 4 3 5 (x – 1)  (x + 2)5/4 ​÷(x   – 1)  (x +   2)  ​

(  )

)

1 __ ​  2  ​   ​ dt t

)

)

x where t = ​ _____ ​       ​  ​ x+5

120. Do yourself.

dx = Ú ​ _______________       ​ x – 1 3/4 _____ ​​ ​     ​ ​​ ​ (x + 2)2 x+2

(  ( 

dx 123. Ú ​ _______________       ​ 3/2 (x – 1)  (x + 1)5/2

dx = Ú ​ _______________       ​ x – 2 3/2 _____ ​​ ​     ​  ​​ ​ (x + 1)2 x+1

(  )

(  )



x –  1 Put ​ _____ ​     ​  ​ = t x+2



x–1 Let ​ _____ ​     ​  ​ = t x+1



(x + 2) ◊ 1 – (x – 1) ◊ 1 fi ​ __________________      ​ dx    = dt (x + 2)2



(x + 1) ◊ 1 – (x – 1) ◊ 1 fi ​ ___________________      ​ dx    = dt (x + 1)2



3 fi ​ _______      ​ dx = dt (x + 2)2



2 fi ​ _______      ​dx = dt (x + 1)2 



dx dt fi ​ _______     ​= __ ​   ​  3 (x + 2)2



dx dt fi ​ _______  2    ​= __ ​   ​  2 (x + 1)

( 

)

Indefinite Integrals 

 ​

1 dt = __ ​   ​  Ú ​ ___    2 t3/2

 ​

1 = __ ​   ​  Ú t– 3/2 dt 2 1 = – ​ ___  ​ + c ​ t     ​ ÷ 1 _______ = – ​ ________      ​+ c x –1 ​ ​ _____ ​     ​   ​  ​ x+1

÷(   ) x+1 = – ​ ​  _____  ÷ x – 1  ​ ​+ c

 ​

Let x3 = t





Again let



3x2 dx = dt

dt 1 ______ = __ ​   ​  Ú ​ ________     3 t ​÷3t   + 4 ​ 



Also,

v2 – 4 t = ​ ______ ​   ​    ​ 3

( 

)



dv 2 = ​ __ ​  Ú ​ _______    3  (v2 – 4)

 ​

v–2 2 1 = __ ​   ​  × __ ​   ​ log ​ _____ ​   ​   ​+ c 3 2 v+2





– 30x5 dx = 2t dt





t dt x5 dx = –  ​ ___  15

 ​

t dt 1 = – ​ ___  ​  Ú ​ _______    15 2_____ – t2 ​ ​   ​    ​ t 5 1 = __ ​   ​  Ú dt (t2 – 2) 3

(  )

|  |

| 

_______

|



3x   3 + 4   ​– 2 ÷​ _______ 1 = __ ​   ​  log ​   ​ ____________       ​  ​ + c 3 3 ​÷3x   + 4   ​+ 2

|

__

|

 ​– ​÷2 ​    ÷​ 2  – 5x6   1 = __ ​   ​  log ​_____________ ​  _______       __ ​  ​ + c 3 ​÷2  – 5x6    ​+ ​÷2 ​   



​ 3t   + 4   ​– 2 ÷ 1 ______    = __ ​    ​ log ​  ​ ___________    ​  ​ + c 3 ​÷3t   + 4   ​+ 2

Let 3x – 2 = t2 fi 3 dx = 2t dt

t dt 2 = __ ​   ​  Ú ​ ________     ​ 2 3 _____ t +2 ​ ​   ​    ​ t 3

(  )



dt = 2 Ú ​ ______     ​ 2 t +2



__ t =÷ ​ 2 ​     tan– 1 ​ ___ ​  __   ​  ​ + c ​ 2 ​    ÷



__ 3x – 2 =÷ ​ 2 ​     tan– 1 ​ ​ ​ ______  ​ ​       ​ + c 2

(  )

( ÷  ) _____

3

dx x _______ _______ 125. Ú  ​ _________    ​  = Ú  ​ __________       ​dx 4 4 x ​÷5x   + 3 ​  x  ​÷5x   4 + 3    ​ 

Let 5x4 + 3 = t2





20x3 dx = 2t dt



t dt x  dx = ___ ​    10



Put (2 – 5x6) = t2





| 

|  | __



dx ______ 127. Ú ​ ________     x ​÷3x   – 2 ​   ​

(  )

_______



t – ​÷3 ​    1 __  = ____ ​   __ ​   log ​ ​ ______  ​  ​ + c 4 ​÷3 ​    t + ​÷3 ​   

__

v dv 2 = ​ __ ​  Ú ​ _________     ​ 2 9 v_____ –4 ​ ​   ​    ​ ◊ v 3

| 

dt 1 = __ ​   ​  Ú ​ _______     ​ 2 (t2 – 3)

t – ​÷2 ​    1 __  = __ ​   ​  log ​______ ​   ​  ​ + c 3 t + ​÷2 ​   

3 dt = 2v dv

______

 ​

 ​

3t + 4 = v2



|  |

)

dx x5 _______ _______ 126. Ú ​ _________      ​ = Ú ​ __________       ​dx x ​÷2  – 5x6   ​ x6 ​÷2  – 5x6    ​



 ​

( 

_______

2 dx x_______  dx _______ 124. We have, Ú ​ _________    ​  = Ú ​ __________      3 3 x ​÷3x   + 4 ​  x  ​÷3x   3 + 4 ​ 



t dt 1 = ___ ​    ​  Ú ​ ________    10 2 __ 3 ​ t – ​   ​   ​ t 5

where t = ÷ ​ 5x   4 + 3   ​

_____



1.119

dx x8 _______ _______ 128. Ú ​ _________    ​  = Ú ​ __________       ​dx x ​÷3x   9 – 2 ​  x9 ​÷3x   9 – 2  ​ 

Let 3x9 – 2 = t2



fi 27x9 dx = 2t dt



2t dt fi x8 dx = ____ ​    27

3

1.120  Integral Calculus, 3D Geometry & Vector Booster  ​



t dt 2 = ___ ​    ​  Ú ​ _______     ​ 27 _____ t2 + 2 ​ ​   ​    ​ t 3

dx dx 131. Ú ​ __________      ​ = Ú ​ ___________   c    ​ 3 (c + dx2)3/2 x  ​ d + __ ​  2  ​   3/2 ​ x

dt 2 = __ ​   ​  Ú ​ ______    9 (t2 + 2)



( 

(  )

__

(  )  ​( ​ ​  ______ ÷3x 2– ​ ​ 2  )​ + c

 ​

​ 2 ​    ÷ t = ___ ​   ​  tan– 1 ​ ___ ​  __   ​  ​ + c 9 ​÷2 ​   



​ 2 ​    ÷ = ___ ​   ​  tan– 1 9

__

______





Let 2x10 – 3 = t2





10x9 dx = 2t dt





t dt x9 dx = ___ ​    5



t dt 1 = __ ​   ​  Ú ​ _______     ​ 2 5 _____ t +3 ​ ​   ​    ​ t 10 dt = 2 Ú ​ ______    (t2 + 3)

(  )

t 2 = ___ ​  __  ​  tan– 1 ​ ___ ​  __   ​  ​ + c ​ 3 ​    ​÷3 ​    ÷



2 = ___ ​  __  ​  tan– 1 ​ 3 ​    ÷

10

t dt = – Ú ​ _________     2 (2t + 3)3/2

1 Let x = __ ​   ​  t 1 fi dx = – ​ __2  ​  dt t

 ​

Again let (2t2 + 3) = v2





 ​



1 = __ ​ c ​ × 1 = __ ​ c ​ ×

132. Do yourself

1 __ ​   ​  + c t 1 _________ ​  ________      ​ + c c ​  ​ d + __ ​  2  ​    ​ ​ x

÷ ( 

)

1 v dv = – ​ __ ​  Ú ​ ____   2 v3 1 dv = – ​ __  ​ Ú ​ ___2   2 v 1 = ___ ​    ​ + c 2v 1 _________ = ​  _______      ​+ c 2 ​÷2t   2 + 3   ​ x = _________ ​  _______      ​+ c 2 ​÷2  + 3x2    ​

2t dt = v dv

(  ) (  )

2 Let ​ __ ​  4  ​  – 5  ​ = t2 x 8 fi – ​ __5  ​  dx = 2t dt x dx t dt fi ​ ___5 ​ = – ​ ___ ​  4 x

 ​



 ​

 ​

dt 1 __ = – ​ __ c ​ Ú ​ t2  

(  )

dx 130. Ú  ​ __________      (2 + 3x2)3/2



 ​

x dx x dx dx 134. Ú ​ _________       ​ = Ú ​ __________       ​ = Ú ​ ___________      3/2 2 3/2 2 6 _____ 5 __ (2 – 5x4)3/2 x  ​​ ​  4    ​   ​​ ​ x  ​​ ​  4  ​  – 5  ​​ ​ x –5 x

_______



t dt 1 ___ = – ​ __ c  ​Ú  ​  t3  

133. Do yourself

(  ) –3  ​( ​  ​  ________     )​ + c ÷ 2x 3 ​ ​ 

 ​



 ​

)

2c fi – ​ ___3 ​  dx = 2t dt x dx t dt fi ​ ___3 ​ = – ​ ___ c   ​  x



9

( 

c Let ​ d + __ ​  2  ​   ​ = t2 x



dx x9 _______ _______ 129. Ú ​ __________       ​ = Ú ​ ___________       ​dx x ​÷2x   10 – 3    ​ x10 ​÷2x   10 – 3  ​ 

 ​

)



1 t dt = – ​ __ ​  Ú ​ ___   4 t3

 ​

1 dt = – ​ __ ​  Ú ​ __2   4 t

 ​

1 = __ ​    ​  + c 4t



1 2 = __ ​   ​ ​  ​ __ ​    ​  – 5   ​ ​ + c 4 x4

÷(  

_______

)

dx dx 135. Ú x2 ​ _________       ​ = Ú ​ ___________       ​ 3/2 1 7 __ (1 – 4x6)3/2 x  ​​ ​  6  ​  – 4  ​​ ​ x

(  )



(  )

1 Let ​ __ ​  6  ​  – 4  ​ = t2 x 6 fi – ​ __7  ​  dx = 2t dt x dx t dt fi ​ ___7 ​ = – ​ ___ ​  3 x

1 t dt = – ​ __ ​  Ú ​ ___   3 t3



1 dt = – ​ __ ​  Ú ​ __2   3 t 1 = __ ​    ​  + c 3t

 ​  ​

÷ 



1 Put x – 2 = __ ​   ​  t 1 fi dx = – ​ __2  ​  dt t Thus, the given integral reduces to 1  – ​ __2  ​  t t ______ Ú ​ ________   ______     ​dt = – Ú ​ ________      ​dt 2 1 __ 1 __ ​ 1   + 3t     ​ ÷ ​  2  ​ ​ ​  2  ​ + 3  ​  t t

Again, let 1 + 3t2 = v2





3t dt = v dv

v dv Now, the integral is – Ú ​ ____   v  

= – v + c



= ​÷1  + 3t2    ​+ c

_______

÷ 

3 = ​ 1 + _______ ​          ​ ​+ c (x – 2)2



1 Let (x + 1) = __ ​   ​  t fi





1 __ ​  2  ​  dt t_____   = – Ú ​ _________    1 __ 1 __ ​  3  ​ ​  ​  2  ​  + 3  t t

 ​  ​

t2 dt ______ = – Ú ​ ________     ​ ÷​ 1  + 3t2 

÷ 

1 dx = – ​ __2  ​  dt t

÷ 

_____

| 

÷ 

_____

|)

|

1 1 + ____ ​  __    ​   log ​ t + ​ t2 + __ ​   ​ ​    ​+ c 3 3​÷3 ​   

dx 1 __________ = __ ​   ​  Ú ​ __________________        ​ 2 (x – 2)3​÷x  2 – 4x +    5  ​ dx 1 __________ = ​ __ ​  Ú ​ __________________         ​ 2 (x – 2)3 ​ (x   – 2)2    + 1  ​

÷



1 Let (x – 2) = __ ​   ​  t







dt __ ​  2 ​   t______ = – Ú ​ __________      1 1 ​ __ ​  3  ​   ​​ __ ​  2  ​  + 1  ​  t t

 ​

t2 _____ = – Ú ​ _______      ​dt ÷​ t 2 + 1  ​ 



(t2 + 1) – 1 ______ = – Ú ​ ​ __________     ​   ​ dt ÷​ t 2 + 1 ​ 

dx dx __________ ___________ 137. Ú ​ __________________        ​ = Ú ​ ___________________         ​ 3 2 3 (x + 1) ÷ ​ x  + 2x +    4 ​ (x + 1) ​÷(x   + 1)2    + 3 ​

| 

__ t2 1 __ 1 1 = – ​÷3 ​ ​     __ ​   ​ ​  t2 + __ ​   ​    ​+ ​    ​ log ​ t + ​ t2 + __ ​     ​ ​   ​  ​ 2 3 6 3

dx _____________ 138. Ú ​ _____________________         ​ 3  (x – 2) ÷ ​ 4x   2 – 16x    + 20  ​

__________



(  ÷ 

÷  (  )

1 where t = ​ ______      ​ (x + 1)



÷ 



÷(   (  ) )

__ dt 1 2 1__ ___________ = – ​÷3 ​     Ú ​ ​ t2 + ​​ ___ ​  __  ​     ​​ ​  ​  ​dt + ​ ____   ​     ​  _________      Ú ​ 3 ​    3​÷3 ​    ÷ 1__ 2 2 ___ ​ t + ​​ ​       ​  ​​ ​ ​ ​ 3 ​    ÷





= – Ú dv

)

________

______

dx __________ = Ú ​ __________________        ​ 2 (x – 2) ​÷(x   – 2)2    + 3  ​

 ​

1 1 = – ​ __ ​  Ú ​ ​÷(1   + 3t2)    ​– ________ ​  ______      ​  ​ dt 3 ​÷1  + 3t2   ​

 ​

dx __________        ​ Ú ​ __________________ 2 2 (x – 2) ÷ ​ x  – 4x +    7  ​





____________

1 1 = __ ​   ​  ​ __ ​    ​  – 4    ​+ c 3 x6

136. We have,

)

+ 3t2) –1 1 (1 ______ = – ​ __ ​  Ú ​ ​ __________    ​   ​ dt 3  ​ ÷​ 1  + 3t2 



______



( 

 ​

( 

1.121

Indefinite Integrals 



1 dx = – ​ __2  ​  dt t

(  )÷ 

(  ( 

)

_____

)

1 = – Ú ​ ​÷t 2 + 1 ​ – ______ ​  _____      ​  ​ dt 2 ÷​ t  + 1 ​  _____ _____ t 2 = – ​ ​ __  ​  ÷  ​​ t + 1 ​ + log ​ t + ÷ ​ t 2 + 1 ​   ​ 2​

[ 

| 

|

| 

|]

– log ​​ ​ t + ÷ ​ t 2 + 1 ​   ​  ​ + c

1 where t = ______ ​       ​ (x – 2)

dx _____________  ​ 139. Ú ​ _________________________        2 (x – 6x + 9) ​÷4x   2 – 24x    + 20 ​

_____

dx 1 __________ = ​ __ ​  Ú ​ _________________       2 (x – 3)2 ​÷x  2 – 6x +    5  ​

1.122  Integral Calculus, 3D Geometry & Vector Booster  ​

dx 1 ___________ = __ ​   ​  Ú ​ ___________________         ​ 2 (x – 3)2 ​ (x – 4 ​ ÷  – 3)2    1 Let (x – 3) = __ ​   ​  t dt fi dx = __ ​  2 ​  t







dt __ ​  2 ​  t______ = –Ú ​ ___________      3 1 1 __ __ ​​ ​   ​   ​​ ​ ​ ​  2  ​  – 4 ​  t t



1 = – ​ ___  ​  Ú dv 12 v = – ​ ___  ​ + c 12 _______



  2 + ​ 1 ​  ÷​ 6t = – ​ _______     +c 12

÷ 

____________

(  ) ÷ 



 ​

t2 ______ = – Ú ​ _______      ​dt   ​ ÷​ 1  – 4t2 



1 1 = __ ​   ​  Ú ​ (1 – 4t2) – _______ ​  ______      ​  ​ dt 4  ​ ÷​ 1  – 4t2 



1 1 = __ ​   ​    ​ ​ 1 – 4t2    ​– _______ ​  ______      ​  ​ dt 4 ​÷1  – 4t2   ​

6 ​ ________ ​          ​+ 1  ​ (2x + 1)2 _____________ = ​   ​      +c 12

dx dx __________ __________ 141. Ú ​ ___________________        ​ = Ú ​ __________________         ​ 3 2 3  (x + 1) ÷ ​ x  + 2x    – 4 ​ (x + 1) ​÷(x   + 1)2    – 5   ​

(  Ú ( ÷ 

) )

______



Let





1 (x + 1) = __ ​   ​  t 1 dx = – ​ __2  ​  dt t



dt __ ​  2 ​  t______      = – Ú ​ ___________ 3 1 1 ​​ ​ __ ​   ​​ ​ ​ ​ __2  ​  – 5    ​ t t

 ​

t2 dt ______ = – Ú ​ ________    ÷​ 1  – 5t2  

1 where t = ______ ​      (x – 3)

 ​  ​

5t2) – 1 1 1 –______ ​      ​   ​ dt = __ ​    ​Ú   ​ ___________ 5  ​÷1  – 5t2   ​

dx ___________  ​ 140. Ú ​ ________________________         ​ 2 (4x + 4x + 1)​÷4x   2 + 4x    + 7 ​



1 1  ​– _______ ​  ______      ​  ​ dt = __ ​   ​  Ú ​ ​÷1  – 5t2   5 ​÷1  – 5t2   ​

÷(   )

________



dt 1 1 2 1 ________ = ​ __ ​  Ú​ ​​ __ ​   ​   ​​ ​ – t2    ​dt – __ ​    ​ Ú ​ _________      ​ 2 2 4 1 2 2 __ ​ ​​ ​   ​   ​​ ​ – t    ​ 2

÷(   )

[  ÷ 

_____





]

1 t __ 1 1 1 = __ ​   ​ ​  __ ​    ​  ​  ​    ​ – t2   ​+ __ ​    ​ sin– 1 (2t)  ​ + __ ​   ​  sin– 1 (2t) + c 2 2 4 8 4





dt ___ ​  2  ​  2t_____ = – Ú ​ ___________      2 1 __ 1 __ ​​ ​   ​   ​​ ​ ​ ​  2  ​  + 6  t t

 ​  ​

t dt 1 _______ = – ​ __ ​  Ú ​ ________     ​ 2 ​÷6t   2 + 1   ​



1 Let (2x + 1) = __ ​   ​  t dt ___ fi dx = – ​  2  ​  2t

______

÷(   )

)



__ dt 1 2 1 __________  ​dt – ____ ​  __    ​         ​ =÷ ​ 5 ​     Ú ​ ​​ ___ ​  __  ​  ​​ ​ – t2   Ú ​  _________ 2 ​÷5 ​    5​÷5 ​    1 ___ ​ ​​ ​  __  ​  ​​ ​ – t2   ​ ​÷5 ​    __

[  ÷ 

__

÷(   )

]

__ t 1 1 = ​÷5 ​ ​     __ ​    ​ ​  __ ​   ​ ​   – t2 + ___ ​    ​  sin– 1 (t ​÷5 ​   )    ​ 2 5 10 __ 1__ – ​ ____    ​   (sin– 1 t ​÷5 ​   )  + c 5​÷5 ​   

(2x + 3) __________ 142. Ú ​ __________________        ​dx (3x + 4)​÷x  2 + 2x    + 4  ​

Again, let 6t2 + 1 = v2





12t dt = 2v dv



1 t dt = __ ​   ​ v dv 6



)

1 where t = ______ ​       ​ (x + 1)



1 v dv = – ​ ___  ​  Ú ​ ____    ​  12 v

( 



(  ) ÷ 



( 

_________

dx ___________ = Ú ​ ____________________         ​ 2  (2x + 1) ​÷(2x   + 1)2    + 6  ​



(  ) ÷ 

Let  2x + 3 = A (3x + 4 ) + B Comparing the co-efficients of x and the constant term, we get fi

A = 2/3, B = 1/3

Indefinite Integrals 



dx dx 2 __________ 1 __________ = __ ​   ​  Ú ​ ____________       ​+ __ ​   ​  Ú ​ __________________         ​ 2 3 ​ (x 3   + 1)    + 3  ​ (3x + 4)​ (x   + 3  ​ ÷ ÷ + 1)2   

|

2 = __ ​   ​  log ​ (x + 1) + ÷ ​ x  2 + 2x    + 4 ​  ​ 3 3 ____________ dt ___ + – ​ ____    ​         ​, Ú ​  ___________ 2 ​ 28 ​     ​÷28t ÷   – 2t    + 1 ​

where 3x + 4 = 1/t fi



dt 3dx = __ ​  2 ​  t

| 

2 = ​ __ ​  log ​ (x + 1) + 3

__________ ÷​ x  2 + 2x +  4 ​  ​

| ( 

|

) ÷ 

___________

|

3 t 1 1 ___ ___ + – ​ ____    ​   log ​ ​ t – ___ ​    ​  ​ + ​ t2 – ___ ​     ​ +   ​    ​ ​  ​ + c 28 14 28 ​ 28 ​     ÷

1 where t = ______ ​      3x + 4

| ​ ​

dt __ ​  2 ​  t_____ 1 – Ú ​ _________      , ​ Let (x + 1) = __ ​   ​  t 1 1 ​ __ ​   ​   ​​ __ ​    ​  + 8 ​  t t2 dt dx = – ​ __2 ​  t

(  )÷ 

| 

__________ ÷​ x  2 + 2x +  9 ​  ​ – 

| 

__________ dt 1__ ____________    ​   ​  __________       ​ ÷​ x  2 + 2x +  9 ​  ​ ​ ____ 2​÷2 ​    2 1__ 2 ____ ​ t + ​​ ​        ​  ​​ ​  ​ 2​÷2 ​   

= 2 log ​ (x + 1) +

= 2 log ​ (x + 1) +

(4x + 7) __________ 144. Ú ​ _________________        ​dx (x + 2)​÷x  2 + 4x +    7  ​ 4 (x + 2) – 1 ___________ = Ú ​  __________________        ​dx (x + 2)​÷(x   + 2)2    + 3  ​ dx dx ___________ ___________ = 4 Ú ​ ____________       ​– Ú ​ _________________        ​ 2 ​÷(x   + 2)    + 3  ​ (x + 2)​÷(x   + 2)2    + 3  ​ __________

| 

|

= 4 log ​ (x + 2) + ÷ ​ x  2 + 3x +   7 ​  ​ dt __ ​  2 ​  t ______ – Ú ​ __________       ​, Let (x + 2) = 1 1 ​ __ ​   ​   ​​ __ ​  2  ​  + 3    ​ t t dt fi  dx = __ ​  2 ​  t

(  )÷ 

| 

__________

| 

__________

1 __ ​   ​  t

|

dt ______ = 4 log ​ (x + 2) + ÷ ​ x  2 + 3x +   7 ​  ​ – Ú ​ _______      ​   2 + 1 ​  ÷​ 3t



dx dx __________ __________ = 2 Ú ​ ____________       ​+ Ú ​ _________________        ​ 2 ​÷(x   + 1)    + 8  ​ (x + 1)​÷(x   + 1)2    + 8  ​

| 

|

1 where t = ______ ​       ​ (x + 1)

| 

2 (x + 1) + 1 ___________ = Ú ​  _________________        ​dx (x + 1)​÷(x   + 1)2    + 8 ​

= 2 log ​ (x + 1) +

÷ 

|

dt 1__ ___________ = 4 log ​ (x + 2) + ÷ ​ x  2 + 3x +    7 ​  ​ – ​ ___   ​  Ú ​  _________       ​ ​ 3 ​    2 ÷ 1 2 ​ t + ​​ ___ ​  __     ​  ​​ ​  ​ ​ 3 ​    ÷ __________ = 4 log ​ (x + 2) + ÷ ​ x  2 + 3x +    7 ​  ​

(2x + 3) __________  ​ 143. Ú ​ _________________        ​dx (x + 1)​÷x  2 + 2x    + 9  ​

__________ +9 ÷​ x  2 + 2x   

| 

______

1__ 1 – ​ ____    ​   log ​ t + ​ t2 + __ ​   ​ ​    ​+ c 8 2​÷2 ​   



dx dx 2 __________ 1 __________ = __ ​   ​  Ú ​ ___________       ​+ __ ​   ​  Ú ​ __________________        ​ 3 ​÷x  2 + 2x    3 + 4  ​ (3x + 4)​÷x  2 + 2x    + 4  ​

| 

|

= 2 log ​ (x + 1) + ÷ ​ x  2 + 2x    + 9 ​  ​

2 1 __ ​   ​  (3x + 4) + __ ​   ​  3 3 ____________________ ____________ ​          ​ 2 (3x + 4)​÷x  + 2x +    4 dx  ​

__________

__________

| 

Thus, the given integral is reduces to

1.123

|

dt ______      ​ Ú ​ _______   2 + 1 ​  ÷​ 8t

|

Ú

÷  (  )

| 

÷ 

______

|

÷  (  )

|

1__ 1 – ​ ___   ​  log ​ t + ​ t2 + __ ​   ​ ​    ​+ c 3 ​ 3 ​    ÷

1 where t = ______ ​      (x + 2) x2 + __________ 4x + 2  ​ 145. Ú ​  _________________       ​dx (x + 1)​÷x  2 + 2x    + 3  ​ Put x2 + 4x + 2

= l (x + 1) (2x + 2) + m (x + 1) + n



= l (2x2 + 4x + 2) + m (x + 1) + n



= 2 l x2 + (4l + m) x + (2l + m + n)

Comparing the coefficients of the like terms of both the sides, we get L = 1/2, M = 2, N = – 1. Thus, the given integral reduces to (x + 1) (2x + 2) 1 __________ ​ __ ​  Ú ​  _________________        ​dx 2 (x + 1)​÷x  2 + 2x    + 2  ​

1.124  Integral Calculus, 3D Geometry & Vector Booster (x + 1) __________ + 2 Ú ​ _________________        ​dx (x + 1)​÷x  2 + 2x    + 2 ​ 



__

__

3 3/2 = Ú 3​÷ x    ​  (1 + ÷ ​ x    ​  + 3x + x ) dx

= Ú (x1/3 + 3x5/6 + 3x4/3 + x11/6) dx dx _________________ __________ – Ú ​         ​ (x + 1)​÷x  2 + 2x +    2 ​ 9 3 18 6 = ​ __ ​   ​  x4/3 + ___ ​   ​  x11/6 + __ ​   ​  x7/3 + ___ ​    ​  x17/6  ​ + c 7 4 11 17 + 2) dx dx 1 (2x ___ __________ _________ = __ ​   ​  Ú ​ ___________        ​+ 2 Ú ​ ___________      2 2 ​÷x  2 + 2x    149. Ú  3÷ ​ x  2  ​ (3 + x– 2/3)– 2 dx + 2  ​ + 2 ​ ÷​ x  + 2x   



( 



dx __________ – Ú ​ _________________        ​ Here, a = – 2 fi a negative integer (x + 1)​÷x  2 + 2x    + 2 ​ Let x = t3

 ​ __________

=÷ ​ x  2 + 2x    + 2  ​



| 



)

+ 2 log ​ (x + 1) +

fi dx = 3t2 dt.

__________ ÷​ x  2 + 2x +  2 ​  ​

|

– sec– 1 (x + 1) + c

x2 + __________ 5x + 6 146. Ú ​  _________________       ​dx (x + 2)​÷x  2 + 5x    + 4  ​



= Ú  t2 (3 + t– 2)– 2 ◊ 3t2 dt



t4 = 3 Ú ​ ________      ​dt (3 + t– 2)2  dt = 3 Ú ​ _________   2  1 2 ​​ 3t + __ ​   ​   ​​ ​ 3



( 

1 1  ​ __ ​  (x + 2) (2x + 5) + __ ​   ​  (x + 2) 2 2 ________________________ __________ = Ú ​           ​dx 2 (x + 2)​÷(x   + 2)    + 1  ​

 ​

+ 5) dx dx 1 (2x 1 __________ __________ = __ ​   ​  Ú ​ ___________        ​+ __ ​   ​  Ú ​ ___________      2 ​÷x  2 + 2x +   2 5  ​   + 2)2    +1 ÷​ (x

dx  ​ Now, I = Ú ​ _______    x2 + 1/3

__________

 ​  ​

_________

| 

|

1 = ​÷x  2 + 2x    + 5  ​+ __ ​   ​  log ​ (x + 2) + ÷ ​ x  2 + 4x    + 5 ​  ​ + c 2

dt 1 = ​ __ ​  Ú ​ ________   2  3 2 __ 1 ​​ t + ​   ​   ​​ ​ 3

( 

)

– 2x ◊ x 1  ​ = _________ ​  2      ​◊ x – Ú  ​ _________     ​dx (x + 1/3)  (x2 + 1/3)2  (x2 + 1.3) – 1/3 1 = _________ ​  2      ​◊ x + 2 Ú ​ _______________        ​ dx (x + 1/3)  (x2 + 1/3)2

x2 +__________ 10x + 6 147. Ú ​  _________________       ​  dx 2 (x + 2)​÷x  + 4x +    9 ​

( 

)

dx dx x 2 = ________ ​  2      ​ + 2 Ú ​ _________      ​– __ ​   ​  Ú ​ _________       ​+ c (x + 1/3) (x2 + 1/3) 3 (x2 + 1/3)2

1 __ ​   ​  (x + 2) (2x + 4) + 6 (x + 2) – 10 2 ____________ = Ú ​ ​ _____________________________           ​  ​ dx (x + 2)​÷x  2 + 4x +   10)  ​

dx x 2 = _________ ​  2      ​+ 6 tan– 1 (3x) – __ ​   ​  Ú ​ _________       ​+ c 3 (x2 + 1/3)2 (x + 1/3)

(2x + 4) dx 1 ___________ ___________ = __ ​   ​  Ú ​ ____________       ​dx + 6 Ú ​ ____________       ​ 2 2 ​÷x  2 + 4x +   10  ​ 10  ​ ÷​ x  + 4x +  

x 2 = _________ ​  2      ​+ 6 tan– 1 (3x) – __ ​   ​  I + c 3 (x + 1/3)

10 dx 5 x __________ – Ú _________________ ​         ​ fi __ ​   ​  I = _________ ​  2      ​+ 6 tan– 1 (3x) + c 3 (x + 2)​÷(x   + 2)2    + 6 ​ (x + 1/3)

___________

| 

___________

|

= ÷ ​ x  2 + 4x +   10  ​+ 6 log ​ (x + 2) + ÷ ​ x  2 + 4x +   10  ​  ​

| 

______

__

|

 ​÷t 2 + 6    ​– ​÷6 ​    1__ ______    –  ​ ____    ​   log ​ ​ ____________    __ ​  ​ + c 2 2 ​÷6 ​     ​+ ÷ ​ 6 ​    ​÷t  + 6  



where t = (x + 2) 148. We have,

)

__

__

Ú 3​÷x    ​ (1 + ÷​ x    ​)3 dx

3x 18 fi I = __________ ​  2       ​+ ___ ​   ​  tan– 1 (3x) + c 5 5 (x + 1/3)

( 

_______ __

)

x     ​ ​  ÷​ 1  + __4​÷ ​  150. Ú ​ ​ ________     ​ dx 3 4 ÷​ x   ​  3 1 – ​ __  ​ + 1 __ ​   ​  b + 1 4 4 Here, _____ ​   ​   = ​  _______  ​   = ​ __ ​  = 1 g 1 1 __ __ ​   ​  ​   ​  4 4

Indefinite Integrals  1 ​ __ ​ 



Let (1 + x​ ​4 ​) = t2



1 – ​ __3 ​  fi ​ __ ​ ​ x​ 4 ​ = 2t dt 4

Thus, Ú x

 (1 + x )  dx



= 8 Ú t  dt



8t3 = ​ ___ ​ + c 3



1 3/2 __ ​   ​  8 = __ ​   ​ ​​  1 + x​ ​4 ​  ​​ ​ + c 3

– 3/4

1/4 1/2

)





x4 (1 – t2) = 1





1 x4 = ______ ​    2   (1 – t )

dx ______  ​ Thus, Ú ​ _________     7 x÷ ​ 1  + x4   ​

(  )



1 1 + x4 = __ ​   ​ ​  ​ ​ _____  ​ ​      – 2 x4

x = t6





dx = 6t5 dt

6t5 = Ú ​ _________      ​ dt 2 t  (2 + 3t2)

( 

)

(2 + 3t2) – 2 = 2 Ú ​ ​ __________     ​   ​ dt (2 + 3t2)

( 

)

2 = 2 Ú ​ 1 – ________ ​       ​  ​dt (2 + 3t2) 

( ÷  ) ÷  ( ÷  ) ( ÷  ) __

__

3 3 ​ __ ​   ​ ​   tan– 1 ​ ​ __ ​   ​ ​ t    ​+ c 2 2 __

__

2​÷2 ​    3 = 2 (x1/6) – ____ ​  __ ​  tan– 1 ​ ​ __ ​   ​ ​ x  1/6  ​ + c 2 ​ 3 ​    ÷

1 1 + x4 3/2 __ ​   ​ ​​  ​ _____  ​    ​​ ​  ​ + c 3 x4

Here, a = – 10 Œ I

Let x = t4





dx = 4t3 dt

_________ __

÷ 

7 3 4 154. Ú 3​÷x    ​  × ​ ​( 1 + ÷ ​ x   ​  )  ​ ​ dx

__

dx 152. Ú ​ ____________     ​ = Ú x– 1/2 (1 + x1/4)– 10 dx __ 4 __   10 ​ x     ​( ÷ ​ x     ​ + 1) ÷

4t3 dt = Ú ​ _________    2 t  (1 + t)10

Let

4 = 2t – __ ​   ​  × 3

(  ) ( ÷  (  ) ) ______



dt 4 __   = 2 Ú dt – __ ​   ​  Ú ​ _________    ​ 3 2 2 2 __ t + ​​ ​ ​   ​ ​    ​​ ​ 3

t 1 __ ​   ​ ​  _______      ​ 2 (t2 – 1)2 _________ = Ú ​     ​ dt 1 3 ​​ _____ ​   2   ​  ​​ ​ t 1–t

t3 1 = __ ​   ​ ​  t – __ ​   ​   ​ + c 2 3

)

Here, a = – 2 Œ I

Let 1 + x4 = x4 t2



)

153. Ú x– 1/2 (2 + 3x1/3)– 2 dx



1 = __ ​   ​  Ú (1 – t2) dt 2

)

9 8 = 4 ​ _________ ​  1/4   9    ​– _________ ​  1/4   8   ​  ​ + c (x + 1) (x + 1)

– 3 1 = ___ ​   ​ – __ ​    ​ = – 2 = Integer. 2 2



)

9 8 = 4 ​ _______ ​       ​– _______ ​       ​  ​ + c (t + 1)9 (t + 1)8

b+1 – 7 + 1 __ 1  ​ Here, _____ ​   ​   + p =​  _______  ​   – ​   ​  g 4 2

 ​

( 

(t + 1)  – 1  ​ = 4 Ú ​ __________ ​      ​   ​ dt (t + 1)10

(  (  ( 

dx ______ 151. Ú ​ _________      72 x  ÷ ​ 1  + x4   ​



t dt  ​ = 4 Ú ​ _______    (t + 1)10

1 1 = 4 Ú ​ _______ ​       ​– _______ ​       ​  ​ dt (t + 1)9 (t + 1)10

2

( 

1.125

1 __ ​   ​  + 1 b_____ +1 3 Here, ​   ​   = ​  _____  ​   = 1 Œ I g 4 __ ​   ​  3

Let (1 + x4/3) = t7 4 fi ​ __ ​  x1/3 dx = 7t6 dt 3 21 fi x1/3 dx = ​ ___ ​  t6 dt 4 21 = ___ ​   ​  Ú (t6 ◊ t) dt 4

1.126  Integral Calculus, 3D Geometry & Vector Booster

21 t8 = ___ ​   ​ × __ ​   ​  + c 4 8



4/3 8/7 21 (1 + x ) = ___ ​   ​ × __________ ​   ​      +c 4 8

1 fi x4 = ______ ​  2     (t – 1)

 ​

2t fi 4x3 dx = – ​ _______      ​dt (t2 – 1)2 

155. Ú x– 6 (1 + 2x3)2/3 dx



t dt fi x3 dx = – ​ ________     ​ 2 2 (t – 1)2

b +1 – 6 + 1 __ 2 Here, ​ _____  ​ +     a = ​ ______  ​   + ​   ​  = – 1 Œ I g 3 3



dx ______ = Ú ​ __________      11 2 x  ÷ ​ 1  + x4   ​

 ​

1 = – ​ __ ​  Ú (t2 – 1)2 dt 2



1 = – ​ __ ​  Ú (t4 – 2t2 + 1) dt 2





Let 1 + 2x3 = x3t3



fi x3 (t2 – 2) = 1



1 fi x3 = ______ ​  3     (t – 2)

 ​

3t2 dt fi 3x2 dx = – ​ _______    (t3 – 2)2

 ​

t2 dt + x4 fi x2 dx = – ​ _______  2  where t = ​ ​ 1_____       3 (t – 2) x4

( 

÷ 

______

( 

2 3×​ __ ​ 

3

_______ __

)

 ​

​(tx)​ 3 ​ = Ú ​ ______  ​ dx     x6 

​÷1  + 4÷ ​ x     ​ ​  __ ​    ​ ​158. Ú ​ ________ ​    ​ dx 4 3 ÷​ x   ​ 



t2x2 dx = Ú ​ ______     x6



 ​

t2 dt t2 = Ú ​ ________      ​ × – ​ _______    3 1 (t – 2)2 ​ ______ ​  3   2   ​  ​ t – 2)

( 

)

 ​

= – Ú t4 dt



t5 = – ​ __ ​   ​   ​ + c 5



(  )

( 

)

1 1 + 2x3 5/3 = – ​ __ ​ ​​  ​ ______  ​    ​​ ​ + c 5 x3

156. Do yourself. dx _____ 157. Ú ​ __________      11 2 x  ÷ ​ 1  + x4 

)

2t3 1 t5 ___ = – ​ __ ​ ​  __ ​   ​  – ​   ​ + t  ​ + c 2 5 3

Let (1 + x1/4) = t3 1 fi ​ __ ​  x– 3/4 dx = 3t2 dt 4 dx fi ​ ___   ​ = 12t2 dt x3/4



= 12 Ú t × t2 dt



= 12 Ú t3 dt



t4 = 12 ​ __ ​   ​   ​ + c 4



= 3t4 + c



= 3 (1 + x1/4)4/3 + c

(  )

dx _________ 159. Ú ​ ______________       ​ 2 (1 + ÷ ​ x  + x + 1 ​) 

 ​ = Ú x– 11 (1 + x4)– 1/2 dx  ​

Here a = 1 > 0, therefore we put the Euler first substitution, i.e.

= Ú x– 11 (1 + x4)– 1/2 dx

_________

​÷ x2 + x + 1   ​= t – x

b+ 1 – 11 + 1 __ 2 Here, ​ _____  ​   + a = ​ _______  ​   + ​    ​ = – 2 Œ I g 4 4

fi (x2 + x + 1) = (t – x)2



Put (1 + x4) = x4t2

fi (x2 + x + 1) = t2 – 2tx + x2



fi x4 (t2 – 1) = 1

fi (1 + 2t) x = t2 – 1

Indefinite Integrals 

(  )

t2 – 1 fi x = ​ _____ ​       ​  ​ 2t + 1



dt = – 2 Ú ​ _____    t2 – 1

2 (t2 + t + 1 fi dx = ___________ ​         ​dt (2t + 1)2 

 ​

 t – 1 1 = – 2 × __ ​   ​  log ​ ​ _____   ​  ​ + c 2 t+1



 t – 1 = log ​ ​ _____   ​  ​ + c t+1

_________

Now, 1 = ÷ ​ x  2 + x + 1   ​= 1 + t – x

(  )

t2 – 1 = 1 + t – ​ ​ _____     ​ ​ 2t + 1 dx _________ Thus, Ú ​ _______________       ​ 2 (​  1 + ÷​ x  + x + 1 ​   )​

( 

= – (x – 2) (x – 5) = (x – 2) (5 – x), so we can apply Euler third

2 (t + t + 1) = Ú ​  _________________        ​dt 2 (t + 3t + 2) (2t + 1) 

substitution, i.e. ___________

​÷ 7x – 10 –   x2  ​= (x – 2) t

) dt dt 2 – ​ __  ​​( Ú ​ ____     ​ –  2 ​ _____     ​  ​ 3 t + 2 Ú 2t + 1 )

8 dt dt dt 4 = 2 ​ – 2 Ú ​ ____     ​ + __ ​   ​    ​ ____     ​ + __ ​   ​    ​ _____     ​  ​ t + 1 3 Ú t + 2 3 Ú 2t + 1

_____________

fi ​÷– (x   – 2) (x   – 5)  ​= (x – 2) t fi (5 – x) = (x – 2) t2

)

8 2 = 2 ​ – 2 log |t + 1| + __ ​   ​  log |t + 2| + __ ​   ​  log |2t + 1|  ​ 3 3 2 – ​ __ ​  (log |t + 2| – log |2t + 1|) + c 3 _________

where

t = x + ​÷x  2 + x + 1   ​

dx _________ 160. Ú ​ _____________      2 x+÷ ​ x  – + 1 ​    ​ Here, c = 1 > 0, therefor we put the Euler second substitution, i.e. _________ ​÷ x2 – x + 1   ​= t x

(x2 – x + 1) = t2x2 – 2t x + 1



2t – 1 x =​  ______  ​  t2 –1



– 2 (t2 – t + 1) dx =​  ____________     ​   dt t2 – 1)2 

dx _________ Thus, Ú ​ _____________      2 x+÷ ​ x  – x + 1   ​

 ​

5 + 2t2 fi x = _______ ​   ​    1 + t2 6t dt fi dx = – ​ _______     ​ 2 (t + 1)2

( 

  – 2 (t2 – t + 1) ​  ____________        ​ 2 2 (t – 1) = Ú ​ _____________        ​  dt t2 – t + 1 _________ ​  2  ​     (t – 1)

)

5 + 2t2 3t Now, (x – 2) t = ​  ​ _______  ​    – 2  ​ t = _____ ​  2     2 t +1 t +1  dx ___________  ​ Thus, Ú x​ ____________        – 10 –   x2  ​ ÷​ 7x  ​

– 6t x = Ú ​ _______      ​× _______ ​      ​dt (x – 2) t (1 + t2)2 



5 + 2t2  ​ _______    ​ 2 (1 + t ) – 6t = Ú​  ________   ​× _______ ​       ​dt 2 2 3t (1 + t )   _______ ​       ​ (1 + t2)



5 + 2t2 = – 2 Ú ​ _______      ​dt (1 + t2)2 



2 (1 + t2) + 3 = – 2 Ú ​ ___________     ​  dt (1 + t2)2 



dt dt = – 4 Ú ​ _______      ​– 6 Ú ​ _______      ​ (1 + t2) (1 + t2)2

–1



)

 ​ Here, 7x – 10 – x2 = – (x2 – 7x + 10)

2

( 

_________

x dx ___________ 161. Ú ​ ____________        – 10 –   x2 ​ ÷​ 7x

(  )



|  |

1 + ​÷x  2 – x + 1 ​  where, t = ​ ​ _____________ ​    ​ x      

2(t2 + t + 1) ​ ___________     ​  2 (2t + 1) = Ú ​ ____________        ​dt t2 – 1 ______ 1 + t – ​ ​     ​  ​  2t + 1

( 

|  |

1.127

1.128  Integral Calculus, 3D Geometry & Vector Booster

( 

)



(x – 1) (x – 2) = (x – 1)2 t2



(x – 2) = (x – 1) t2



x (1 – t2) = 2 – t2

  – 10 –      x2  ​ ÷​ 7x where, t = ____________ ​   ​  (x – 2)



dx _________ 162. Ú ​ _____________       ​ 2 x–÷ ​ x  – x + 2 ​ 

t2 – 2 x = ​ ______ ​  2  ​   ​ t –1



(t2 – 1) (2t) – (t2 – 2) 2t dx = ​ ____________________      ​ dt    (t2 – 1)2



2t (t2 – 1 – t2 + 2) dx = ________________ ​      ​ dt    (t2 – 1)2



2t dt dx = _______ ​  2     ​ (t – 1)2



t 1 ______ 1 = – 4 tan– 1 (t) – 6 ​ __ ​   ​  ​         ​+ __ ​   ​  tan– 1 t  ​ + c 2 t2 + 1 2



3t = – 7 tan  (t) – ______ ​  2      ​+ c t +1 – 1

___________

_________

Put ​÷x  2 – x + 2    ​= t + x fi (x2 – x + 2) = (t + x)2 fi (x2 – x + 2) = t2 + 2tx + x2 fi (2t + 1) x = 2 – t2

(  )



(2x + 1) (– 2t) – (2 – t2) 2 fi dx = ______________________ ​       ​ dt    (2t + 1)2

2t dt _______ ​  2     ​ (t – 1)2  _________________ = Ú ​       dt  ​ t2 – 2 1 ​ _____ ​  2    ​  ​ × – ​ _______      ​ t –1 (t2 – 1) 



– 4t2 – 2t + 2t2 – 4 fi dx = _________________ ​      ​    dt (2t + 1)2 

2t dt = – Ú ​ _______     ​ 2 (t – 2)



= – log|(t2 –2)| + c

– 2t2 – 2t – 4 fi dx = ​ ____________        ​dt (2t + 1)2 

+    2 ​ ÷​ x  2 – 3x    where t = ​ ___________  ​  (x – 1)

(  )

2 – t2 fi x = ​ ​ _____   ​   ​ 2t + 1



__________

dx ______ 165. Ú ​ __________       ​ x+÷ ​ x  2 – 1    ​

1 2t2 + 2t + 4 = Ú ​ __ ​  × ___________ ​      ​ dt   t (2t + 1)2



]



)

(x – ÷ ​ x  2 – 1 ​  = Ú ​ ___________        ​dx (x2 – x2 + 1) 



= Ú (x – ​÷x  2 – 1 ​  ) dx



x2 x ​÷x  2 – 1 ​  __ 1 = ​ __ ​   ​  –​  ________  ​   – ​   ​  log ​ x + ​÷x  2 – 1 ​   ​  ​ + c 2 2 2



1 t +t+2 = 2 Ú ​ __ ​  × _________ ​   ​   dt t (2t + 1)2 



9 dt 7 _______ dt dt = 2 ​ 2 Ú ​ __ ​  – __ ​   ​  Ú ​       ​– __ ​    ​   ​ ________      ​  ​ t 2 (2t + 1) 2 Ú (2t + 1)2



9 7 = 2 ​ 2 log |t| – __ ​   ​  log |2t + 1| – ________ ​     ​   ​+ c 4 4 (2t + 1)

[ 

( 

______

______

_________

where t = (​  ​÷x  2 – x + 2    ​– x )​ 163. Do yourself. dx __________ 164. Ú ​ _____________       ​ 2 x ​÷x  – 3x    + 2  ​



2

( 

______

| 

______

Here, x2 – 3x + 2 = (x – 1) (x – 2)

______

(x – ​÷x  2 – 1 ​  ) ______    = Ú ​  ______________________    ______  ​dx (x + ÷ ​ x  2 – 1 ​  ) (x – ÷ ​ x  2 – 1 ​  )

2

__________ Let ​÷ x2 – 3x    +2

(  )

x dx ______ 166. Ú ​ __________      ​ = Ú x (x – ​÷x  2 – 1 ​  ) dx 2 x+÷ ​ x  – 1 ​  ______



= Ú (x2 – x ​÷x  2 – 1 ​  ) dx



x3 = __ ​   ​  – Ú x​÷x  2 – 1 dx    ​ 3

 ​= (x – 1) t 2 2

(x – 3x + 2) = (x – 1)  t

________

______

|

)

Indefinite Integrals 

8 cos6 x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos4 x ◊ sin x 9 63

Let x2 – 1 = t2





xdx = tdt



x = __ ​   ​  – Ú t2 dt 3

170. We have,



x3 = __ ​   ​  – 3

Ú cos8 x dx



2 3/2 x3 (x – 1) = __ ​   ​  –​ _________  ​    +c 3 3

3

t3 __ ​   ​  + c 3

( 

Ú sin  x dx 5



cos x sin4 x __ 4 cos x sin2 x __ 2 = – ​ _________  ​ –     ​   ​ ​  – ​ _________  ​    + ​   ​  I1  ​ 3 3 5 5

( 

9 cos7 x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos5 x ◊ sin x 10 80 63 cos3 x ◊ sin x __ 5 + ​ ___ ​ ​  __________ ​   ​      + ​   ​  I2  ​ 80 6 6

)

( 

4

cos x sin  x ___ 4 = – ​ _________  ​    – ​    ​  (cos x sin2 x + 2 cos x) + c 5 15



Ú sin  x dx



6

( 

)

63 cos3 x ◊ sin x ___ 5 + ​ ___ ​ ​  __________ ​   ​      + ​    ​  (x + sin x ◊ cos x)  ​ + c 80 12 6

171. We have, Ú tan5 x dx

5 cos x sin5 x __ = – ​ _________  ​    + ​   ​  I4 6 6

(  ( 

)



tan4 x = ​ _____ ​   ​   – I3  ​ 4

5 cos x ◊ sin  x __ 3 cos x sin  x __ = _________ ​   ​    + ​    ​ ​ – ​ __________  ​      + ​   ​  Ú sin2 x dx  ​ 4 4 6 6



tan4 x _____ tan2 x = ​ _____ ​   ​   – ​   ​   + I1  ​ 4 2

5 cos x sin5 x ___ = – ​ _________  ​    – ​    ​  cos x ◊ sin3 x 24 6



tan4 x _____ tan2 x = _____ ​   ​   – ​   ​   + Ú tan x dx 4 2

( 

)

5 cos x ◊ sin3 x __ 3 cos x sin5 x __ = – ​ _________  ​    + ​   ​ ​  – ​ __________  ​      + ​   ​  I2  ​ 4 4 6 6 5

( 

)

3

3 + ​ __ ​  (x – sin x cos x) + c 4

169. We have,

8 cos6 x ◊ sin x __ = __________ ​   ​      + ​   ​  I5 9 9

( 

)



8 48 cos6 x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos4 x ◊ sin x + ___ ​   ​  I3 9 63 63 6

8 cos  x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos4 x ◊ sin x 9 63

tan4 x _____ tan2 x = _____ ​   ​   – ​   ​   + log |sec x| + c 4 2 172. We have,



8 cos4 x ◊ sin x __ 6 cos6 x ◊ sin x __ = __________ ​   ​      + ​   ​ ​  __________ ​   ​      + ​   ​  I3  ​ 7 7 9 9

)



Ú tan6 x dx

Ú cos7 x dx



)

9 cos7 x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos5 x ◊ sin x 10 80

168. We have,

)

9 63 cos7 x ◊ sin x ___ = __________ ​   ​      + ​    ​  cos5 x ◊ sin x + ___ ​   ​  I4 10 80 80

cos x sin4 x __ 4 = – ​ _________  ​    + ​   ​ I3 5 5



)

9 cos5 x ◊ sin x __ cos7 x ◊ sin x ___ 7 = __________ ​   ​      + ​    ​ ​  __________ ​   ​      + ​    ​ I4  ​ 10 10 8 8





( 

48 cos2 x ◊ sin x __ 4 + ​ ___ ​ ​  __________ ​   ​      + ​   ​  sin x  ​ + c 63 5 5

9 cos7 x ◊ sin x ___ = __________ ​   ​      + ​    ​  I6 10 10

167. We have,

1.129



(  ( 

)

tan5 x = ​ _____ ​   ​   – I4  ​ 5

)

tan5 x _____ tan3 x = ​ _____ ​   ​   – ​   ​   + I2  ​ 3 5 tan5 x _____ tan3 x = _____ ​   ​   – ​   ​   + Ú tan2 x dx 3 5

( 

tan5 x _____ tan3 x = _____ ​   ​   – ​   ​   + tan x – x + c 3 5 2 48 cos  x ◊ sin x __ 4 + ​ ___ ​ ​  __________ ​   ​      + ​   ​  I1  ​ 173. We have, 63 5 5 Ú cot7 x dx.

( 



)

)

tan5 x _____ tan3 x = ​ _____ ​   ​   – ​   ​   + Ú (sec2 x – 1) dx  ​ 3 5

1.130  Integral Calculus, 3D Geometry & Vector Booster

cot6 x = – ​ _____  ​   – I5 + c 6



cot6 x cot4 x = – ​ _____  ​   – ​ – ​ _____  ​   – I3  ​ + c 4 6

( 

6

)



5 sec5 x ◊ tan x __ = __________ ​   ​      + ​   ​  I5 6 6



5 sec3 x ◊ tan x __ 3 sec5 x ◊ tan x __ = __________ ​   ​      + ​   ​ ​  __________ ​   ​      + ​   ​  I3  ​ 4 4 6 6



5 15 sec5 x ◊ tan x ___ = __________ ​   ​      + ​    ​  sec3 x ◊ tan x + ___ ​   ​  I3 24 24 6



5 sec5 x ◊ tan x ___ = __________ ​   ​      + ​    ​  sec3 x ◊ tan x 24 6

4



cot  x _____ cot  x = – ​ _____  ​   + ​   ​   + I3 + c 4 6



cot6 x _____ cot4 x cot2 x = – ​ _____  ​   + ​   ​   + ​ – ​ _____  ​   – I1  ​ + c 4 2 6



cot6 x _____ cot4 x _____ cot2 x = – ​ _____  ​   + ​   ​   – ​   ​   – I1 + c 4 2 6



cot6 x _____ cot4 x _____ cot2 x = – ​ _____  ​   + ​   ​   – ​   ​   – log |sin x| + c 4 2 6

( 

)

( 

( 

cot5 x – ​ _____  ​   – I4 + C 5 cot5 x _____ cot3 x = – ​ _____  ​   + ​   ​   + Ú cot2 x dx + c 3 5

179. We have, sin 3x Ú ​ _____ ​   dx sin x 2 sin (3 – 1) x = ​ ___________     ​   + I3–2 (3 – 1)

= sin 2x + I1



cot5 x _____ cot3 x = – ​ _____  ​   + ​   ​   + Ú (cosec2 x – 1) dx + c 3 5



= sin 2x Ú dx

cot5 x _____ cot3 x = – ​ _____  ​   + ​   ​   – cot x – x + c 3 5



= sin 2x + x + c



180. We have, Ú_____ ​  sin 5x    ​ dx sin x 2 sin (5 – 1)x = ___________ ​      ​  + I5–2 (5 – 1)

175. We have, Ú sec2 x dx

sec x ◊ tan x __ 1 = _________ ​   ​    + ​   ​  I1 2 2



sec x ◊ tan x __ 1 = _________ ​   ​    + ​   ​  log |sec x + tan x| + C 2 2

176. We have, Ú sec4 x dx

2



sec  x tan x __ 2 = _________ ​   ​    + ​   ​  I2 3 3



sec2 x tan x __ 2 = _________ ​   ​    + ​   ​  tan x + c 3 3



3 sec  x ◊ tan x __ = ​ __________  ​      + ​    ​ I3 4 4

2 sin (3 – 1)x 1 = __ ​   ​  sin 4x + ___________ ​      ​  + I1 2 (3 – 1)



2 = __ ​   ​  sin 4x + sin 2x + x + c 3



3

sec  x ◊ tan x = __________ ​   ​      4

( 





3



1 = __ ​   ​  sin 4x + I3 2

sin 6x Ú ​ _____ ​   dx sin x  2 sin (6 – 1)x = ___________ ​      ​  + I6–2 (6 – 1)

Ú sec5 x dx



181. We have,

177. We have,

)

3 x 1 + ​ __ ​ ​  sec x ◊ tan ​ __  ​ + __ ​    ​ log |sec x + tan x|  ​ + c 4 2 2

Ú sec7 x dx

2 = __ ​   ​  sin 5x + I4 5 2 2 = ​ __ ​  sin 5x + __ ​    ​ sin 3x + I2 3 5



2 2 = __ ​   ​  sin 5x + __ ​   ​  sin 3x + Ú _____ ​ sin 2x ​   dx 3 5 sin x 



2 2 = ​ __ ​  sin 5x + __ ​   ​  sin 3x + 2 Ú cos x dx 3 5



2 2 = __ ​   ​  sin 5x + __ ​   ​  sin 3x + 2 sin x + c 3 5

178. We have,

)

15 sec x ◊ tan x __ 1 + ​ ___ ​ ​  _________ ​   ​    + ​   ​  log |sec x + tan x|  ​ + c 24 2 2



174. We have,

)

Indefinite Integrals 

182. We have, Ú _____ ​ sin 8x ​  sin x 2 sin (8 – 1) x = ___________ ​      ​   + I6 (8 – 1)

2 2 = __ ​   ​  sin 7x + __ ​   ​  sin 5x + I4 7 5 2 2 2 = __ ​   ​  sin 7x + __ ​   ​  sin 5x + __ ​    ​ sin 3x + I2 7 3 5 2 2 2 = ​ __ ​  sin 7x + __ ​   ​  sin 5x + __ ​    ​ sin 3x + 2 sin x + c 3 5 5

183. We have Ú _______ ​  dx    (x2 + 2)2

( 

x 1 2.2 – 3      ​ + __ ​   ​ ​  _______ ​     ​ ​ I2–1 = _________ ​  2.2 (x2 + 2) 2 2.2 – 2



x 1 ​   ​  Ú _______ ​  dx     ​ = __ ​    ​ (x2 + 2) + __ 4 4 (x2 + 2)

)



x 1      ​+ __ ​    ​ I2 = __________ ​  12 (x2 + 3)2 4



x x 1 11      ​+ __ ​    ​  ​ __________ ​       ​+ __ ​   ​ ​  __ ​  I1  ​ = __________ ​  12 (x2 + 3)2 4 2.3 (x2 + 3) 3 2

)

x x      ​+ _________ ​      = __________ ​  12 (x2 + 3)2 24 (x2 + 3)

(  )

x 1 + _____ ​   __ ​   tan– 1 ​ ___ ​  __  ​  ​ + c 24 ​÷2 ​    ​÷2 ​   

185. We have, x + 1  Ú ​ ____________     ​dx (x2 + 3x + 2)2 





3 1 ​ x + __ ​   ​   ​ – __ ​   ​  2 2 1 ____ ___________ + ​     ​   log​ ​  ​        ​  ​  ​ + C 1 3 1 __ __ 2 ◊ ​   ​  ​ x + ​   ​   ​ + __ ​   ​  2 ​ 2 2



3 ​ x + __ ​   ​   ​ 2 1 1 = – ​ ____________      ​– __ ​   ​ ​  ​ ___________       ​ ​ 2 2 2 3 1 __ 2 (x + 3x + 2) ​​ x + ​   ​   ​​ ​ – __ ​   ​  2 4 ​

(  ) ]

x+1 + log ​ ​ _____ ​     ​  ​  ​ + c ​x+2



x3 1 = (log x) ◊ ​ __ ​  – __ ​   ​  I 3 3 2,0



x3 = (log x) ◊ ​ __ ​  – 3



x3 x3 = (log x) ◊ ​ __ ​  – __ ​   ​  + C 3 9

1 __ ​   ​  Ú x2 dx 3

187. We have,

( 

 ​

 [ ( (  ) )  ( ((   )) )]  [ (  (  ) )

Ú x2 log x dx

Ú _______ ​  dx    (x2 + 3)2 x 1 2.3 – 3      ​+ __ ​   ​ ​  _______ ​     ​   ​ I3–1  ​ = ________________ ​  2 (3 – 1) 3 (x2 + 3)2 3 22.3 – 2



 ​

3 ​ x + __ ​    ​  ​ 2 1 2 1 __________ __ __ = – ​   ​  (x + 3x + 2) – ​   ​ ​  ​       ​ ​ 2 2 3 2 __ 1 __ ​​ x + ​    ​  ​​ ​– ​   ​  2 4​

[ (  ) (  ) ]

186. We have,

(  )

( 

 dx  1 1 = – ​ ____________      ​– ​ __  ​ Ú _______________ ​     2 2 (x + 3x + 2) 2 3 2 1 22 __ ​ ​​​ x + ​   ​   ​​ ​ – ​​ __ ​   ​   ​​ ​​ ​  ​ 2 2



x x 1 ​   __ ​   tan– 1 ​ ___ ​  __  ​  ​ + c = __ ​    ​ (x2 + 2) + ____ 4 4 ​÷2 ​    ​÷2 ​    184. We have,

 ​



)

 ​

(2x + 2) 1 = __ ​   ​  Ú ​ ____________       ​dx 2 2 (x + 3x + 2)2  1 (2x + 1) – 1 = ​ __ ​  Ú ​ ____________        ​dx 2 (x2 + 3x + 2)2  (2x + 3) 1 1 dx  = __ ​   ​  Ú ​ ___________      ​dx – ​ __ ​  Ú ___________ ​     2 (x2 + 3x +2)2  2 (x2 + 3x + 2)2

1.131

Ú x2 (log x)2 dx

x3 2 = (log x)2 ​ __ ​  – __ ​   ​  I 3 3 2,1



x3 = (log x)2 ​ __ ​  – 3



x3 2 x3 x3 = (log x)2 ​ __ ​  – __ ​   ​ ​  log x) ​ __ ​  – __ ​   ​   ​ + c 3 3 3 9

( 

)

2 __ ​   ​ ​  Ú x2 log x  ​ dx 3

( 

)

188. We have, Ú x3 (log x)2 dx

x4 2 = (log x)2 ​ __ ​  – __ ​    ​ I 4 4 3,1



x4 1 x4 1 = (log x)2 ​ __ ​  – __ ​   ​ ​  (log x) ​ __ ​  – __ ​   ​  I   ​ 4 2 4 4 3,0



x4 = (log x)2 ​ __ ​  – 4



x4 = (log)2 ​ __ ​  – 4

(  (  ( 

)

x4 1 __ ​   ​ ​  (log x) ​ __ ​  – 2 4

x4 1 __ ​   ​ ​  (log x) ​ __ ​  – 2 4

)

1 __ ​   ​  Ú x3 dx  ​ 4

)

x4 ___ ​    ​  ​ + c 16

1.132  Integral Calculus, 3D Geometry & Vector Booster

[  [  [ 

189. We have, Ú x2 (1 – x)3 dx 3

x3 (1 – x)3 __ 1 =​  _________  ​    + ​   ​  I2,2 2 6

( 

3

3

2

)

Hints

1. We have,

cos 2x – cos x         ​ dx Ú ​ ___________ 1 – cos x

and

solutions

(  Ú ( 

)



1 – 3sin2x cos2x = Ú ​ ______________ ​          ​  ​ dx sin2x cos2x



sin2x + cos2x – 3sin2x cos2x =  ​ _______________________ ​          ​  ​dx sin2x cos2x



= Ú (sec2x + cosec2x – 3)dx



= (tan x – cot x – x) + c

2cos2x – cos x – 1 = Ú ​ _______________        d​ x 1 – cos x



(cos x – 1)(2cos x + 1) = Ú ​ ___________________          ​dx 1 – cos x



= – Ú (2cos x + 1) dx

cos 2x Ú ​ _________     ​  dx cos2x sin2x



= – (2sin x + x) + c



cos2x – sin2x = Ú  ​ ___________         ​ dx cos2x sin2x



= Ú (cosec2x – sec2x)dx



= – (cot x + tan x) + c



cos 5x + cos 4x Ú ​ _____________         d​ x 1 – 2 cos 3x

 sin3x (cos 5x + cos 4x) = Ú ​ ___________________         ​dx sin 3x – sin 6x 



9x 3x 3x x 2sin​ ___ ​   ​   ​cos​ ___ ​   ​   ​ 2cos​ ___ ​   ​   ​cos​ __ ​    ​  ​ 2 2 2 2 = Ú ​ ____________________________           ​ dx 9x 3x – 2cos​ ___ ​   ​   ​sin ​ ___ ​   ​   ​ 2 2

(  ) (  ) (  ) (  ) (  ) (  ) 3x x = – Ú 2cos​( ___ ​   ​  )​cos ​( __ ​    ​ )​ dx 2 2



= – Ú (cos 2x + cos x) dx



sin 2x = – ​ ​ _____  ​   + sin x  ​ + c 2





4. We have,

2. We have,



( 

)

3. We have,

( 

)]

Note: Q-190 to 197, do yourself.





( 

)

sin6x + cos6x Ú ​ ___________ ​  2    ​  ​ sin x cos2xdx

)]

3 2 x3 (1 – x)3 __ x3 1 x  (1 – x) 2 x3 ___ = _________ ​   ​    + ​   ​ ​  _________ ​   ​    + ​ __ ​ ​  __ ​   ​  + ​    ​  ​  ​ + c 2 12 6 5 5 4

x  (1 – x) 1 x  (1 – x) 2 =​  _________  ​    + ​ __ ​ ​  ​  _________  ​    + ​ __ ​  I2,1  ​ 2 6 5 5



)]

3 2 x3 (1 – x)3 __ 1 x  (1 – x) 2 x3 __ 1 = _________ ​   ​    + ​   ​ ​  _________ ​   ​    + ​ __ ​ ​  __ ​   ​  + ​    ​ Ú x2 dx  ​  ​ 2 4 6 5 5 4

3

x  (1 – x) 3 =​  _________     ​ +​ _________      ​ I (2 + 3 + 1) (2 + 3 + 1) 2,2

3

(  ( 

3 2 x3(1 – x)3 __ 1 x  (1 – x) 2 x3 __ 1 = ​ ________  ​    + ​   ​ ​  _________ ​   ​    + ​ __ ​ ​  __ ​   ​  + ​    ​ I2,0  ​  ​ 2 4 6 5 5 4



5. We have,

sin 2x Ú ​ __________      ​ dx sin 5x sin 3x

sin (5x – 3x) = Ú ​ ___________       ​ dx sin 5x sin 3x



sin 5x cos 3x – cos 5x sin 3x = Ú ​ ______________________         ​ dx sin 5x sin 3x



= Ú (cot 3x – cot 5x)dx



1 1 = __ ​   ​  log |sin 3x| – __ ​   ​  log |sin 5x| + c 3 5



6. We have,

Ú___________ ​   sin x     ​ dx sinx + cos x 

)

Indefinite Integrals 



2sin x 1 = ​ __ ​  Ú ​ ___________      ​ dx 2 sin x + cos x



b = – ​ __ a ​ log |t| + k



1 (sin x + cos x) + (sin x – cos x) = ​ __ ​    Ú ​ _________________________          dx ​  2 sinx + cos x



b – x = – ​ __ a ​ log|a e + c| + k



sin x – cos x 1 = __ ​   ​  Ú ​ 1 + __________ ​      ​  ​ dx 2 sin x + cos x



1 = __ ​   ​  (x – log|sin x + cos x|) + c 2



( 

)

10. We have, dx Ú ​ ______     ​ 1 + ex

7. We have,

dx Ú ​ _____________       ​ sec x + cosec x



exdx = Ú ​ _________  ​ x x    e (e + 1)



dt = Ú ​ ______     ​, t(t + 1)

sin x cos x = Ú ​ ___________       ​ dx sin x + cos x





1 2 sin x cos x = __ ​   ​  Ú ​ ___________        ​dx 2 sin x + cos x





1 (1 + sin2x) – 1 = __ ​   ​  Ú ​ _____________        ​dx 2 sin x + cos x



2 dx 1 (sin x + cos x) 1 = __ ​   ​  Ú_____________  ​          ​ dx –  ​ __ ​  Ú ​ __________      2 sin x + cos x 2 sin x + cos x



fi exdx = dt

( 

)

1 1 = Ú ​ __ ​   ​  – ____ ​       ​  ​ dt t t+1 t = log ​ ____ ​       ​  ​ + c t+1

|  |

|  |

ex = log ​_____ ​  x      ​  ​ + c e +1

11. We have, x+9 Ú ​ _______      ​dx x3 + 9x 

dx 1 1 = __ ​   ​  Ú (sin x + cos x)dx –  ​ __ ​  Ú ​ __________       ​ 2 2 sin x + cos x



x + 9 + x2 – x2 = Ú ​ _____________        ​dx x(x2 + 9)

dx 1 1__ _________ = __ ​   ​  Ú (sin x + cos x)dx – ​ ____    ​ Ú ​       ​ p  2 2​÷2 ​     sin​ x + __ ​   ​   ​ 4 p  x __ 1 1__ __ ____ __ = ​   ​  (sin x – cos x) –  ​     ​   log ​ tan ​ ​    ​ + ​   ​   ​  ​ + c 2 2 8 2​÷2 ​   



x + (9 + x2) – x2 = Ú ​ _______________     ​    dx x(x2 + 9)



dx dx x _______ = Ú ​ _____     ​ + Ú ​ ___ dx x ​ – Ú ​ (x2 + 9) ​    x2 + 9



x 1 1 = __ ​   ​  tan– 1 ​ __ ​    ​  ​ + log|x| – ​ __  ​ log|x2 + 9| + c 3 3 2

| 

(  ( 

) )|

8. We have,

Ú tan 3x  tan 2x tan x dx = Ú (tan 3x – tan 2x – tan x) dx



1 1 = __ ​   ​  log |sec 3x| – __ ​    ​ log |sec 2x| 3 2



Ú sin x – cos x/ex + sin xdx

– log|sec x| + c



(ex + sin x) – (ex + cos x) = Ú ​ _____________________      ​    dx ex + sin x)



1 – (ex + cos x) = Ú ​ _____________ ​  x        ​  ​dx (e + sin x)



= (x – log|ex + sin x|) + c

9. We have,

b Ú ​ _______      ​dx a + c ex

be– x = Ú ​ ________     ​dx c e– x + c



dt b __ = – ​ __ a ​ Ú ​  t ​ ,



(  )

12. We have





Let ex = t





 ​

1.133

( 

)

13. We have, cos x – sin x + 1 – x Ú ​ _________________         d​ x |ex + sin x + x Let a e– x + c = t x

fi – a e dx = dt



(cos x – 1) – (sin x + x) = Ú ​ ____________________          ​dx ex + sin x + x

1.134  Integral Calculus, 3D Geometry & Vector Booster

[ 

cos(x – a)cos(x – b) 1 = _________ ​     ​   ​​ __________________        ​ ​dx cos(b – a) Ú sin(x – a)cos(x – b) ​

 (ex + cos x – 1) – (ex + sin x + x) = Ú ​ ___________________________            ​ dx ex + sin x + x = log|ex + sin x + x| – x + c

]

sin(x – a)sin(x – b) + ​ ​ _________________        ​dx  ​ ​ sin(x – a)cos(x – b)



1 = _________ ​     ​   (cot(x – a) + tan(x – b))dx cos(b – a) Ú

14. We have, sin(x + a) Ú ​ _________ ​  dx sin(x + b)

1 = _________ ​       ​[log |sin(x – a)| – log(sec{x – b})] + c cos(b – a)

sin(t – b + a) = Ú ​ ____________  ​ dt      sin t 

1 = _________ ​       ​[log |sin(x – a)cos(x – b)|] + c cos(b – a)

sin(t + (b – a)) = Ú ​ _____________        ​ dt sin t

17. We have, ____

sin t.cos(a – b) + cos t.sin(a – b) = Ú ​ ____________________________          ​ dt sin t

 ​÷tan x    ​   Ú________ ​       ​ dx sin x cos x

= cos(a – b) Ú dt + sin(a – b) Ú cot dt



sec2x ​÷tan x      ​ = Ú ​ __________     ​   dx tan x



2 sec x ____  = Ú ​ _____  ​   dx ​ tan x    ​   ÷

= (x + b)cos(a – b) + sin(a – b)log |sin (x + b)| + c



2t dt = Ú ​ ____     ​,  t

dx 15. We have Ú ​ ________________       ​ sin(x – a)sin(x – b)



= t cos(a – b) + sin(a – b)log |sin t | + c

sin(b – a) 1 = ________ ​       ​   ​ ________________       ​dx sin(b – a) Ú sin(x – a)sin(x – b)



= 2t + c



= 2​÷tan x    ​ + c



]

cos(x – a)sin(x – b) – ​ ​ _________________        ​ dx  ​ ​ sin(x – a)sin(x – b)

1 = ​ ________      ​  [cot(x – b) – cot(x – a)]dx sin(b – a) Ú 1 = ________ ​       ​[log|sin(x – b)| – log|sin(x – a)|] + c sin(b – a)

(  | 

|)

 sin(x – b) 1 = ________ ​       ​​ log ​ ​ _________ ​   ​  ​ + c sin(b – a) sin(x – a) 16. We have, dx Ú ​ ________________        ​ sin(x – a)cos(x – b) cos(b – a) 1 = _________ ​       ​Ú ​ _________________      ​ dx cos(b – a) sin(x – a)cos(x – b) cos ​( (x – a) – (x – b) )​ 1 = ​ _________      ​  ​ ___________________         ​dx cos(b – a) Ú sin(x – a)cos(x – b)

fi sec2xdx = 2tdt ____

dx _____ Ú ​ _______     ​ x​÷x  4 – 1 ​ 

[ 



Let tan x = t2

18. We have,

sin ​( (x – a) – (x – b) )​ 1 = ________ ​       ​   ​ ___________________         ​dx sin(b – a) Ú sin(x – a)sin(x – b) sin(x – a)cos(x – b) 1 = ________ ​       ​  ​ __________________ ​        ​ ​dx sin(b – a) Ú sin(x – a)sin(x – b) ​

____

3 x_____ dx = Ú ​ ________     ​ 4 4 x÷ ​ x  – 1 ​  

dt 1 = __ ​   ​  Ú t ​ _______      ​ 2 (t2 + 1)t



1 = __ ​   ​  Ú______ ​   dt     ​ 2 (t2 + 1)



1 = __ ​   ​  tan– 1(t) + c 2



1 )​ + c = __ ​   ​  tan– 1 ​( ​÷x  4 – 1 ​   2

_____

19. Let dx Ú ​ _______    2 (x + 1)

( 

)

 ​

2x◊x 1 = _______ ​  2      ​Ú dx – Ú ​ – ​ ________     ​  ​dx (x + 1) (x2 + 1)2



(x2 + 1) – 1 1 = _______ ​  2      ​ Ú dx – 2Ú ​ ​ __________    ​    ​dx (x + 1) (x2 + 1)2

( 

)

Indefinite Integrals 

( 

)

2t + 1 1 = ___ ​  __  ​  tan– 1 ​ ______ ​  __ ​    ​ + c ​ 3 ​    ​÷3 ​    ÷

dx dx x = _______ ​  2      ​ + 2 Ú ​ _______     ​ – 2 Ú ​ _______     ​ (x + 1) (x2 + 1) (x2 + 1)2



1.135

( 

)

2x2 + 1 1 = ___ ​  __  ​  tan– 1 ​ _______ ​  __ ​    ​ + c ​ 3 ​    ​÷3 ​    ÷

dx x fi 2 Ú ​ ________  2   ​= _______ ​  2      ​+ 2 tan– 1x – tan– 1x + c 2 (x + 1) (x + 1)



dx x 1 fi Ú ​ ________      ​= _______ ​       ​+ __ ​   ​  tan– 1x + c (x2 + 1)2 (x2 + 1) 2

22. Let I = Ú sec3x dx

20. We have,



= Ú (sec2x ◊ sec x)dx



= sec x Ú sec2x dx – Ú (sec x ◊ tan x ◊ tan x) dx



= sec x Ú sec2x dx – Ú (sec x ◊ tan2 x)dx



= sec ◊ x tan x – Ú (sec x (sec2x – 1))dx



= sec ◊ x tan x – Ú sec3x dx + Ú secx dx



2I = sec x ◊ tan x + Ú secx dx



2I = sec x ◊ tan x – log|sec x + tan x| + c



1 I = __ ​   ​  (sec x ◊ tan x + log|sec x + tan x|) + c 2

÷  Ú ÷ 

_________

sin(x – a) Ú  ​ ​ _________       ​ ​dx sin(x + a)  ____________________

sin(x – a) _________ sin(x – a) =  ​ ​ _________         ​×​   ​ ​  dx sin(x + a) sin(x – a) sin(x – a) ____________ = Ú ​ _____________       dx  ​ 2   2x – sin   a   ​ ÷​ sin sin x cos a – cos x sina  ___________ = Ú ​ ____________________         ​dx 2 2   x – sin   a  ​ ÷​ sin sin x ____________ = cos a Ú ​ _____________      dx  ​ 2 2   x – sin   a   ​ ÷​ sin

cos x ____________ – sin a Ú ​ _____________       ​dx 2 2   x – sin   a   ​ ÷​ sin

23. Let I = Ú cosec3x dx

sin x ____________ = cos a Ú ​ _____________      dx  ​ 2 2   a – cos    x  ​ ÷​ cos

cos x ____________ – sin a Ú ​ _____________       ​dx 2 2   x – sin   a   ​ ÷​ sin

( 



= Ú cosec3x ◊ cosec x dx



= cosec x Ú cosec2x  dx –

Ú (– cosec x ◊ cot x ◊ – cot x)dx



)

cos x = – cos a sin – 1 ​ _____ ​     ​   ​ cosa



= – cosec x ◊ cot x – Ú cosec x ◊ cot2 x dx



= – cosec x ◊ cot x – Ú cosec x(cosec2x – 1)dx

21. We have,



= – cosec x ◊ cot x – Ú cosec3x dx + Ú cosec x dx

x Ú ​ __________      ​dx x4 + x2 + 1 

fi 2I = – cosec x ◊ cot x + Ú cosec x dx



| 

– sin a log ​ sin a +

____________ 2   2x – sin   a  ​  ​ + ÷​ sin

1 dx = __ ​    ​ Ú ​ ___  ​ + t + 1, 2 t2

Let x2 = t



fi 2xdx = dt

(  ) __





|

​ 3 ​    2 ÷ dx 1 = __ ​    ​ Ú ​ _______   2   ​ + ​​ ___ ​   ​  ​​ ​ 2 2 1 ​​ t + __ ​   ​   ​​ ​ 2 1 t + ​ __ ​  1 2 2 – 1 __  ​   = __ ​    ​ × ___ ​  __  ​  tan ​ ​ _____  ​ + c 2 ÷ ​ 3 ​    ​ 3 ​    ÷ ___ ​   ​  2

(  )

(  )

c

fi 2I = – cosec x ◊ cot x + log|cosec x – cot x| + c 1 fi I = ​ __ ​  (– cosec x ◊ cot x + log|cosec x – cot x| + c 2 24. We have,  x2 – 1  ___________ Ú ​_____________     ​dx x​÷x  4 + 3x2    + 1 ​

x2 – 1 ________ = Ú ​ ______________        ​dx 1 2 4 x ​ ​ x + __ ​  2  ​   ​   ​+ 3 x

÷(  

)

1.136  Integral Calculus, 3D Geometry & Vector Booster

(  )÷(  

________

)



1 1 2 = Ú ​ 1 – __ ​  2  ​   ​​ ​​ x + __ ​ x ​  ​​ ​   ​– 2 + 3 x



dt ______ = Ú ​ _______    ​   , 2 ÷​ t  + 1 ​ 



1 Let x + __ ​ x ​ = t

(  )

1 fi ​ 1 – ​ __2  ​   ​ dx = dt x



| 

_____ ​÷t 2 + 1 ​  ​ +

|



= log ​ t +



1 1 2 __ = log ​ ​ x + ​ __    3  ​ ​  ​ + c x ​  ​ + ​ ​ x + ​ x2  ​  +

| ( 

25. We have,

c

÷(  

)|

dx Ú ​ _____________      x4 + 18x2 + 81 = Ú _______ ​  dx    (x2 + 9)2

 ​

 ​ Now, Ú ________ ​  dx     ​ (x2 + 9)2

( 



(  )

27. We have,  Ú sin 4x etan x dx 2

____________

)



(  ) (  ) x x = __ ​    ​  ​( 2tan ​( __ ​    ​ )​ )​ + c 2 2 x = x tan ​( __ ​    ​ )​ + c 2

x x x x = ​ __  ​ Ú sec2 ​ __ ​    ​  ​ dx – Ú tan ​ __ ​    ​  ​ dx + Ú tan ​ __ ​    ​  ​ dx 2 2 2 2

)



= Ú 2sin2x . cos2x.etan x dx



1 – tan2x tan2 x 2 tan x = Ú 2 ​ ________     ​◊ ​ ________    ​ ◊ e  dx 2 1 + tan x 1 + tan2x



1 – tan   x  = 2Ú ​ __________  ​◊ 2tan x ◊ sec2x ◊ etan x dx (1 + tan2x)3 

2

2

2 



Let tan2x = t







 et(1 – t)  = 2 Ú ​ ________ ​ dt (1 + t)3

2tan x sec2x dx = dt



– 2x ◊ x 1 = _______ ​  2      ​Ú dx – Ú ​ _______ ​       ​  ​ dx (x + 9)  (x2 + 9)2



(x2 + 9) – 9 x = _______ ​  2      ​+ 2 Ú ​ ​ __________     ​   ​ dx (x + 9) (x2 + 9)2



(t + 1) – 2 = – 2 Ú et ​ ​ _________  ​     ​ dt (t + 1)3



x = _______ ​  2      ​ + 2 Ú _______ ​  dx     ​– 18 Ú ________ ​  dx     ​ 2 (x + 9) (x + 9) (x2 + 9)2



1 2 = – 2 Ú et​ _______ ​       ​– ______ ​       ​  ​ dt (t + 1)2 (t + 1)3



t = – 2 Ú _______ ​  e      ​+ c (t + 1)2

( 

)

dx fi 19Ú ​ ________      ​ (x2 + 9)2

(  ) x  ​( __ ​    ​ )​ + c 3

(  )

( 

)

( 

)



x x x 2 1 = _______ ​  2      ​+ __ ​    ​ tan– 1 ​ __ ​    ​  ​ – ​ __ ​  tan– 1 ​ __ ​    ​  ​ + c 3 3 3 (x + 9) 3

28. We have, 



x 1 = _______ ​  2      ​+ __ ​   ​  tan– 1 (x + 9) 3

2x + 2 ____________ Ú sin– 1 ​​ _____________       ​  ​ dx 2   + 8x +   13 ​ ÷​ 4x



x x 1 ​  dx     ​= _________ ​       ​+ ___ ​    ​  tan– 1 ​( __ ​    ​ )​ + c Ú ________ 2 2 3 19(x2 + 9) 57



(x + 9)

26. We have, 

( 

)

x + sin x Ú ​ ________ ​     ​  ​ dx 1 + cos x

( 

)



x sin x = Ú ​ ________ ​       ​+ ________ ​    ​   ​ dx 1 + cos x 1 + cos x



2sin (x/2)cos(x/2) x = Ú ​ _________ ​       ​ + _______________ ​         ​  ​ dx 2 2cos (x/2) 2cos2(x/2)



( 

( 

)

(  )

(  ) )

x x x = Ú ​ __ ​    ​ sec2 ​ __ ​    ​  ​ + tan​ __ ​    ​  ​  ​ dx 2 2 2

( 

)

( 

)

2x + 2 ____________ = Ú sin1 ​​ ______________        ​  ​ dx   + 8)2    + 32 ​ ÷​ (2x



Let (2x + 2) = 3tanq



fi 2dx = 3sec2q dq

( 

)



3tanq  3 = __ ​   ​  Ú sin– 1 ​ ______ ​     ​  ​ sec2q dq 2 3secq 



3 = __ ​   ​  Ú q sec2q dq 2



3 = __ ​   ​  (q Ú sec2q dq – Ú tanq dq ) 2



3 = __ ​   ​  (q tanq – log|secq |) + c 2

Indefinite Integrals 



( 

(  ) ( ÷  (  ) ) ) 3 2x + 2 __  ​( ______ ​   ​    ​ – ​   ​  log (4x + 8x + 13) + c 3 ) 4 ___________

3 2x + 2 2x + 2 2x + 2 2 = __ ​   ​ ​  ​ ______  ​ tan     – 1 ​ ​ ______  ​    ​ – log ​ ​ 1 + ​​ ______ ​   ​        ​​ ​ ​  ​  ​ + c 2 3 3 3



= (x + 1) tan– 1

2

29. We have, 



2 = Ú _________ ​  cos x    ​ dx + Ú __________ ​  sin x      ​dx (2 + cos x) (2 + cos x)2



2 1    = Ú _________ ​   ​Ú cos x dx – Ú __________ ​  sin x      ​dx (2 + cos x)  (2 + cos x)2

sin2x     + Ú ​ __________    ​dx (2 + cos x)2

x2  Ú _____________ ​      ​dx (x sinx + cos x)2

sin x = _________ ​        ​+ c (2 + cos x)





(x cosx)(x sec x) = Ú _____________ ​         ​dx (x sin x + cos x)2



(x cosx) = x sec x Ú ______________ ​        ​dx (x sin x + cos x)2 

32. We have, 



x sec x = – ​ ____________       ​+  sec2x dx x sin x + cos x Ú

(  ) 1 + sin2q  = Ú cos(2q ) log ​(​  ________  ​     ​ dq cos2q  ) 1 + sin 2q  = log ​(_________  ​  cos 2q  ​     )​ Ú cos (2q ) dq



x sec x = – ​ ______ ​  + cos x + tanx + c x sin x

sin (2q ) ______ 2   – Ú _______ ​   ​ ◊ ​         ​   dq cos 2q 2

cosq + sinq   Ú cos(2q ) × log ​ ___________ ​        ​  ​ dq cosq – sinq 

(sec x + x sec x ◊ tan x) – Ú – ​ _________________         ​dx x sin x + cos x



( 

30. We have, 



x sec2x + tan x = Ú x  ​ _____________ ​        ​  ​ dx (x tan x + 1)2



x sec2x + tan x = x2  ​ _____________ ​        ​  ​dx (x tan x + 1)2

(  Ú ( 

) )

2

( 

33. We have, 

( 



( 

)

)

x x cos x = – _________ ​       ​ + 2 Ú ​ _____________ ​        ​  ​dx (tan x + 1) (x sin x + cos x) x2 = – _________ ​       ​+ 2log|x sin x + cos x| + c (tan x + 1)

31. We have,  sec x (2 + sec x)



​         ​ dx Ú ______________ 2



1  2cos x +   = Ú ​ __________     ​dx (2 + cos x)2



2cos x + cos2x + sin2x = Ú ___________________ ​       ​    dx (2 + cos x)2



cos x(2 + cos x) + sin2x = Ú  ​____________________      ​    dx (2 + cos x)2

(1 + 2 sec x)

)

x4 + 2 Ú ex ​ ​ _________     ​  ​ dx (1 + x2)5/2

1   – Ú ​ 2x. – __________ ​       ​  ​dx (x tan x + 1) 2

)

(2q ) __ 1 + sin 2q   1 = log ​ ​ _________     ​   ​ × sin ​ ____  ​   – ​   ​  log |sec 2q | + c 2 2 cos 2q 

x2(x sec2x + tan x) ​         ​dx Ú ________________ (x tan x + 1)2



1.137



  4 (x + 1) + 1 = Ú ex​ __________       ​dx (1 + x2)5/2



 (x2 + 1)2 + (1 – 2x2) = Ú ex​  __________________     ​ dx    (1 + x2)5/2



(x2 + 1)2 (1 – 2x2) _________ = Ú ex ​ ​ _________      ​ +​       ​  ​ dx (1 – x2)5/2  (1 + x2)5/2



(1 – 2x2) 1 _________ = ex ​ ​ _________      ​  + ​     ​   ​ dx (1 + x2)1/2 (1 + x2)5/2



x 1 = Ú ex ​ _________ ​       ​+ _________ ​       ​  ​ dx (1 + x2)1/2 (1 + x2)5/2

(  Ú  (  ( 

)

)

)

( 

)

(1 – 2x2) x __________   + Ú ex ​ _________ ​       ​   + ​        ​  ​ dx (1 + x2)3/2  (1 + x2)5/2

( 

)

x 1 = ex ​ _______ ​  ______      ​+ _________ ​     ​   ​+ c 2 (1 + x2)3/2  ​ ÷​ 1  + x  

1.138  Integral Calculus, 3D Geometry & Vector Booster 34. We have, 

36. We have, 

( 

)

Ú cot– 1(1 + x + x2) dx

x cos3x – sin x Ú esin x​ ____________ ​      ​   ​ dx cos2x = Ú e

(x cosx – sec x ◊ tan x) dx

= Ú e

sin x ◊ cos x  ​ x cosx –​ _________        ​  ​dx cos3x

sin x

sin x

( 

( 

)

)

t = Ú et ​ sin– 1t – ________ ​       ​  ​ dt, (1 – t2)3/2

Let t = sin x



fi dt = cosx dx

[ 

( 

)]

t 1 1 = Ú et ​ sin– 1t – ______ ​  _____    ​  + ​ _______ ​  _____      ​– ________ ​       ​  ​  ​ dt 2 2 (1 – t2)3/2  ​ ÷​ 1  – t  ​  ​÷1  – t  

( 

)

1 _____ = e ​ sin t – ​ _______    ​   ​+ c  ​ ÷​ 1  – t2  t 

– 1

dx  Ú  ____________ ​      ​ cosx + cosec x



= Ú tan– 1(1 + x)dx + Ú tan– 1x dx

)

Let  1 + x = t fi dx = dt



= Ú tan– 1t dx +

Ú tan– 1x dx



1 = t tan– 1t – ​ __ ​  log |t2 + 1| + 2 1 x tan– 1x  – ​ __ ​  log |x2 + 1| + c 2 1 = (x + 1)tan– 1(x + 1) – ​ __ ​  log|(x + 1)2 + 1| 2 1 x tan– 1x  – ​ __ ​  log |x2 + 1| + c 2

37. We have, 

= Ú ____________ ​  sin x dx     sin x ◊ cos x + 1

 ​

= Ú ______________ ​  2sin x dx       ​ 2sin x ◊ cos x + 2



= Ú _________ ​  2sin x dx     ​ sin 2x + 2



(sin x + cos x) + (sin x – cos x) = Ú __________________________ ​       ​    dx sin 2x + 2

Ú tan– 1 (1 + x + x2) dx

( 

p  = Ú ​ __ ​   ​  – tan– 1(1 + x + x2)  ​ dx 2

(sin x + cos x) (sin x – cos x) = Ú ____________ ​         ​ dx + Ú _____________ ​       ​  dx sin 2x + 2 2 + sin 2x + 2x

Let sin x – cos x = t and sin x + cos x = v fi (cos x + sin x)dx = dt and (cos x – sin x)dx = dy

= Ú _________ ​  dt     ​– Ú _________ ​  dv     ​ 1 + t2 + 2 v2 – 1 + 2



dv dt    = Ú ​ _____  ​– Ú ​ ______     ​ 2 2 v +1 t –3

|  | __

 ​

(1 + x) – x = Ú tan– 1​ ​ __________       ​   ​ dx 1 + x(1 + x)











35. We have, 



)

1 = Ú tan– 1​ ________ ​     ​   ​ dx 1 + x + x2



= esin x(x – sec x) + c



(  ( 



t – ​÷3 ​    1__ __  = – ​ ____    ​   log ​ ​ ______  ​   ​ – tan– 1(v) + c 2​÷3 ​    t +÷ ​ 3 ​    __

 (sin x – cos x) – ÷ ​ 3 ​    1__ __ = – ​ ____    ​   log|​ ________________       2​÷3 ​    (sin x – cos x) + ÷ ​ 3 ​    – tan– 1(sin x + cos x) + c

)

p  1 = __ ​   ​  x – (x + 1)tan– 1(x + 1) – ​ __ ​  log|(x + 1)2 + 1| 2 2 38. We have, 

1 – x tan– 1x – ​ __ ​  log |x2 + 1| + c 2

sin x Ú​  _____     ​ dx sin 4x sin x  = Ú ____________ ​      ​  dx 2 sin 2x  cos 2x 1 dx  = __ ​   ​  Ú _______________  ​     ​ 4 cos x (2cos2x – 1) 1 cos x dx = ​ __ ​  Ú __________________ ​         4 (1 – sin2x)(1 – 2sin2x) 1 dt   ​ = __ ​   ​  Ú _____________  ​     ​, 4 (1 – t2)(1 – 2t2)

Let t = sin x





1 dt  = __ ​   ​  Ú ______________ ​      ​ 4 (t2 – 1)(2t2 – 1)

dt = cos x dx

Indefinite Integrals 

( 

) (  )

1 1 2 = __ ​   ​  Ú ​ _____ ​       ​– _______ ​       ​  ​ dt 4 t2 – 1 2t2 – 1

dv dv 3 3 = ​ __ ​  Ú ​ __________       ​– __ ​    ​   ​ _______     ​ 2 (v2 – v + 1) 2 Ú (v3 + 1)

 | | |  |

1 1 dt ___ 1 2 = __ ​   ​  Ú _____ ​  dt     ​– ​ __ ​  Ú __ ​   ​  ​​ ​  __  ​  ​​ ​ 2 2 4 t – 1 4 t ​÷2 ​   

2

|  |

(  ) (  )

( 

)

2v – 1 1 1 = ___ ​  __  ​  tan– 1 ​ ______ ​  __ ​    ​ –  ​ __  ​ log |v3 + 1| 2 ​ 3 ​    ​÷3 ​    ÷

__

v–1 3 + ​ __ ​  Ú ​ _________     ​dv 2 v2 – v + 1  



t ​÷2 ​    – 1 t – 1 ____ 1 1 __ = __ ​   ​  log​ _____ ​     ​ ​ – ​  __    ​   log ​ ​ _______    ​  ​ + c 8 t + 1 4​÷2 ​    t ​÷2 ​    + 1

( 

)

 2v __ –1 1 1 = ___ ​  __  ​  tan– 1​ ______ ​   ​    ​ –  ​ __ ​  log|v3 + 1| 2 ​ 3 ​    ​÷3 ​    ÷

where t = sin x. 39. We have, Ú (x

3m



2m

+x

2m

m

+ x )(2x

+ 3x + 6)

 dx

= Ú (x3m – 1 + x2m – 1 + xm – 1) × x × (2x2m + 3xm + 6)1/m dx

= Ú (x3m – 1 + x2m – 1 + xm – 1)(2x3m + 3x2m + 6xm)1/m dx 3m

2m

+ 3x

3 (2v – 1) – 1 +  ​ __ ​  Ú ​ __________       ​dv 2 v2 – v + 1 



1/m

m

2

dv 3 3 v – (v – 1) __ = __ ​   ​  Ú _______________ ​        ​– __ ​   ​  Ú​  ___________     ​  dv 2 2 2 2 ​ 3 ​     ÷ 1 (v3 + 1) __ ___ ​​ v – ​   ​   ​​ ​ + ​​ ​   ​  ​​ ​ 2 2

1 t – ___ ​  __  ​  ​ 2 ​    ÷ t–1 1 1 1__ = __ ​   ​  × __ ​   ​  log ​ _____ ​     ​  ​ – ​ ____    ​   log ​ ​  ______   ​  ​ + c 4 2 t + 1 4​÷2 ​ 1__    ___ t + ​    ​  ​ 2 ​    ÷

|  |

( 

Let 2x

+ 6x = t



fi 6m(x3m – 1 + x2m – 1 + xm – 1)dx = dt

)

1__ – 1 1 1 = ​ ___   ​  tan  ​ 2v – ___ ​  __  ​  ​ –  ​ __ ​  log |v3 + 1| ​ 3 ​    ​ 3 ​    2 ÷ ÷

3 1 = __ ​   ​  log|v2 – v + 1| – ​ __ ​  log |v3 + 1| + c 2 2

1 = ___ ​    ​  Ú t1/m dt 6m 1 = ________ ​       ​t m + 1 + c 6(m + 1)

where v = t2 = (tan x)2/3

1 = ________ ​       ​(2x3m + 3x2m + 6xm) m – 1 + c 6(m + 1)

 ​

ex = Ú ​ _________      ​dx ex(ex – 1)2 

40. We have, 



dt = Ú ​ _______      ​ Let ex = t t(t – 1)2

dx 41. We have Ú _______ ​  x   2  (e – 1)

_____

    dx Ú 3​÷tan x  ​

fi exdx = dt

3



Let tan x = t



fi sec 2x dx = 3t2 dt



(  )

2v – 1 3 1__ – 1 ______ + ​ __ ​  log|v2 – v + 1| – ​ ___   ​  tan  ​ ​  __ ​    ​ + c 2 ​÷3 ​    ​÷3 ​   



m





2

3 = Ú _____ ​  3t     ​dt t6 + 1

( 

)



1 1 1 = Ú ​ __ ​   ​  – ____ ​       ​ + ______ ​       ​  ​ dt t t – 1 (t – 1)2



t  1 = log ​  ​ ____     ​ ​ – ____ ​       ​ + C t–1 t–1



ex 1 = log ​______ ​  x    ​   ​ – ______ ​  x      ​+ C e –1 e –1

2

3t 3t fi dx = _____ ​  2     ​dt = _____ ​   2   ​dt sec x 1+t

|  |

|  |

42. We have

3 t 2.2t = __ ​   ​  Ú _____ ​       ​dt 2 t6 + 1 v 3 = ​ __ ​  Ú ​ _____      ​d v, 2 v3 + 1

Let t2 = v





(v + 1) – 1 3 = __ ​   ​  Ú​  ________________       ​dv 2 (v + 1) (v2 – v + 1)

1.139

2t dt = dx

tan– 1x Ú ​ ______  ​ dx     x4

[ 

(  ) ]



dx 1 1 = tan– 1x Ú ​ ___4 ​ – Ú ​ ______ ​   2    ​× ​ – ​ ___ 3 ​  ​  ​ dx x 1+x 3x



x dx tan– 1x __ 1 = ______ ​       ​+ ​   ​  Ú ​ ________    3 4 3 (– 3x ) x (1 + x2)

1.140  Integral Calculus, 3D Geometry & Vector Booster  ​

dt tan– 1x __ 1 = ​ ______      ​+ ​   ​  Ú ​ _______      ​, 3 6 (– 3x ) t(t – 1)2



Let x2 + 1 = t fi

( 

2x dx = dt

)

tan– 1x __ 1 1 _____ 1 1 = ______ ​       ​ + ​    ​ Ú ​ __ ​   ​  – ​      ​+ _______ ​       ​  ​ dt 3 t t – 1 6 (– 3x ) (t – 1)2 – 1

(  |  |

)

tan x __ t 1 1 = ______ ​     ​  + ​   ​  ​   log ​ ____ ​       ​ ​ – ​ ____     ​  ​ + c t–1 t–1 (– 3x3) 6 – 1

(  |  | )

3 = 4 log|t3 + 1| – __ ​   ​  log|t2 – t + 1| 2

(  )

__ 2t – 1 1 + ___ ​  __  ​  tan– 1 ​ ______ ​  __ ​    ​ + c, Let t = 3​÷x    ​  ​ 3 ​    ​÷3 ​    ÷

45. We have,  dx Ú ​ ___________       ​ 2sin x + sec x

cos x = Ú  ​ _________     ​dx sin 2x + 1

2

tan x __ x + 1 __ 1 1 = ______ ​     ​  + ​   ​  ​   log ​ ______ ​  2 ​    ​ – ​  2  ​   ​ + c 3 6 (– 3x ) x x

43. We have,

2cos x 1 = __ ​   ​  Ú ​ _________     ​dx 2 sin 2x + 1

dx Ú ​ _______________   4  ​ ____ _____   (​÷cos x      ​+ ÷ ​ sin x    ​)  

1  (sin x + cos x) – (sin x – cos x) = __ ​   ​  Ú ​ _________________________      ​    dx 2 sin 2x + 1



sec2x = Ú ​ ___________     4  ​dx ____ (1 + ÷ ​ tan x    ​)  



= Ú _______ ​  2t dt    ​ , (1 + t)4

1 (sin x + cos x) 1 (sin x – cos x) = __ ​   ​  Ú  ​ ____________        ​ dx – __ ​    ​ Ú ____________ ​        ​ dx 2 2 sin  2x + 1 sin 2x + 1 Let tan x = t2 fi



sec2xdx = dt

 (t + 1) – 1 = 2 Ú​ _________ ​     dt (1 + t)4

( 

(  ) x p  1 1 = ____ ​     ​   log ​ tan ​( __ ​    ​ + __ ​   ​  )​  ​ – __ ​   ​  (sin x + cos x) + c 2 8 2 | | 2 ​÷2 ​  

)

1 1 = 2 Ú ​ _______ ​       ​– ​ _______      ​  ​ dt (1 + t)3 (t + 1)4



1 1 = – 2 Ú ​ ________ ​       ​–   ​ _______      ​  ​ + c 3(1 + t)2 4(t + 1)3



1 1 = – 2  ​ ____________ ​      2  ​– ​ ____________ ____ ____   3 ​  ​ + c 3(1 + ÷ ​ tan x    ​) 4(​÷tan x      ​ + 1)

44.

– 2/3

dx 1 1 (sin x – cos x) = __ ​   ​  Ú ____________ ​        ​– __ ​    ​ Ú ​____________        ​ dx 2 (sin x + cos x) 2 (sin x + cos x)2 p  1 1 (sin x – cos x) = ____ ​  __    ​   cosec ​ x + __ ​   ​   ​ dx – ​ __ ​  Ú ​ ____________        ​dx Ú 4 2 (sin x + cos x)2  2​÷2 ​   



(  Ú( 

1 (sin x + cos x) 1 (sin x – cos x) = __ ​   ​  Ú ____________  ​     ​ dx – __ ​    ​  Ú ____________ ​         ​ dx 2 2 (sin x + cos x) 2 (sin x + cos x)2

)

__



)

(  ) – 2

+x 1+t 2      ​ dx 3 Ú ​ ______ ​   ​   ​t dt, Ú ​ 1_______ 1+x 1 + t3 Let x = t3 fi dx = 3t2 dt

dt t2 = 3 Ú ​ _____  3   ​ dt + 3 Ú ​ _____     ​ 1+t 1 + t3 t2 – (t2 – 1) = log|t3 + 1| + 3 Ú​  __________     ​  dt   t3 + 1 (t – 1) = 4 log|t3 + 1| – 3 Ú​ ________      ​dt 2 t – t + 1  3  (2t – 1) – 1 = 4 log|t3 + 1| – ​ __  ​ Ú​ __________    ​   dt 2 t2 – t + 1 3 3 dt = 4 log|t3 + 1| – __ ​    ​ log|t2 – t + 1| + __ ​   ​  Ú ​ ________      ​ 2 2 t2 – t + 1

46. We have, 4 + 1  ______ Ú​  x  ​dx 6 x +1

  (x2 + 1)2 – 2x2 = Ú ​ _____________        ​dx (x6 + 1) (x2 + 1)2 x2 = Ú ​ _______  ​   dx – 2 Ú ​ _______    ​   dx 6 6 (x + 1) (x + 1) (x2 + 1) x2 = Ú​ ___________      ​dx – 2 Ú _______ ​  6      ​dx 4 2 (x + x + 1) (x + 1) 

( 

)

( 

)

1 ​ 1 + __ ​  2  ​   ​ x 3x2 2 = Ú ​ ___________       ​dx – __ ​    ​ Ú _________ ​      ​dx 3 (​  (x3)2 + 1 )​ 1 ​ x2 + __ ​  2  ​ – 1  ​ x

( 

)

1 ​ 1 + __ ​  2  ​   ​ x 3x2 2 = Ú ​ ____________       ​dx – __ ​   ​ Ú ​ _________     ​dx 2 3 3 ​( (x )2 + 1 )​ 1 ​ ​​ x + __ ​ x ​  ​​ ​ + 1  ​ 

( ( 

)

)

Indefinite Integrals 

( 

)

1 2 – 1 3 __ = tan–1 ​ x – ​ __ x ​  ​ – ​ 3  ​ tan (x ) + c 47. We have,

Ú dx(e

2

x

– 1)

 ​ = Ú_______ ​  dt     ​, t(t – 1)2

Let t = ex



fi dt = ex dx

(t2 – 1) + 1 t = ______ ​  2      ​ + 2Ú ​ ​  _________    ​    ​ dt (t – 1) (t2 – 1)2



dt dt t = ______ ​  2      ​ + 2Ú ​ ______     ​ + 2Ú ​ _______      ​ 2 2 (t – 1) (t – 1) (t – 1)2

)

|  |

|  |

t t–1 1 = – ​ ______      ​ – ​ __ ​  log ​ ​ ____  ​  ​ + c t+1 (t2 – 1) 2



_____

where t = ÷ ​ x  + 1 ​   50. We have,

1 1 1 = Ú ​ __ ​   ​  – ______ ​       ​+ ______ ​       ​  ​ dt, t (t – 1) (t – 1)2

x4 – 1 _________ Ú ​ ____________       ​ dx x2÷ ​ x  4 + x2 + 1 ​ 

1 1 = log ​ ____ ​       ​  ​ –  ​ ____     ​ + C t –1 t– 1

|  |

x4 – 1 ________ = Ú ​ ______________        ​ dx 1 3 2 x ​ ​ x + __ ​  2  ​   ​ ​  +1 x 1 ​ x – __ ​  3   ​   ​ dx x ________ = Ú​ ____________        ​ 1 ​ ​ x2 + __ ​  2  ​   ​ ​  +1 x

÷(   ) (  ) ÷(   )



x

e 1 = log ​ _____ ​  x      ​  ​ – ​ ______      ​+ C e –1 ex – 1 48. We have, dx_____ Ú ____________ ​        ​ (x – 1)​÷x  + 2    ​



= Ú _______ ​  2t dt    ​, (t2 – 3)t

Let x + 2 = t2



fi dx = 2t dt

1 Let x2 + __ ​  2  ​  + 1 = t2 x 1 fi ​ 2x – 2 ​ __3  ​   ​ dx = 2tdt x

t dt = Ú ___ ​     ​,  t



( 



dt = 2Ú ​ __________       ​ __ 2 (​  t – (​÷3 ​    )2 )​



= Ú t dt

t–÷ ​ 3 ​    2 __ ​   = ____ ​  __    ​   log ​ ______ ​  ​+ c 2​÷3 ​    t + ​÷3 ​   



=t+c

|



1 = ​ x2 + __ ​  2  ​    + 1 ​ + c x

|  | __

| 

__

x2 – 1 ____________ Ú​ ______________        ​ dx x3÷ ​ 2x   4 – 2x2   + 1 ​

dx ​  2 _____     Ú ________ x  ​÷x  + 1  2t dt = Ú ​ ________     ​, 2 (t – 1)2t dt = 2Ú ​ _______     (t2 – 1)2

dt  ​ Now, Ú ​ _______     ​ (t2 – 1)

Let x + 1 = t2



fi dx = dtdt



÷ 

51. We have,

49. We have,

 ​  ​

)

__________

(x + 2) – ÷ ​ 3 ​    1 __ ​  ​ + c = ___ ​  __  ​  log​ ​ ___________    ​÷3 ​    (x + 2) + ÷ ​ 3 ​   



)



dt dt t fi 2Ú ​ _______      ​ = –  ​ ______      ​ – Ú ​ ______     ​ (t2 – 1)2 (t2 – 1) (t2 – 1)

exdx = Ú _________ ​  x x  2  e (e – 1)

( 

( 

1.141

( 

)

2t ◊ t 1 = ______ ​  2      ​Ú dt – Ú ​ – ​ _______     ​  ​ dt (t – 1) (t2 – 1)2

x2 – 1 __________ = Ú ​ ____________       ​dx 2 1 __ x5​ 2 – __ ​  2  ​  +   ​  4  ​   ​ x x

( 

÷ 

)



1 1 ​  5  ​   ​ dx  ​ __ ​  3  ​  – __ x x __________ = Ú ​ ___________        ​ 2 1 __ __  ​ 2 – ​  2  ​  +   ​  4  ​ ​  x x



1 = __ ​   ​  Ú 2

÷ 



t dt ___ ​     ​,  t

2 Let 2 – ​ __2  ​  + x

1 __ ​  4  ​  = t2 x

2 fi ​ ___ ​    ​ – 25

)

( 

4 ___ ​    ​  ​ dx = 2tdt 25

1.142  Integral Calculus, 3D Geometry & Vector Booster

1 = __ ​   ​  t + c 2



1 2 1 __ = __ ​   ​ ​  2 – __ ​  2  ​  +   ​  4  ​ ​  + c 2 x x

÷ 

__________

52. We have,

Ú









Also, t2 = 1 – sin  2q





=

dt ________ = Ú ​ __________      ​  ​ ÷​ 5  + 1 + t2 



dt _________ = Ú ​ ___________    ​ __   (    )2​ – t2 ​  ÷​ ​   ​÷6 ​ 

Ú

÷ 



t = sin– 1 ​ ___ ​  __   ​  ​ + c ​÷6 ​   



sinq –__cosq  = sin– 1 ​ ​ __________  ​       ​+ c ​÷6 ​   

______

cos2x ​ _____ ​  2  ​    ​ d  x sin x

÷ 

____________ 2

2



=

x – sin x ___________       ​    ​dx Ú ​ ​ cos sin2x



=

Ú

________

​÷cot   2x – 1 ​   dx

(  )

( 

se2x Ú  ​ _____________       ​dx (sec x + tan x)9/2

__________ 2  ​÷cosec   x    – 2 ​ dx

Ú

=



2 cosec x–2 __________ = Ú ​ ___________        ​ dx 2   x    – 2 ​ ÷​ cosec



cosec2x 2 __________ __________ = Ú  ​ ___________      ​ dx – Ú  ​ ___________      ​ dx 2 2   x    – 2 ​ ​÷cosec   x    – 2 ​ ÷​ cosec



cosec2x 2sin x ________ _________ = Ú  ​ _________      ​ dx – Ú   ​ __________       ​ dx 2   x – 1 ​  ​÷1  – 2sin2x   ​ ÷​ cot



2

cosec x 2sin x ________ _________ = Ú  ​ _________      ​ dx – Ú  ​ __________       ​ dx 2   x – 1 ​  ​÷2cos   2x – 1 ​  ÷​ cot

sec x.sec x   = Ú  ​ _____________        ​dx (sec x + tan x)9/2

fi cosec2xdx = dt and – sin xdx = dx.



...(i)



Let

sec x + tan x = t





sec x (sec x + tan x) dx = dt





dt sec xdx = __ ​   ​  t



1 1 Also sec x – tan x = ___________ ​       ​= __ ​   ​  (sec x + tan x) t



1 1 Thus, sec x = __ ​   ​  ​   t + __ ​   ​   ​ dt t 2

(  )

Let cot x = t and cos x = v



)

54. We have





sin  2q = 1 – t2



_____

​ cos2x    ​   ÷ ______ ​     ​   dx sin x

(cosq + sinq)dq = dt

The given intergral (i) reduces to

dv dt = – Ú _______ ​  _____    ​  + 2 Ú ________ ​  _______      ​ 2 ​÷2 v   2 – 1 ​  ÷​ t  – 1 ​ 

(  )

__ dv dt _____ _________ = – Ú  ​ ______     ​ + ÷ ​ 2 ​     Ú  ​ ___________      2 1__ 2 2 ___ ÷​ t  – 1 ​  ​ v – ​​ ​    ​  ​​   ​ ​  ​ 2 ​    ÷

÷  (  )

1 1 dt ​ __ ​  ​   t + __ ​   ​   ​ ​ __ ​  t t 2__________ Ú  ​   ​      9/2 t

2 1 (t + 1) = __ ​   ​  Ú  ​ ______  ​ dt     2 t13/2



1 1 1 = __ ​   ​  Ú   ​ ___ ​    ​ + ____ ​     ​  ​ dt 2 t9/2 t13/2



1 2 2 = __ ​   ​     ​ ____ ​     ​ + ______ ​     ​   ​+ c 2 7t7/2 11t11/2

53. We have,



cosq + sinq  __________ Ú​   ___________        ​ dq    ​ ÷​ 5  + sin(2q ) 

1 1 = ​ ____ ​  7/2    ​ + ______ ​  11/2    ​   ​+ c 7t 11t



1 1 = ______________ ​       ​ + ________________ ​      ​ + c 7(sec x – tan x)7/2 11(sec x + tan x)11/2

_____

 ​

| 

________

|

= –  log ​ cot x + ​÷cot   2x – 1 ​   ​





| 

÷ 

______

|

__ 1 = – log|t + ÷ ​ t 2 – 1 ​  |+÷ ​ 2 ​     log ​ v + ​ v2 – ​ __  ​ ​   ​+ c 2

__

| 

÷ 

_________

|

1 + ​÷2 ​     log ​ cos x + ​ cos x – __ ​   ​ ​    ​+ c 2

Let

2

sinq – cosq = 1

(  Ú ( 

( 

)

)

)

Indefinite Integrals 

55. We have,



tan2q  ___________ Ú  ​ ____________       ​ dq 6 6   q + cos   q ​ ÷​ sin



sin2x = tan x log(1 + sin2x) – 2Ú ________ ​      ​dx 1 + sin2x 

sin2q  __________ = Ú  ​ ________________       dq  ​  3 2 cos2q ​ 1 – __ ​   ​  sin   2q  ​ 4

÷ 

( 



2sin2q  __________ = Ú  ​ ________________        ​ dq cos2q ​÷3cos   2 2q    – 1 ​



dt ______ = Ú  ​ ________      ​, t​÷3t   2 – 1 ​ 

Let t = cos2q



fi dt = 2sin2q dq



)

1 = tan x log(1 + sin2x) – 2Ú​ 1 – ________ ​       ​  ​dx 1 + sin2x





Ú sec2x log(1 + sin2x)dx

2sin x ◊ cos x = log(1 + sin2x) Ú sec2x dx – Ú tan x ◊ ​ __________       ​ dx (1 + sin2x)

2sin2q  __________ = Ú  ​ ________________        ​ dq 2  cos2q ​÷4  – 3sin   2q  ​



log(1 + sin2x) 2. Ú ​ ____________     ​  dx cos2x 

=

tan2q  ______________ = Ú  ​ _______________        ​ dq 2    q  ​ ÷​ 1  – 3sin2q cos

2 = tan x log(1 + sin2x) – 2(x) + 2Ú _________ ​  sec x    ​ dx 2 2tan x + 1

dt = tan x log(1 + sin2x) – 2(x) + 2Ú ​______       ​ 2t2 + 1

Let tan x = t

t dt = – Ú _________ ​  ______     ​ 2  t ÷ ​ 3t   2 – 1 ​ 

__

3.

Ú ​x​ 3​ ​​( 1 + ​x​3​ )​​

2 – 1 __ ​   ​ 

2 – ​ __ ​ 





1 = – ​ __ ​ tan– 1v + c 9

 ​



1 = – ​ __ ​ tan– 1 ​( ​÷3t   2 – 1   ​ )​ + c 9



1 = – ​ __ ​ tan– 1 ​( ​÷3cos   2 2q    – 1 ​ )​ + c 9

dx ​dx = Ú ​ __________      x2/3(1 + x2/3) Let x1/3 = t dx fi ​ ____   ​ = dt 3x2/3

______

__________

x2 + 6 1. Ú​ _______________        ​dx (x sin x + 3cos x)6

(x + 6)x = Ú​ _________________       ​dx 3 (x  sin x + 3x2cos x)6 3

 (x + 6)x cos x.(x sec x) = Ú ​ ___________________        ​dx (x3 sin x + 3x2cos x)6 2

x(x + 6) cos x = (x3sec x)Ú​  _________________        ​dx + Ú sec2x dx 3 (x  sin x + 3x2cos x)6 – x sec x = _____________ ​        ​+ tan x + c x sin x + 3 cos x

dx fi ​ ___   ​ = 3dt x2/3



dt = 3Ú _____ ​   2  1+t

 ​

= 3tan– 1(t) + c



= 3tan– 1(x1/3) + c



4

2

__

= tan x log(1 + sin2x) – 2(x) + 2​÷2 ​   t  an– 1(t ​÷2 ​   )  + c where t = tan x

dv 1 = – ​ __ ​  Ú  ​ _____     ​, Let 3t2 – 1 = v2 9 v2 + 1 6 tdt = 2x dx

2

sec2x dx = dt







1.143

[ 

( 

) ] [ 

( 

)]

5p  p  4. Ú ​ 1 + tan ​ ___ ​   ​ – x  ​  ​ ​ 1 + tan ​ – ​ ___  ​ + x  ​  ​ dx 16 16



= Ú 2dx



= 2x + c

( 

p  (1 + tan A)(1 + tan B) = 2, if A + B = __ ​   ​   ​ 4 5. Útan (x – a ) ◊ tan (x + a ) ◊ tan 2x dx

)





= Ú(tan (2x) – tan (x – a ) – tan(x + a ))dx



1 = – ​ __ ​  log |cos (2x)| + log |cos (x – a )| 2



+ log |cos (x – a )| + c

1.144  Integral Calculus, 3D Geometry & Vector Booster

(  ( ÷  ) ) _____



dt t  Now, I1 = Ú ___________ ​     t2 + 2t – 3 dt

1–x 6. Ú cos ​ 2cot ​ ​ _____ ​     ​ ​  ​  ​ dx 1+ x – 1



Let x = cosq



fi dx = – sinq dq



=

Ú

[  ( ÷ 

________

=



Ú

[  [  [  ( 

= – Ú cos (q ) dq



= – sinq + c ______ – ​÷1  – x2    ​+

( 



c



         ​ x (x + 1)dx

÷  { ( 

__________________________

( 

)

}

)

1 1 (x2 –  1)​ x2 ​ ​ x2 + __ ​  2  ​   ​ +    2 ​ x + __ ​ x ​  ​ – 1  ​ ​ x = Ú _________________________________ ​            ​ dx x2(x2 + 2x + 1) ________________________

(  )

)

)

}

1 1 1 ​ 1 – __ ​  2  ​   ​​ ​ ​ x2 + __ ​  2  ​   ​ +     2 ​ x + __ ​ x ​  ​ – 1  ​  ​ x x = Ú ​ _________________________________             ​ 1 ​ x + __ ​ x ​ + 2  ​ 1 Let x + __ ​ x ​ + 2 = t _________ ​÷__________ t 2 + 2t – 3 ​ 

(  )

1 fi ​ 1 – __ ​  2  ​   ​ dx = dt x



= Ú  ​ 



t + _________ 2t   – 3    ​dt = Ú​  ________________ 2 (t + 2)​÷t  + 2t    – 3   ​

    ​  dt (t + 2)







2



t(t + 2) – 3 _________ = Ú   ​ ________________       dt  ​ (t + 2)​÷t 2 + 2t    – 3  ​



dt t _________ = Ú __________ ​  _________      ​dt – Ú _______________ ​       2 (t + 2)​÷t 2 + 2t – 3   ​ ÷​ t  + 2t –  3 ​ 

 ​

= I1 + I2 (say)

)

| 

)

__

|

dx __________ Also, I2 = Ú ​ _________________        ​ (x + 2)​÷x  2 + 2x    – 3  ​

2

( 

( 

1 where t = ​ x + __ ​ x ​  ​

___________________ (x – 1)​÷x  4 + 3x3 –     x2 + 2x + 1 ​ __________________________

(  ) ÷{   ( 

)

– 1

Ú cos (p – q ) dq

7. Ú ​ 

( 

(t + 1) – ​÷2 ​    1 1__ __ ​  ​ + c = __ ​   ​  log|t2 + 2t – 3| – ​ ____    ​   log ​​ __________    2 2​÷2 ​    (t + 1) + ​÷2 ​   



=

) )

(2t + 2) dt 1 = __ ​   ​   ​​ _________      ​  ​ dt – Ú ​ ____________ ​        ​  ​ 2 t2 + 2t – 3 (t + 1)2 – (2)2

q cos  ​ 2cot  ​ tan​ __ ​   ​   ​  ​  ​ dq 2

=



)]

– 1





)

(2t + 2) dt 1 = ​ __ ​    ​ ​ _________      ​ ​ dt – Ú ​ _________ ​  2    ​   ​ 2 t2 + 2t – 3 t + 2t – 3

1 – cosq  cos ​ 2cot– 1 ​ ​ ________ ​       ​  ​  ​  ​ dq 1 + cosq 

{  (  ) } ] p  q  = Ú cos ​ 2cot  ​{ cot ​( __ ​   ​  – __ ​   ​  )​ }​ ]​ dq 2 2 p  q  = Ú cos ​ 2 ​ __ ​   ​  – __ ​   ​  )​ ]​ dq 2 2



(  Ú (  Ú ( 

1 (2t + 2) – 2  ​ = __ ​   ​  Ú ​ ​ __________    ​  ​ dt 2 t2 + 2t – 3

dt – ​ __2 ​   t  = Ú _________________________ ​    _____________________         ​ 2 1 1 1 ​ __ ​   ​   ​​ ​​ __ ​   ​  – 2  ​​ ​ +     2​ __ ​   ​  – 2  ​ – 3 ​ t t t

(  ) ÷(  

)

( 

)

dt _______________________ = – Ú ​ _________________________         ​ 1 2 2 __ ​ (1 – 2t) + 2t     ​ ​   ​  – 2  ​ – 3t2 ​ t

÷ 

( 

)

dt = – Ú ___________________________ ​  _________________________          ​ 2 ​÷(1   – 4t + 4t )     + 2t – 4t2 – 3t2 ​ dt = – Ú _____________ ​  ___________       ​ ​÷(1   – 2t +   3t2)  ​ dt = – Ú ________________ ​  _______________       ​ 2 + 1}  ​ ÷​   – {3t + 2t   dt = – Ú _________________ ​  ________________        ​ 2 1 ​ – 3​ t2 + __ ​   ​ t    – __ ​   ​   ​  ​ 3 3

÷  { 

}

dt = – Ú ___________________ ​  _________________         ​ 1 2 __ 4 ​ – 3​ ​​ t + __ ​   ​   ​​ ​   – ​   ​   ​  ​ 3 9

÷  { (  ) }

dt 1__ _______________ = – ​ ___   ​  Ú ​  _____________      2 ​ 3 ​    ÷ 2 1 2 __ __ ​ ​​ ​    ​  ​​ ​– ​​ t +   ​   ​   ​​ ​   3 3

÷(   ) (  ) 3t + 1 1 = – ​ ___  ​  sin  ​( ______ ​   ​    ​+ c 2 ) ​÷3 ​  

– 1 __  ​    ​ 1 where t = ​ x + __ ​ x ​  ​

( 



)

( 

p  tan ​ __ ​   ​  – x  ​ 4 __________________ 8. Ú ​ _______________________         ​dx 2 3 cos x ​÷tan   x + tan2x +   tan2x  ​

)

Indefinite Integrals 



(1 – tan x) sec2x dx _________________ = Ú​  __________________________         (1 + tan x)​÷tan   3x + tan2x +   tan x  ​

 ​

(1 – t)dt _________ = Ú​ ________________      ​ Let tan x = t (1 + t)​÷t 3 + t2 + t ​  fi sec2xdx = dt







(1 – t2 )dt _________ = Ú ​ _________________      ​ (1 + t)2 ÷ ​ t 3 + t2 + t   ​ (1 – t2)dx ___________  ​ = Ú ​ _______________________        1 2 (t + 2t + 1)​ t2​ t + __ ​   ​  +   1  ​ ​ t

÷  ( 

)

(  )

1 ​ 1 – __ ​  2  ​   ​dt t __________  ​        = Ú ​ _____________________ 1 1 __ ​ t + ​   ​  + 2  ​​ ​ t + __ ​   ​  +   1  ​ ​ t t

( 

( 

)÷(  

)

)

1 Let ​ t + __ ​   ​  + 1  ​ = v2 fi sec2xdx = dt t



– t2 )dt q  1  (1 __ ________ = –  ​ _______      ​  + ​     ​  ​   ​    Ú 3 3 tan3q t3



q  1 1 = –  ​ _______      ​ + __ ​   ​  Ú ​ __ ​    ​  – 3 3 t3 3 tan q



q  1 ___ 1 = –  ​ _______      ​ – __ ​   ​  ​   ​  2  ​ + log|t|  ​ + c 3 3 3 tan q 2t



q  1 ______ 1 = –  ​ _______      ​ – __ ​   ​  ​   ​   2  ​  + log |sin q |  ​ + c 3 3 3 tan q 2sin q

(  ) (  ) ( 



(1 – x sin x)ecos x = Ú​ ________________        ​ dx xecos x(​  1 – (xecos x)3 )​



dt = Ú ​ _______      ​, t(1 – t3)



=

 ​

dv = – 2Ú ​ _______     ​ 2 (v + 1)

dt ​      Ú _______ t(1 – t3)

 ​

=

dt ​  3     Ú _______ t(t – 1)

 ​

3t2 1 = ​ __ ​  Ú ________ ​  3 3      ​dt 3 t (t – 1)



dv 1 = __ ​   ​  Ú _______ ​      ​, 3 v(v – 1)



v –1 1 = __ ​   ​  log ​​ _____  ​  ​ + c v    3



t3 – 1 1 = __ ​   ​  log ​ ______  ​  3 ​    ​ + c 3 t



(xex)3 – 1 1 = __ ​   ​  log ​ ________ ​   ​     ​+ c 3 (xex)3

= – 2 tan– 1(v) + c

( ÷ 

)

1  ​  ​ + c = – 2tan– 1 ​ ​ t + __ ​   ​  + 1  t 1 where t = x + __ ​ x ​

9.

– 1

tan x     ​  4  ​ dx Ú ______ x Let x = tan q fi dx = sec2xdq

tan– 1(tan q )

Let  t = xex

where  v = t3

|  |

|  |

|  |



=

​       ​   sec2 q dq Ú __________ tan4q  



=

q sec q  ​  4  ​   dq Ú _______ tan  q 



sec2q  1 dq  = q Ú _____ ​  4  ​   dq + __ ​   ​  Ú _____ ​     3 tan3q tan q



(1 + x cos x)esin x = Ú ​ _______________        ​dx xesin x(1 – (xesin x )2)

 ​

q  dq  1 = –  ​ ______      ​+ __ ​   ​  Ú _____ ​      ​ 3 tan3q 3 tan3q



dt = Ú ​ _______      ​, t(1 – t2)



q  1 cos3q  = –  ​ _______      ​ + __ ​   ​  Ú _____ ​   ​   dq 3 3 sin3q  3 tan q



dt = Ú ​ _______     t(1 – t2)



– sin2q)cosq  q  1 (1 __ _____________ = –  ​ _______      ​  + ​     ​  ​   ​ dq      3Ú 3 tan3q sin3q 

 ​

2t dt 1 = –  ​ __ ​  Ú ​ ________    2 t2(t2 – 1)

2

)

(1 – x sin x) 10. Ú​ ____________       dx  ​ x(1 – x3e3 cos x)

v dv = – 2Ú ________ ​  2    (v + 1)v

________

1 __ ​   ​   ​ dt t

where tan q = x





1.145

(1 + x cos x) 11. Ú  ​_____________        ​dx x(1 – x2e2sin x)

where  t = xesin x

1.146  Integral Calculus, 3D Geometry & Vector Booster  ​

dv 1 = –  ​ __ ​  Ú _______ ​      ​, where v = t2 2 v(v – 1)



v 1 = __ ​   ​  log ​ _____ ​       ​  ​ + c 2 v –1



t2 1 = __ ​    ​ log ​ _____ ​  2      ​  ​ + c 2 t –1



(xesin x)2 1 = __ ​    ​ log ​ __________ ​  sin x 2       ​  ​ + c 2 (xe ) – 1



|  |

|  |

| 

14.

(  ) ( 

(  )

)

|

(  )

1 – Ú x sec2  ​ __ ​ x ​  ​ dx + c



(  ) 1 = x tan ​( __ ​ x ​ )​ + c

(  )

(  )

1 1 1 = x3 tan ​ __ ​ x ​  ​ + Ú x sec2 ​ __ ​ x ​  ​ dx – Ú x sec2 ​ __ ​ x ​  ​ dx + c 3 

 ​

cos x = Ú ​ _________     ​dx sin 2x + 1 



2cos x 1 = __ ​   ​  Ú _________ ​      ​dx 2 sin 2x + 1 



1  (sin x + cos x) + (cos x – sin x) = __ ​   ​  Ú​  _________________________          ​dx 2 (sin x + cos x)2



dx cos x – sin x 1 1 = __ ​   ​  Ú ​ ____________       ​+ __ ​   ​   ​ ____________        ​ 2 (sin x + cos x) 2 Ú (sin x + cos x)2



p  1 1 cos x – sin x = ____ ​  __    ​   ​   ​   ​ dx + __ ​   ​  Ú​ ____________        ​dx Ú cosec ​ x + __ 4 2 (sin x + cos x)2 2​÷2 ​   

__________

 ​÷3cos 2x      – 1  ​ 15. Ú ​ ___________ ​  dx cos x      3cos 2x –1 _________ = Ú​ ______________        ​dx cos x ​÷cos 2x   – 1   ​ 3(2cos2x – 1) __________ = Ú​ _______________        ​dx cos x ​÷3cos 2x      – 1 ​ dx cos x _______________ _________ = 6Ú ​ ________________        ​dx – 4Ú _______________ ​        ​dx 2 cos x​ 3cos2x   – 1 ​     ÷   – 2sin  x)   – 1 ​ ÷​ 3(1



(  ) 1 1 = ____ ​     ​   log ​ tan ​( __      ​ + c (sin x + cos x) | ​ 2x  ​ + __​ p 8 ​  )​ |​ –  ​ ___________ 2​÷2 ​  

__ cos x dx cosx _________  ​ = 3​÷2 ​     Ú ____________ ​  __________      dx  ​ – 4Ú ___________________ ​         2   – 3sin    x   ​ (1 – sin2x)​÷1  – 3sin2x   ​  ÷​ (1

__





dx _________________ 13. Ú ​ ______________________        ​ cos x ​÷sin(2x   + a) +   sin a ​

Ú ​( 3x2tan ​( __​ 1x ​ )​ – x sec2  ​( __​ 1x ​ )​ )​ dx

1 1 1 = tan ​ __ ​ x ​  ​ Ú (3x2)dx – Ú sec2 ​ __ ​ x ​  ​ ​ – ​ __2  ​   ​ (x3) dx x

dx  12. Ú___________ ​     2sin x + sec x



tan x cos a + sin a  ______   = ​ _______________  ​    + c ​ 2cos a ​     ÷

__ cos x dx cos x ____________ _________ ​ = ​÷6 ​   Ú  ​ ______________       ​ dx – 4Ú ___________________ ​         2 1 2 (1 – sin2x)​÷1  – 3sin2x​   ​ ​​ ___ ​  __  ​  ​​ ​ – sin     x  ​ ​ 3 ​    ÷

÷(   )

__ __ cos x dx _________  ​ = ÷ ​ 6 ​   s  in– 1(​÷3 ​   s  in x) – 4Ú ___________________ ​         (1 – sin2x)​÷1  – 3sin2x    ​

dx _____________________________ = Ú __________________________________ ​            ​ cos x​÷sin(2x)cos a        + cos(2x)sina + sin a   ​

__ __ dt______ = ÷ ​ 6 ​     sin– 1(​÷3 ​     sin x) – 4Ú ​ ______________      2 (1 – t )​÷1  – 3t2    



dx ____________________________ = Ú __________________________________ ​           ​ cos x​÷sin (2x) cos a        + (1 + cos (2x) sin a  ​



dx _________________________ = Ú _______________________________  ​          cos x ​÷2sin x cos x cos a       + 2cos2x sina  

 ​ where  t = sin x  ​ __ __ y dy ______ = ÷ ​ 6 ​   s  in– 1(​÷3 ​     sin x) + 4Ú _____________ ​        ​ 2 (y – 1)​÷y  2 – 3    ​

 ​  ​

1 dx = ___ ​  __  ​  Ú _____________________  ​         ​ ________________ 2 ​ 2 ​     cos x​÷tan x  cos a ÷   +    sin a   ​ 





sec2x dx 1 _______________ = ___ ​  __  ​  Ú ​ ________________       ​ ​ 2 ​     ​÷tan x cos a ÷   +    sin a  ​

 ​

Let  tan x cos a + sin a = t

where  t = 1/y

__ __ v dv = ÷ ​ 6 ​     sin– 1(​÷3 ​     sinx) + 4 Ú ________ ​  2     ​, v2 = y2 – 3 (v + 2)v 2

__ __ dv = ÷ ​ 6 ​   s  in– 1(​÷3 ​   s  inx) + 4 Ú _______ ​  2      ​ (v + 2)

(  )

2t dt 1 ____ = _______ ​  __    ​  ​      Ú t ​ 2 ​     cos a ÷

__ __ __ v = ÷ ​ 6 ​   s  in– 1(​÷3 ​     sin x) + 2​÷2 ​     tan– 1 ​ ___ ​  __  ​  ​ + c ​ 2 ​    ÷

1 = _______ ​  __    ​  Ú dt ​ 2 ​    cos a ÷

 y2 – 3 = ÷ ​ 6 ​   s  in– 1(​÷3 ​     sin x) + 2​÷2 ​     tan– 1​ ​ ​ _____  ​      ​  ​ + c 2

( ÷  ) ______

__

__

__

Indefinite Integrals  __

__

( ÷ 

_________

__

)

= – Ú ________ ​  2t dt   (t2 + 1)t3

cos2x – 3 = ​÷6 ​   s  in (​÷3 ​   s  inx) + 2​÷2 ​   t  an ​ ​  ​ ________  ​       ​  ​ + c 2 – 1

– 1

(  ) [  (  )

(  ) ]

dt     ​ = – 2Ú ​ ________ 2 (t + 1)t3

2x 2x 1 16. Ú ​ _____ ​   8 ​   ​ ​ cos– 1 ​ _____ ​   2 ​   ​ + tan– 1 ​ _____ ​   2 ​   ​   ​ dx 1–x 1+x 1–x

( 

( 

)

( 

)

1 = – 2Ú ​ – ​ __ ​  – tan– 1t  ​ + c t

p  dx = __ ​   ​  Ú ​ _______    2 (1 – x8)

( ÷ 

_________

( ÷ 

[ 

]

] ]

)

(x2 + 1) – (x2 + 1) p  1 1 = __ ​   ​ ​  Ú ​ ______ ​   2    ​+ ______ ​    2    ​  ​+ Ú ​  _______________     ​     ​ dx 8 1–x 1+x x4 + 1

)

(x2 + 1)  (x2 + 1) _______ 1 1 ​ ______ ​    2   ​+ ______ ​    2 ​   ​ + Ú​ _______ ​     – ​  4  ​   ​dx 1–x 1+x x +1 x4 + 1



4 cos = Ú _______________ ​    x     ​dx sin6x(1 + cot5x)3/5



4 2 x dx ​ = Ú _____________ ​ cos x cosec      5 3/5 (1 + cot x)

and then you do it.



4 = Ú _________ ​  t dt   ​,   (1 + t5)3/5

x2 – x3 17. Ú​ __________________         ​ dx (x + 1)(x3 + x2 + x)3/2



5t4dt 1 = – ​ __ ​  Ú _________ ​      ​ 5 (1 + t5)3/5

x2(1 – x) = Ú  ​___________________         ​dx 3/2 1 (x + 1)x3 ​​ x + __ ​ x ​ + 1  ​​ ​

)

(1 – x) = Ú  ​__________________         ​dx 3/2 1 x(x + 1)​​ x + __ ​ x ​+ 1  ​​ ​

( 

)

(1 – x2) = Ú ​___________________         ​dx 3/2 1 x(x + 1)2 ​​ x + __ ​ x ​+ 1  ​​ ​

( 

)

2

(1 – x ) = Ú ​________________________         ​dx 3/2 1 2 x(x + 2x + 1)​​ x + __ ​ x ​ + 1  ​​ ​ 

( 

)

(1 – x2) = Ú  ​________________________         ​ dx 3/2 1 1 2  __ x ​ x + ​ x ​ + 2  ​ ​​ x + __ ​ x ​ + 1  ​​ ​

( 

) ( 

(  )

)



) ( 

)



Let (1 + t5) = y5







4 1 5y dy = – ​ __ ​  Ú _____ ​  3 ​    5 y



= – Ú y dy



y2 = – ​ __ ​   ​   ​ + c 2



1 = – ​ __ ​  (1 + t5)2/5 + c 2



1 = – ​ __ ​  (1 + cot5x)2/5 + c 2

 ​

( 

)

1 Let ​ x + __ ​ x ​ + 2  ​ = t2 1 fi ​ 1 – __ ​  2  ​   ​ dx = 2t dt x

(  )

Let cot x = t

5t4dt = 5y4dy

(  )

sin3x dx 19. Ú _________________________________ ​           4 2 (cos x + 3cos x + 1) tan– 1(sec x + cos x)

1 ​ 1 – __ ​  2  ​   ​dx x = Ú ​ ______________________         ​ 3/2 1 1 __ ​ x + ​ x ​+ 2  ​ ​​ x + __ ​ x ​ + 1  ​​ ​

( 

)

4 x  cos 18. Ú ___________________ ​          ​ 3 5 sin x(sin x + cos5x)3/5

p  dx dx = __ ​   ​ ​  Ú ​ _______  4    ​+ Ú ​ ______    ​   ​ 4 4 (1 – x ) x +1

( 

)

1 1 = 2 ​ ________ ​  _______      ​+ tan– 1 ​ ​ x + __ ​ x ​ + 1    ​  ​  ​ + c 1 ​ x + __ ​ x ​ 1   ​

p  dx  ​ = __ ​   ​  Ú ​ _____________       ​ 2 (1 – x4)(1 + x4)

p  = ​ __ ​ ​  8

)

1 1  ​ = – 2Ú ​ __ ​  2  ​  – _____ ​  2      ​  ​ dt t t +1

p  dx = Ú ​ _______  8    ​ ​ __ ​   ​  – 2 tan– 1x + 2 tan– 1x  ​dx (1 – x ) 2

[  (  [ Ú ( 

1.147



(1 – cos2x) sin x dx = Ú​ _________________________________           ​ (cos4x + 3cos2x + 1) tan– 1(sec x + cos x) (1 – t2)dt = – Ú​ ______________________         ​, where cos x = t 1 4 2 (t + 3t + 1)tan= 1 ​ t + __ ​   ​   ​ t

(  )

1.148  Integral Calculus, 3D Geometry & Vector Booster

(  ) (  ) (  )   ) ( Ú



dy 1 = 2Ú _______ ​     ​   , y = t + __ ​   ​  2 t 4y – 2



dy = Ú ​ _______     ​ 2 2y – 1



) (  ) dy 1 = Ú ____________ ​       ​ , where (​  t + __ ​   ​  )​ = y t (y + 1)tan y

dy 1 = __ ​   ​  Ú ___________  ​      __  ​ 2 2 y – (1/​÷2 ​   )  2



y​÷2 ​    – 1 1 = ____ ​  __    ​   log ​ _______ ​  __    ​ ​ + c 2​÷2 ​    y​÷2 ​    + 1



– 1 = Ú ___ ​ dv v ​ , where tan (y) = v





= Ú ___ ​ dv v ​ 

1 __ ​ t + __ ​   ​   ​ ​÷ 2 ​  – 1 t 1 = ____ ​  __    ​   log ​ ​  ____________        ​  ​ + c 1 __ 2​÷2 ​    __ ​ t + ​   ​   ​ ​÷ 2 ​  + 1 t

1 ​ 1 – __ ​  2  ​   ​ dt t = Ú ​ _____________________         ​ 1 1 2 __ ​ t + ​  2  ​  + 3  ​ tan= 1​ t + __ ​   ​   ​ t t



1 ​ 1 – __ ​  2  ​   ​dt t =  ​ ______________________         ​ 2 1 1 = 1 __ __ ​ ​​ t + ​   ​   ​​ ​ + 1  ​tan ​ t + ​   ​   ​ t t



( (  )



2



1 = log ​ tan– 1 ​ t + __ ​   ​   ​  ​ + c t



= log |tan– 1(cos x + sec x)| + c















| 

(  ) |

      ​dx 4 + 3sin 2x 

)

tan x – 1 = Ú ​ ​ ______________________         ​  ​ dx ____ 2tan x ​ tan x    ​ ​ 4 + 3 ​ ________   ​      ​  ​  ​ ÷ 1 + tan2x

(  Ú (  Ú ( 

))

)

(tan x – 1)sec2x = Ú ​ ​ _______________________         ​  ​ dx ____ ​ tan x    ​ ​( 4 + 4tan2 x + 6tan x )​   ÷ 2



x2 = – ​ __________       ​+ 2 Ú ___________ ​  x cos x     ​ dx (x tan x + 1) x sin x + cos x



x2 = – ​ __________       ​+ 2log|x sinx + cos x| + c (x tan x + 1)

÷ 

___________

)

(t – 1)2t dt = ​​ ____________        ​  ​ dt, t(4t4 + 6t + 4)

)

where  tan x = t

(t2 – 1)dt = 2 ​​ _____________        ​  ​ dt t(4t4 + 6t2 + 4)

( 

|

(x sec2x + tan x) = x2 Ú ​ _____________       ​dx + 2Ú ________ ​  x     ​dx x tanx + 1 (x tan x + 1)2 x2 x    = – ​ __________       ​+ 2Ú ​ ________  ​dx (x tan x + 1) x tanx + 1



(  ( 

|

__

tan x)  x2(x sec2x +    21. Ú ​ _______________     ​dx (x tan x + 1)2

____ ____ ​÷____________ cot x    ​ – ​÷ tan x      ​

 (

| 

(  ) (  )

(tan x + cot x)​÷2 ​    – 1 1 __ = ____ ​  __    ​   log ​ ​ __________________        ​   ​ + c 2​÷2 ​    (tan x + cot x)​÷2 ​    + 1



= log |v| + c

Ú ​ 

 |

– 1



20.

|  | __

(  ) (  (  ) )   ) ( Ú 

)

1 ​ 1 – __ ​  2  ​   ​dt t = 2Ú ​​ ______________        ​  ​ dt 1 ​ 4 ​ t2 + __ ​  2  ​   ​ + 6  ​ t

( (  ))   ) ( (  )

1 ​ 1 – __ ​  2  ​   ​dt t = 2 ​​ ___________________         ​  ​ dt 1 2 ​ 4​ ​​ t + __ ​   ​   ​​ ​ – 2  ​ + 6  ​ t

{ (  ) }

1 ​ 1 – __ ​  2  ​   ​ dt t = 2Ú ​​ _____________       ​  ​ dt 1 2 ​ 4​​ t + __ ​   ​   ​​ ​ – 2  ​ t

(  (  ) )

sin x – sin3x 22. Ú ​ ___________ ​            ​  dx 1 – sin3x

÷ 

_____________



sin x(1 – sin2x) = Ú ​ _____________ ​             d​ ​  x 1 – sin3x



cos x​÷sin x    ​   = Ú _________ ​  ________   ​dx 3 ​ ÷​ 1  – sin x   



cos x​÷sin x    ​   = Ú ____________ ​  ___________        ​ dx 3/2 2 x)  ​ ÷​ 1  – (sin   

____

____



Let (sin3/2x) = t 3 fi ​ __ ​  sin1/2x cos x dx = dt 2 2 fi sin1/2x cos x dx = __ ​   ​  dt 3

dt 2 _____ = __ ​   ​  Ú ​ ______    3 ÷ ​ 1  – t2   ​

Indefinite Integrals 

x+2  ​  ​​ ​ dx Ú ex ​​( ​  _____ x + 4) 2

 ​

2 = ​ __ ​  sin– 1(t) + c 3

25.



2 = __ ​   ​  sin– 1(sin3/2x) + c 3



(x + 2)2 = Ú ex ​ _______ ​     ​  ​ dx (x + 4)2



x2 + 4x + 4 = Ú ex ​ __________ ​      ​   ​ dx (x + 4)2



x2 + 4x 4 = Ú ex ​​ _______2     ​+ _______ ​       ​  ​ dx (x + 4) (x + 4)2 



x(x + 4) 4 = Ú ex ​ _______ ​     ​ + _______ ​       ​  ​ dx (x + 4)2 (x + 4)2

x

{ 

}

{1 + (1 – x)}2 ______ = Ú ex  ​ _____________ ​        ​  ​dx (1 – x)​÷1  – x2   ​



( 

{  Ú { ÷ 

÷ 

_____

} }

)

(  (  ( 

2

e (2 – x) ______ 23. Ú ​ ____________        ​dx (1 – x)​÷1  – x2    ​

)

) )



 1 + x 1 ______ = Ú ex ​ _____________ ​       ​+ ​ ​ _____ ​ ​    ​ dx 2 (1 – x)​÷1  – x    ​ 1 – x



1 + x _____________ 1 ______ =  ex​ ​ ​ _____       ​ ​+ ​      ​  ​dx 1 – x (1 – x)​÷1  – x2   ​



x 4 = Ú ex ​ ______ ​       ​ + _______ ​       ​  ​ dx (x + 4) (x + 4)2



1+x = ​ ex ​ ​ _____   ​ ​  ​ + c 1–x



x = ex​ ______ ​       ​  ​ + c (x + 4)

______

(  ÷  ) _____

24.

26. Ú ​

​÷sin(x   + a )cos     (x – b ) ​

Put  (x – b ) = t dx = dt



=

dt _______________________         ​ Ú ​ _________________________ 3 ​÷cos   t(sin t ◊ cosq     + cos t sinq ) ​

=

dt ______________________ ​  ____________________         ​ 4 ​÷cos   t(tan t ◊ cosq     + sinq )  ​ 

=

Let (tant ◊ cosq + sinq ) = v



fi sec2t cosq dt = 2v 



2v  fi sec2t dt = ​ _____  cosq

= 2secq ​÷cosq tan t   +   sinq ​ + c



= 2sec(a + b )

 ​

t fi 4x7 dx = – ​ ______      ​dt (t2 – 1)

÷ 

=



(x4t) = Ú ​ ____  ​ × x7dx x20



t x7 = Ú ​ ___  ​  dx x16



c

8

+x  ​  ​       dx Ú ​ ​ 1_____ x13



_____________

______________________________ ​÷cos(a   + b )tan(x      – b ) + sin(a + b ) ​ +

1 fi x8 = ______ ​  2     (t – 1) 2t 7 fi 8x  dx = – ​ ______     ​dt (t2 – 1)

______





Let (1 + x8) = x8t2



2

 ​

 ​ dx    

x13

= Ú​{ x– 13(1 + x8)1/2 }​dx



÷

2v = ____ ​    ​ + c cosq

)



sec t dt ​  ________________        ​ Ú __________________ ​ (tan t ◊ cosq   +    sinq )  ​ 

v dv 2 = _____ ​       ​ ____ ​      cosq Ú v

( 



2

 ​

)

b+1 – 13 + 1 __ 1 Here, _____ ​   ​   + a = ​ _______  ​   + ​   ​  = – 1 g 8 2

dt ________________ = Ú ​ __________________        ​ 3 ​÷sin(t   + b + a )cos   t ​ dt = Ú ______________ ​  _____________       ​, (given) 3   + q )cos   t  ​ ÷​ sin(t

Ú

( 

______  ​_______  ​ ÷1  + x8 

dx __________________        ​ Ú ​ ____________________ 3

1.149

t  t 1 = –  ​ __ ​  Ú _______ ​       ​ × –  ​ _______   2   ​dt 2 4 _______ 1 (t – 1) ​  2   2   ​ (t – 1)



1 = –  ​ __ ​  Ú t2 dt 4



t3 = –  ​ ___  ​ + c 12

1.150  Integral Calculus, 3D Geometry & Vector Booster

(  )



 ex(x + 1) = Ú ​___________        ​dx xex(1 + xex)2

dx 27. Ú ​ ___________      3 sin x + cos3x



dt = Ú ​ _______      ​, t(1 + t)2

 dx  ​ = Ú ________________________ ​          ​ (sin x + cos x)(1 – sin x cos x)



=

 ​

t 1 = log ​ ____ ​       ​  ​ + ______ ​       ​+ c t+1 (t + 1)

1 1 + x8 3/2 = –  ​ ___  ​ ​​  ​ _____  ​    ​​ ​ + c 12 x8



( 

)

sin x + cos x 1 2 = __ ​   ​  Ú ​ ____________ ​       ​– ​ _____________        ​  ​dx 3 (sin x + cos x) (1 – sin x cos x)

(  ) (  )

)|

x p  2 2 = ____ ​  __    ​   log ​ tan ​ __ ​    ​ + __ ​   ​   ​  ​ –  ​ __ ​  tan– 1 (sin x – cos x) + c 2 8 3 3​÷2 ​    ______

(​  x + ÷​ 1  + x2   ​  )​ 28. Ú  ​ _____________  ​    dx ______    ​ ÷​ 1  + x2  3

dx _________ = Ú ​ __________       ​ ​ 2  + 3cot x    ​ ÷

Let 2 + 3cot x = t2



fi – 3cosec2x dx = 2t dt



2t dt fi dx = – _______ ​  4    3(t + 1)

______

Let (x + ÷ ​ 1  + x2   ​) = t



x fi ​ 1 + _______ ​  ______      ​  ​ dx = dt  ​ ÷​ 1  + x2 



______ x+÷ ​ 1  + x2   ​ ___________ fi ​ ​  ______     ​   ​ dx = 2 ​÷1  + x    ​



t  fi ​ _______ ​  ______      ​  ​ dx = dt  ​ ÷​ 1  + x2 



dx  dx fi ​ _______ ​  ______    ​   ​ = ___ ​     ​ t 2  ​ ÷​ 1  + x  

( 

)

(  ( 

( 



dt = Út3 × __ ​   ​  t



= Út2dt



t3 = __ ​   ​  + c 3

)

)

)

dt

dt 2  ​ = – ​ __ ​  Ú ​ ______    3 (t4 + 1)

(  Ú (  )

(x + ​÷1  + x2   ​)3 = ____________ ​   ​      +c 3

) Ú (  )

2 2 1 (t + 1) – (t – 1)  ​ = – ​ __ ​  Ú ​ ​ _______________     ​     ​ dt 3 (t4 + 1)

2 2 1 (t + 1) 1 (t – 1) = – ​ __ ​    ​ _______ ​  4    ​  ​ dt + __ ​    ​   ​ ​ ______    ​  ​ dt 3 (t + 1) 3 (t4 + 1)

(  ) (  )

(  ) (  )   ) ( Ú

(  ) (  )   ) ( Ú

1 1 ​ 1 + __ ​  2  ​   ​ ​ 1 – __ ​  2  ​   ​ t t 1 1 = – ​ __ ​  Ú ​ ​ _______     ​  ​dt + __ ​   ​  Ú ​ ​ _______     ​  ​ dt 3 3 1 1 2 __ ​ t + ​  2  ​   ​ ​ t2 + __ ​  2  ​   ​ t  t

( 

) (  )

1 1 ​ 1 + __ ​  2  ​   ​ ​ 1 – __ ​  2  ​   ​ t t 1 1 = –  ​ __ ​   ​​ __________      ​  ​ dt + __ ​   ​    ​ ​ _______2   ​ – 2  ​ dt 2 3 3 1 1 __ __ ​​ t – ​   ​   ​​ ​ + 2 ​​ t + ​   ​   ​​ ​ t t

(  )

_____

(x + 1) 29. Ú​ _________      ​dx x(1 + xex)2

÷ 

sin x 30. Ú ​ ____________ ​           ​ ​dx 2sin x + 3cosx 

t dt 2  ​ = – ​ __ ​  Ú ​ _______    3 (t4 + 1)t





|  |

____________

sin x + cos x 2 ___________ 2 = ____ ​  __    ​    ​– __ ​   ​  Ú ​ ________________        ​dx Ú ​  dx    p  3 3​÷2 ​     (sin ​ x + __ (1 + (sin x – cos x)2) ​   ​   ​ 4 p  sin x + cos x 2__ 2 ____ = ​     ​  ​   ​   ​ dx –  ​ __ ​  Ú​ ________________        ​dx Úcosec ​ x + __ 4 3 (1 + (sin x – cos x)2) 3​÷2 ​   

( 

dt dt dt ​   ​  – Ú ______ ​       ​ –   ​ ______    Ú __ t (t + 1) Ú (1 + t)2

where t = xex

dx sin x + cos x 2 1 = __ ​   ​  Ú ​ ____________       ​– __ ​   ​   ​ _____________        ​dx 3 (sin x + cos x) 3 Ú (1 – sin x cos x)

| 

where  xex = t

(  ) 1 ​( t + __ ​   ​  )​ – ​÷2 ​   t 1 1 __ ____ ___________  ​( t – ​   ​  )​ + ​     ​   log ​ ​        ​ ​ + c t 1 6​÷2 ​   ​( t + __ ​   ​  )​ + ​÷2 ​   t

 | | __

1__ – 1 = –  ​ ____    ​   tan 3​÷2 ​   

_________

where t = ÷ ​ 2  + 3cot x    ​ cos 4x + 1 31. Ú ​ __________       ​ dx cot x – tan x 



__



__  

Indefinite Integrals 

2cos2x 2x dx = Ú ​ ___________       cos2x – sin2x ___________ ​          ​ sin x cos x



2cos2x 2x dx = Ú ​ ___________       2cos 2x _________ ​      2sin x cos x

 ​

= Ú cos 2x sin 2x dx

 ​  ​

1 = __ ​   ​  Ú 2cos 2x sin 2x  dx 2



1 = ​ __ ​  Ú sin (4x) dx 2



1 = – ​ __ ​  cos (4x) + c 8

 cos x + cos x 32. Ú​  ____________         ​ dx sin2x + sin4x 3



5

  cosx (cos2x + cos4x) = Ú ​_________________        ​dx (sin2x + sin4x) 



(1 – t2) + (1 + t4)2 = Ú  ​ _______________  ​       dt,   where  sin x = t t4 + t2



2 – 3t2 + t4 = Ú __________ ​  4     ​   dt t + t2



=



–  4t2 – 4 + 6 =  ​ 1 +​  ____________     ​   ​ dt t4 + t2



– 4t2 – 4 + 6 = Ú ​ 1 +​  ___________        ​  ​ dt t2(t2 + 1)



4(t2 – 1) 6 = Ú ​ 1 –​  ________    ​ + ________ ​  2 2    ​   ​dt 2 2 t (t + 1) t (t + 1)



4 1 1 = Ú ​ 1 – __ ​  2  ​  + 6 ​ __ ​  2  ​  – ______ ​  2    ​   ​  ​ dt t t t +1



2 1 =  ​ 1 + __ ​  2  ​  – 6 ​ ______ ​  2    ​   ​  ​ dt t t +1



2 = ​ 1 – __ ​   ​  – 6tan– 1(t)  ​ + c t



= sin x – 2cosec x – 6tan– 1(sin x) + c

(  Ú ( 

2

)

( 

dx 33. Ú ​ ___________       ​ sin6x + cos6x



(1 + tan2x)2sec2x = Ú ​ _______________        ​dx tan6x + 1



(1 + t2)2 = Ú ​ _______  ​    dt, t6 + 1



(1 + t2)2 = Ú ​ ________________       ​dt (t2 + 1)(t4 – t2 + 1)



(1 + t2) = Ú​ ___________       ​ dt (t4 – t2 + 1)



1 ​ 1 + __ ​  2  ​   ​ t = Ú ​ ___________      ​dt 1 2 __  ​ t + ​  2  ​  – 1  ​ t



1 ​ 1 + __ ​  2  ​    ​ t = Ú ​ ____________       ​dt 2 1 ​ ​​ t – __ ​   ​   ​​ ​ + 1  ​  t



( 

( 

sec6x dx = Ú ​ ________      ​ tan6x + 1



( 

(  ) ( 

where  t = tan x

)

)

( (  ) ) 1 = tan ​( t – __ ​   ​  )​ + c t – 1 

= tan– 1(tan x – cot x) + c

34. Let f (x) = ax2 + bx + c

–  4t + 2  ​     ​dt Ú ​ 1 +​  ________ t4 + t2

(  Ú ( 



1.151

Given f (0) = f (1) = – 3 = 3 f (2)

)

On solving, we get

)

x2 – x – 3 Thus, I = Ú​  _______________       ​dx (x – 1)(x2 + x + 1)



)

(  )) (  ) ) )

a = 1, b = – 1, c = – 3

x2 – x – 3 Now, ​  _______________       ​ (x – 1)(x2 + x + 1)

Bx + C A = ______ ​       ​ + ​ __________       ​ (x – 1) (x2 + x + 1)

Solving, we get

A = – 1, B = 2, C = 2

The given integral reduces to

2x + 2 – Ú ______ ​  dx     ​+ ​ _________     ​ dx (x – 1) x2 + x + 1

dx dx 2x + 1 = – Ú ______ ​      ​+ ​ _________     ​dx + Ú _________ ​  2      ​ (x – 1) Ú x2 + x + 1 x +x+1

1.152  Integral Calculus, 3D Geometry & Vector Booster

| 

dx = – log|(x – 1)| + log ​ (x2 + x + 1)  ​ + Ú ________ ​  2     x + x +1

sec4x dx = Ú ​ ____________       ​ sec4x – 3tan2x

(x2 + x + 1) dx __  ​ = log ​ ​ __________     ​   ​ + _______________ ​        ​ (x – 1) 2 ​ 3 ​    2 ÷ 1 __ ___ ​​ x + ​   ​   ​​ ​ + ​​ ​   ​  ​​ ​ 2 2



(1 + tan2x)sec2x = Ú ​ __________________        ​dx (1 + tan2x)2 – 3tan2x 



(1 + t2)dt  = Ú ​ ____________        ​ (1 + t2)2 – 3t2



t2 + 1 = Ú ​ ​ _________     ​  ​ dt t4 – t2 + 1



1 1 + __ ​  2  ​  t = Ú ​ ​ __________       ​  ​dt 1 2 __ ​ t + ​  2  ​   ​ – 1 t



1 1 + __ ​  2  ​  t = Ú ​ ​ ___________       ​ ​ dt 1 2 ​​ t + __ ​   ​   ​​ ​ + 1 t



1 = tan– 1 ​ t – __ ​   ​   ​ + c t



= tan– 1(tan x – cot x) + c

|  | 

| |

|

(  ) (  )

( 

)

 (x2 + x + 1) 2x + 1 2 = log ​ ​ ___________     ​   ​ + ___ ​  __  ​  tan– 1 ​ ______ ​  __ ​    ​ + c (x – 1) ​÷3 ​    ​÷3 ​   



Integer Type Questions

( 

( (  ) )

1. The given integral is



+ cos 2x ​ ____________        ​ dx Ú  cos x 2cos x – 1



2  x + cos x – 1 dx ________________ = Ú​  2cos        ​  2cos x – 1



 (2cosx – 1)(2cosx + 1) = Ú​ ____________________      ​    dx 2cos x – 1



= Ú (cosx + 1)dx



= sin x + x + c

Clearly, A = 1, B = 1



)

(sin x + cos x) ​ _____________        ​  ​ dx (1 – sin x cos x)

)

(sin x + cos x) dx 2 2 = __ ​   ​  Ú ​ ___________ ​        ​  ​ + __ ​   ​  Ú ​ _______________        ​dx 3 (sin x + cos x) 3 (2 – 2sin x cos x) __

(sin x + cos x) ​ 2 ​    ÷ dx 2 = ___ ​   ​ Ú ​ __________       ​+ __ ​    ​Ú ​  ________________      2 dx  ​ p  3 sin ​ x + __ ​   ​   ​ 3 (1 + (sinx – cosx) 4 __ ​ 2 ​    ÷ x 3p  2 = ___ ​   ​  log ​ tan ​ __ ​    ​ + ___ ​   ​  ​  ​ + __ ​    ​ tan– 1(sin x + cos x) + c 3 2 8 3

( 

| 

( 

)

)|

Clearly, L = 3, M = 8, N = 2 and P = 2 Hence, the value of L + M – N – P = 7. 3. The given integral is dx Ú ​ ___________       ​ sin6x + cos6x

dx = Ú ​ ______________       ​ 1 – 3sin2x cos2x

4. The given integral is

x+1 Ú ​ _____    ​  dx x3 + x

dx = Ú ​ _________________________         ​ (sin x + cos x)(1 – sin x cos x)

( 

(  )

Hence, the value of L + M + 4 = 4.

dx Ú ​ ___________       ​ sin3x + cos3x

( 

( (  ) )

Clearly, L = 1, M = – 1

Hence, the value of A + B + 3 = 5. 2. The given integral is

1 2 = __ ​   ​  Ú ​ ____________ ​      ​ + 3 (sin x + cos x)

)

x+1 = Ú​ ________   ​    dx x(x2 + 1) dx dx = Ú ​ _______     ​+ ________ ​       ​ (x2 + 1) x(x2 + 1)

|  |

x2 1 = tan– 1x + __ ​   ​  log ​ ______ ​  2    ​   ​+ c 2 x +1 Clearly, L = 2, M = 2 and N = 2

( 

)

L+M + N Hence, the value of ​ ​ __________  ​       ​= 2 2

5. The given integral is

( 

) 2sin x 1 = __ ​   ​  Ú ​( ___________ ​       ​  ​ dx 2 sin x + cos x )

sin x Ú ​ ___________ ​       ​  ​ dx sin x + cos x

( 

)

1 (sin x + cos x) + (sin x – cos x) = __ ​   ​  Ú ​ ​ ________________________          ​  ​ dx 2 sin x + cos x

Indefinite Integrals 

( 

)

1.153



(cos x – sin x) 1 = __ ​   ​  Ú ​ 1 –​  ____________         ​ ​ dx 2 sin x + cos x

= tan– 1(x3 + x2 + 1) + c



1 = __ ​    ​ Ú (x – log|sin x + cos x|) + c 2

Hence, the value of L + M + N + P + Q = 8.

Thus, L = 1, M = 3, N = 2, P = 1 and Q = 1 cos4x 8. Ú ________________ ​  6        ​dx sin x(1 + cot5x)3/5

1 1 Clearly, A = __ ​    ​ and B = –  ​ __ ​  2 2



Hence, the value of A + B + 1 is 1

4 2 x dx  ​ = Ú _____________ ​ cos x cosec      5 3/5 (1 + cot x)



( 

)

x2 6. The given integral is Ú ​ ________ ​     ​   ​ dx (2x + 3)2



Let 2x + 3 = t



fi 2dx = dt



fi dx = 1/2dt



( 

3–t fi x =​  _____  ​    2

)



x2      ​  ​ dx = Ú ​ ________ ​  (2x + 3)2



3–t 2  ​​ _____ ​   ​    ​​ ​ 1 2    ​     dt = __ ​   ​  Ú​ _______ 2 t2

(  )

2x = 3 – t

2 1  (3 – t)  ​ dt     = __ ​   ​  Ú ​_______ 8 t2



( 

2 1  (t – 6t + 9)  ​ dt      = __ ​   ​  Ú​ __________ 8 t2 6 9 1 = ​ __ ​  Ú ​ 1 – ​ __ ​  + ​ __2  ​   ​ dt t 8 t

( 

)

( 

)

9 1 = ​ __ ​  Ú ​ (2x + 3) – log (2x + 3) – _______ ​       ​  ​ + c 8 (2x + 3) (3 + 2x) __ 9 1 =​  ________     ​ + ​    ​  log |3 + 2x | – ________ ​       ​ + c L M 8(2x + 3) Clearly, L = 8 and M = – 8 Hence, the value of L + M + 4 = 4. 7. We have,

( 

2

)

3x + 2x Ú ​​ _________________________        ​  ​ dx 6 5 x + 2x + x4 + 2x3 + 2x2 + 2 3x2 + 2x = Ú​  _____________________________           ​dx 6 4 1 + (​  x + x + 1 + 2(x5 + x3 + x2) )​ 3x2 + 2x = Ú ​ _______________       ​dx 1 + (x3 + x2 + 1)2

where  cot x = t

5t4dt 1 = –  ​ __ ​  Ú ​ _________     ​ 5 (1 + t5)3/5

Put (1 + t5) = y5



fi 5t4dt = 5y4dy



4 1 5y dy = –  ​ __ ​  Ú ​ _____  ​    5 y3



= – Ú y dy



y2 = – ​ __ ​   ​   ​ + c 2



1 = –  ​ __ ​  (1 + t5)2/5 + c 2



1 = –  ​ __ ​  (1 + cot5x)2/5 + c 2



1 tan5x + 1 2/5 = –  ​ __ ​ ​​  ________ ​        ​  ​​ ​ + c 2 tan5x

(  )

( 

)

Thus, L = 2, M = 2 and N = 5

)

9 1 ​   ​   ​ + c = __ ​   ​  Ú ​ t – logt – __ t 8



t4dt = – Ú ​ _________     ​, (1 + t5)3/5

Hence, the value of L + M + N = 9 13 ___ ​   ​ + 1 b_____ + 1 ______ 2 9. Now, ​   ​ =​       ​   = 3 g 5 __ ​   ​  2 Put (1 + x5/2) = t3 5 ​ __ ​  x3/2 = 3t2 dt 2 6 x3/2 = __ ​   ​  t2dt 5 Thus, the given integral reduces to

6 ​ __ ​  Ú (t3 – 1)2 ◊ t3/2 ◊ t2 dt 5

6 = __ ​   ​  Ú (t6 – 2t3 + 1)t7/2 dt 5



6 = __ ​   ​  Ú (t19/2 – 2t13/2 + t7/2) dt 5

1.154  Integral Calculus, 3D Geometry & Vector Booster

( 

)



6 t21/2 2t15/2 = __ ​   ​ ​  ______ ​    ​  – ______ ​     ​  + 5 (21/2) (15/2)

t9/2 _____ ​    ​  ​ + c (9/2)



5/2 21/2 2(1 + x5/2)15/2 (1 + x5/2)9/2 6 (1 + x ) = __ ​   ​ ​  ​ __________     ​  – ​ ___________     ​  + ​ __________     ​   ​+ c (21/2) (9/2) 5 (15/2)



( 

)

( 

)

4 4 = ​ ___ ​    ​  (1 + x5/2)21/2 ___ ​  8  ​  (1 + x5/2)15/2 + ___ ​    ​  (1 + x5/2)9/2  ​ + c 35 15 25 Clearly, L = 4, M = – 1 and N = 4

Qustions asked in Past IIT-JEE Examinations

( 



)



sin x = Ú  ​ __________ ​       ​  ​ dx sin x – cos x



2sin x 1 = __ ​   ​  Ú  ​ __________ ​       ​  ​ dx 2 sin x – cos x



1 (sin x – cos x) + (sin x + cos x) = ​ __ ​  Ú ​ ​ _________________________          ​ ​ dx 2 sin x – cos x



(sin x + cos x) 1 = __ ​   ​     ​ 1  + ​ ___________       ​  ​ dx 2 sin x – cos x



1 = __ ​   ​  (x + log |sin x – cos x|) + c 2

( 

4. We have,

÷ 

(  ) x x = Ú  ​ 1  + 2 sin ​( __ ​    ​ )​ cos ​( __ ​    ​ )​ ​ dx 4 4 ÷ _________________



)

)

2. We have, 

  

(  (  ) (  ) ) x x = 4​( – cos ​( __ ​    ​ )​  +  sin ​( __ ​    ​ )​ )​ + c 4 4 x x = Ú  ​ sin ​ __ ​    ​  ​ + cos ​ __ ​    ​  ​  ​ dx 4 4



5. We have,

x2 _____ Ú  ​ ______     ​ dx  ​÷1  – x   ​ (1 – t2)2 = Ú  ​  _______       ​ × – 2 t dt,    where  1 – x = t2 t

)

= – 2Ú  (1 – t2)2dt = – 2Ú  (1 – 2t2 + t4)dt



dt 1 = __ ​   ​  Ú  ​ _____ ​       ​  ​ 2 1 + t2



1 1 = __ ​   ​  tan– 1(t) + c = __ ​   ​  tan– 1(x2) + c 2 2

3. We have, 2

( 

Put a + bx = t fi

)

t5 2 = – 2 ​ t – __ ​   ​  t3 + __ ​   ​   ​ + c 3 5

( 

)

(1 – x)5/2 2 = – 2 ​ (1 – x)1/2 – __ ​   ​  (1 – x)3/2 + ​ ________  ​    ​ + c 3 5

1 dx = ​ __ ​ dt b  t____ –a also x = ​      ​  b Thus, the given integral reduces to

)

_________

)

(  Ú ( 

x  dx Ú  ​ ________     ​ (a + bx)2

)

x __ Ú  ​ 1 + sin ​   ​    ​  ​ ​ dx 2

x dx Ú  ​ _____     ​ 1 + x4 2x 1 = __ ​   ​  Ú  ​ ​ _______     ​  ​ dx 2 1 + (x2)2



( 

a2 1 = ​ __3  ​ ​ t – 2a log |t| – __ ​   ​   ​ + c t b a2 1 = ​ __3  ​ ​ (a + bx) – 2a log |(a + bx)| – _______ ​      ​  ​ + c (a + bx) b

dx Ú  ​ _______     ​ 1 – cot x

(  )

)

( 

1. We have,

( 

1 t2 – 2ta + a2    = ​ __3  ​ Ú  ​  __________  ​      dt b t2

( 

10. Do yourself.



2 1 (t – a) = ​ __3  ​ Ú ​ _______  ​      dt b t2

2a a2 1 = ​ __3  ​ Ú  ​ 1 – ___ ​     ​ + __ ​  2 ​   ​ dt t b t

Hence, the value of L + M + N = 7



(  )

t–a 2 ​​ ​ ____    ​  ​​ ​ b 1 _______   ​   ​  × __ ​   ​ dt Ú t2   b

6. We have,

Ú  (elog x + sin x) cos x dx

= Ú  (elog x◊ sin x + sin x cos x) dx



= Ú  (x◊ sin x + sin x cos x) dx

Indefinite Integrals 

( 

)

sin2x = Ú ​ x◊ sin x + _____ ​   ​    ​ dx 2



cos 2x = x Ú  sin x dx + Ú  cos x dx –  ​ _____  ​   + c 4



cos 2x = – x cos x + sin x –  ​ _____  ​   + c 4



) (  ( 

)



x+1 – 2 = Ú  ex ​ ________ ​   ​     ​ dx (x + 1)2



1 –2 = Ú  ex ​ _______ ​    2   ​ + ​ ​ _______     ​  ​  ​ dx (x + 1) (1 + x)3



ex = _______ ​       ​ + c (x + 1)2

( 

))

dx dx Ú  ​ __________       ​ = Ú  ​ ___________       ​ 2 4 3/4 1 3/4 x (x + 1) x5 ​ 1 + __ ​  4  ​   ​ x

(  )

t3 = – Ú ​ __3 ​  dt t = – Ú dt



= – t + c



1 1/4 = – ​​ 1 + __ ​  4  ​   ​​ ​ + c x

( 

)

)

______ __ 1 – ​÷x    ​  ​ ______  ​ ​   dx __  1 + ​÷x    ​ 

1 + cos 2q  = 2 Ú ​ cos q – ​ _________  ​     ​ dq 2

(  ) sin 2q  1 = 2 Ú ​( sin q – __ ​    ​ ​( q + ______ ​   ​    ​  ​ + c 2 2 ))



= (2sinq – (q + sin 2q   cosq )) + c



)​ ]​ + c = 2​÷1  – x    ​– ​[ ​( cos– 1(​÷x    ​)  + ÷ ​ x    ​  ​  ÷ 1 – x ​  

_____

__ _____

__

( 

__

__

)

– 1 sin– 1÷ ​ x     ​ – cos ÷ ​ x     ​ Ú ​ ________________  ​  – 1 __     ​  ​ dx – 1 __ sin ​÷x     ​ + cos ​÷x     ​

( 

( 

)

__ p  – 1 __ __ sin– 1​÷x     ​ – ​ ​   ​  – sin ​÷x    ​   ​ 2 = Ú ​ _____________________ ​       ​     ​ dx p  __ ​   ​  2 __ p  2 __ = __ ​ p   ​ Ú ​ 2sin– 1÷ ​ x     ​ – ​   ​   ​ dx 2

( 

)

)

( 

4 = __ ​ p  ​ Ú ​ q Ú sin(2q ) dq +

cos 2q  ​   ​    ​ dq   ​ – Ú dx Ú ​( ______ 2 )

)

where x = sin2q



Let x = cos q



fi ________



1 – cosq  = Ú  ​ ​ ________ ​ ​    × – sin (2q) dq 1 + cosq



q  sin ​ __ ​   ​   ​ 2 = Ú  ​ _______ ​    × 2sin (q ) cos (q ) dq q  cos ​ __ ​   ​   ​ 2

(  ) (  )





2 

÷ 

= 2 Ú (cos q – cos 2q ) dq

4 = __ ​ p  ​ Ú (q sin2q )dq – Ú dx

÷ 

9. We have – Ú  ​



__ 4 = __ ​ p  ​ Ú (sin– 1​÷x    ​)  dx – Ú dx





( 

4 fi – ​ __5  ​  dx = 4t3 dt x 1 fi ​ __5  ​  dx = – t3 dt x



= 2 Ú (1 – cosq ) cos(q )dq

10. We have,

1 Let ​ 1 + __ ​  4  ​   ​ = t4 x







8. We have,



2



x–1 Ú  ex ​ ​ _______     ​  ​ dx (x + 1)3



2



7. We have,

( 

(  )     ( ) ( ) (  ) q  = 4 Ú sin  ​( __ ​   ​  )​ cos (q ) dq 2 q  = 2 Ú ​( 2sin  ​( __ ​   ​  )​ )​ cos(q ) dq 2

q  sin ​ __ ​   ​   ​ 2 q  q  = 4 Ú  ​ _______ ​    × sin ​ __ ​   ​   ​ cos ​ __ ​   ​   ​ cos (q )dq 2 2 q  cos ​ __ ​   ​   ​ 2





1.155

dx = – sin 2q dq

( 

)

q cos 2q  ______ sin 2q  4 = __ ​ p  ​ Ú ​ – ​ _______  ​   + ​   ​    ​ – x + c 2 4

( 

__

__ _____

)

2  sin– 1(​÷x    ​)  (1 – 2x )  ​÷x     ​ ​÷1   – x ​  4 = __ ​ p  ​  ​ –  ​ ________________  ​      + ​ _________  ​     ​– x + c 2 2

__ __ _____ 2 2 )​ – x + c = __ ​ p  ​  ​( – sin– 1(​÷x    ​)  (1 – 2x ) + ÷ ​ x    ​    ​÷1   – x ​   _____

​ cos2x    ​   ÷ 11. We have Ú ______ ​     ​   dx sin x

_________



2 x   ​ ÷​ 1  – 2sin = Ú __________ ​     ​  dx sin x

1.156  Integral Calculus, 3D Geometry & Vector Booster

÷ 

(  )

________

1 = Ú ​  ​ _______    ​  ​     dx 2 sin x – 2



1 1 + __ ​  2  ​  t = 2Ú ​ ______ ​     ​  ​ dt 1 2 t + __ ​  2  ​  t 1 1 + __ ​  2  ​   t = 2Ú ​​ __________      ​  ​ dt 1 2 __ ​​ t – ​   ​   ​​ ​ + 2 t



__________ 2  ​÷cosec   x    – 2  ​dx

Ú



=



= Ú ÷ ​ cot   2x – 1  ​  dx

( (  ) )

________



Let cot x = secq





– cosec2x dx = secq  tanq dq



dz = 2Ú ​ _____    2 z +2

 ​

secq  tanq = – ​ _________  ​  dq 1 + cot2x

z 1__ – 1 ___ = 2 ◊ ​ ___   ​  tan  ​ ​  __   ​  ​ + c ​÷2 ​    ​÷2 ​   



__ 1 1 = ​÷2 ​     tan– 1 ​ ___ ​  __  ​ ​  t – __ ​   ​   ​  ​ + c t ​ 2 ​    ÷



__ 1 = ​÷2 ​     tan– 1 ​ ___ ​  __  ​  (tan x – cot x)  ​ + c ​ 2 ​    ÷

  secq  tanq dx = –​ _________    ​  dq cosec2x









  secq tanq = –​ _________    ​ dq 1 + sec2x





secq  = –  ​ ________     ​dq cos2q + 1 

(  )

(  (  ) ) (  )

13. We have

( 

)

4ex + 6e– x I = Ú ​ _________ ​  x ​    ​ dx 9e + 4e– x



tanq ◊ sinq = – Ú ​ _________    ​dq cos2q + 1 



sin2q  = – Ú ​ ______________        ​ dq cosq (cos2q + 1)



2 = – Ú ______________ ​  sin q ◊ cosq        ​ dq cos2q (cos2q + 1)

Comparing the co-efficients of ex and e– x, we get 3 4 m + n = __ ​   ​  and n – m = __ ​   ​  9 2 Solving, we get,



t2 = – Ú ​ ____________      ​dt,   where  sin q = t (1 – t2)(2 – t2) 

n = 35/36 and m = – 19/36. The given integral reduces to

t2 = – Ú ​ ____________      ​dt (t2 – 1)(t2 – 2) 1 = – Ú ​ _____ ​  2     ​ – _____ ​       ​  ​ dt t2 – 2 t2 – 1

19 35 9ex + 4e– x – ​ ___ ​  Ú dx + ___ ​   ​   Ú ​ _________ ​     ​ ​ dx 36 36 9ex – 4e– x



(  Ú (  )



4ex + 6e– x = m(9ex – 4e– x) + n(9ex + 4e– x)

)

(  )

( 

)



19 35 = – ​ ___ ​ x + ___ ​   ​  log ​| 9ex – 4e– x |​ + c 36 36

|  |



2 1 = –   ​ _____ ​  2    ​  ​ dt + Ú ​ _____ ​  2      ​  ​ dt t –2 t –1



19 9e2x – 4 35 = – ​ ___ ​ x + ___ ​   ​  log ​ ​ _______     ​   ​+ c 36 36 ex



t – ​÷2 ​    1 __  = – ​ 2◊ ​____   __    ​   log​ ​ ______  ​  ​  ​ + 2​÷2 ​    t+÷ ​ 2 ​   



19 35 35 = – ​ ___ ​ x + ___ ​   ​  log ​| 9e2x – 4 |​ – ___ ​    ​ log |ex| + c 36 36 36



19 = –  ​ ___ ​   ​ + 36



3 35 = – ​ __ ​  x + ___ ​   ​  log |9e2x – 4| + c 2 36

( 

|  |) |  |

where t = sinq 12. We have,

____ ____  (​÷tan x    ​ + ​÷cot x    ​) dx

Ú



(  )  t + 1 _____ 2t = Ú ​( ​ _____   ​    ​ ​       ​dt t )t + 1 tan x + 1 = Ú ​ ________ ​  ____ ​     ​ dx ​ tan x    ​   ÷ 2

4

(  )

t2 + 1 = 2Ú ​ ______ ​  4  ​  ​ dt t +1

__

 t – 1 1 __ ​    ​ log ​ ​ ____   ​  ​ + c 2 t +1

( 

( 

)

35 35 ___ ​   ​   ​ x + ___ ​   ​  log ​| 9e2x – 4 |​ + c 36 36

)

log(1 + x1/6) 1 14. Ú ​ ________ ​  1/3  1/4   ​ + ___________ ​  __        ​  ​ dx 1/3 x +x ​ x     ​ + x ÷ = I1 + I2 (say) dx Now, I1 = Ú ​ _________     x1/3 + x1/4

Indefinite Integrals 

( 

)

t11 dt  ​ = 12 Ú ​ _____      ​, where x = t12 4 t + t3

cos q + sin q I = cos 2q log ​ ___________ ​     ​  ​ dq cos q – sin q

t8 dt = 12Ú ____ ​     t+1



( 

)

8

(t – 1) + 1  ​ = 12Ú ​ ​ __________     ​   ​ dt t+1

( 



( 

)

)

t8 t7 __ t6 t5 __ t4 t3 __ t2 = 12Ú ​ __ ​   ​  + __ ​   ​  + ​   ​  + __ ​   ​  + ​   ​  + __ ​   ​  + ​   ​  + log|t + 1|  ​ + c 7 8 4 3 2 6 5

log (1 + x1/6) Let I2 = Ú ​ ___________        ​dx x1/2 + x1/3

log(1 + t) 5 = 6Ú ​ _________  ​     t dt, where x = t 6 t3 + t2



t3log(1 + t) = 6 Ú __________ ​      ​   dt t+1



(t3 – 1 + 1)log(1 + t) = 6 Ú ​ __________________  ​       dt t+1

( 

)

log (1 + t) = 6 Ú ​ (t2 – t + 1) log (1 + t) –​  _________  ​     ​ dt (1 + t)



( 

)

) (  )

cosq + sinq _____ sin 2q = log ​ __________ ​     ​  ​ ​ ​   ​    ​ 2 cosq – sinq



2 2 1 sin(2q) ◊ 2 (sin q + cos q) = –  ​ __ ​  Ú ​ _____________________         ​ ◊ dq 2 cos2q – sin2q 



sin (2q) sin 2q cosq + sinq = ​ _____ ​   ​    ​ × log ​ __________ ​     ​  ​ – Ú _______  ​   ​   ◊ dq 2 cos (2q) cosq – sinq

(  ) (  ) sin 2q cosq + sinq = (​  ​ _____  ​    ​ × log ​( __________ ​     ​  ​ 2 ) cosq – sinq )

(  ( 





) ( 

( 

)

3

)

cos3x + cos5x       ​  ​ dx Ú ​ ____________ ​  2 sin x + sin4x

(t – 1)log(1 + t) log(1 + t) = 6Ú ​ _______________ ​   ​       – _________ ​   ​     ​ dt t+1 (1 + t)



( 

cosq – sinq cosq + sinq 1 – ​ __ ​  Ú sin (2q) ◊ ​ ___________ ​     ​  ​ + ​ ​ ___________    ​  ​ dq 2 cosq + sinq cosq – sinq

1 ​ __ ​  log ​| sec (2q) |​ + c 2 16. We have,

3

[ 

)









( 

cos q + sin q = log ​ ___________ ​     ​  ​   cos (2q) dq cos q – sin q Ú



1 = 12Ú ​ t7 + t6 + t5 + t4 + t3 + t2 + t + ____ ​       ​  ​ dt t+1

1.157

2

)

cos2x + cos4x       ​  ​ cos x dx = ​ ____________ ​  2 sin x + sin4x

]

(  Ú (  Ú (  Ú ( 

)

(1 – sin2x) + (1 – sin2x)2 = Ú ​ ​ _____________________         ​ ​ cos x dx sin2x + sin4x

t t  ​ __ ​  – __ ​   ​  + t 3 2 t__2 – t2) + (1 – t2)2 ​   ​  + t  ​ – Ú ​ _________       ​dt  ​ =  ​ ​ (1 ________________  ​        ​dt,    where  t = sin x 1+t 2 t2 + t4 – 6 (log (1 + t))2 + c 4 ((t + t2) + (2 – 4t2)) __________________ 3 2 =  ​ ​   ​        ​ dt t t 2 4 = 6 log (1 + t) ​ __ ​   ​  – __ ​   ​  + t – log (1 + t)  ​ t + t 3 2 (2 – 4t2) 3 2 ________ 2t – 3t + 6 =  ​ 1 +​   ​     ​dt 2 4 + Ú ​ ___________     ​  dt t + t t+1

( 

)

t3 = 6 ​ log (1 + t) ​ __ ​   ​  – 3

( 

)

( 

( 

)

( 

)

1 + Ú ​ 2t2 + 5t + 5 + ____ ​       ​  ​ dt t+1

( 

)

)

(  Ú ( 

)

4 2 = Ú ​ 1 – ______ ​  2      ​+ ________ ​  2 2    ​    ​ dt t + 1 t (t + 1)

( 

))

4 1 1 =  ​ 1 – _____ ​  2      ​ + 2​  ​ __2  ​  – ______ ​       ​  ​  ​ dt t +1 t (t2 + 1)

t3 t2 = 6 log (1 + t) ​ __ ​   ​  – __ ​   ​  + t – log (1 + t)  ​ 3 2

( 

)

)

2 (2t2 – 1) = Ú ​ 1 – _________ ​  2 2  ​    ​ dt t (t + 1)

t3 t2 = 6 log (1 + t) ​ __ ​   ​  – ​ __ ​  + t – log (1 + t)  ​ 3 2

)

)

(  ( 

)

where t = x1/6.

2 = ​ t – 4 tan–1t – __ ​   ​  – 2 tan–1t  ​ + c t 2 –1 = ​ t – 6 tan t – ​ __ ​   ​ + c t

15. We have,

= (sin x – 6 tan–1(sin x) – 2cosec x) + c



2t3 5t2 + ​ ___ ​   ​ + ___ ​   ​ + 5t + log (1 + t)  ​ + c 3 2

)

1.158  Integral Calculus, 3D Geometry & Vector Booster 1 1 + sin x 1 1 = – ​ __ ​  ​Ú  ​ ​_______      ​ dx – __ ​   ​ ​ Ú ​  ​ ​ ________________      ​ dx 5   cos2 x 5 __________ 2 tan (x/2) ​ ​        ​ + 4  ​ 1 + tan2 (x/2) 1 = – ​ __ ​ Ú​   ​(​ sec2 x + sec x tan x) dx 5   sec2 (x/2) 1 = – ​ __ ​ Ú​    ​ _________________________ ​        ​  dx 5   (​ 4 tan2 (x/2) + 2 tan (x/2) + 4 )​

17. We have,

( 

+1 Ú​  __________       ​dx x (1 + x ex)2

(x + 1)e x = Ú ​ ___________        ​dx x ex(1 + x ex)2



dt = Ú ​ _______   2   ​, Where t = x ex t (1 + t)

( 

1 1 1 = Ú ​ __ ​   ​  – ​ ____     ​ – ​ ______      ​  ​ dt t t + 1 (t + 1)2



1 1 = log ​ ____ ​       ​  ​ + ______ ​       ​+ c t+1 (t + 1)



x ex 1 = log ​ _______ ​  x   ​   ​ + ________ ​  x      ​+ c x e + 1 (x e + 1)

|  |

| 

 dt 1 1 = – ​ __ ​  (tan x + sec x) – __ ​    ​ ​Ú _________ ​​  ​       ​ 5 5   2t2 + t + 2 x where tan ​ ​ __  ​  ​ = t 2 and then you do it.

)



(  )

20. We have,

|

( 

dx ____________ Ú ​ ______________       ​ ​÷(x   – p)3(x    – q) ​ dx = Ú ​ _______________       ​ (x – p)3/2(x – q)1/2 dx = Ú ​ _______________       ​ (x – q) 1/2 2 _______ (x – p)  ​​ ​   ​   ​​ ​ (x – p)

( 



)

(x – q) Let ​ ______   ​ = t (x – p)



(x – p) ◊1 – (x – q) ◊ 1 fi ​ ​ __________________      ​     ​ dx = dt (x – p)2



dx dt fi ​ _______    ​  = ______ ​     (x – p)2 (q – p)

_ 1 = ______ ​       ​ × 2​÷t    ​  + c (q – p)



÷ 

_____

x–p 2 = _______ ​       ​× 2 ​ _____ ​ x – q ​    ​+ c (q – p)

19. We have,

dx Ú ​ _________________        ​ (sin x + 4) (sin x – 1)

( 



= 2 Ú (cos2x – sin2x)dx



= 2 Ú cos (2x)dx



sin 2x = 2 ​ _____ ​   ​    ​ + c 2

(  )

= sin 2x + c

÷ 

)

1 1 = __ ​   ​ ​  Ú________ ​  1     ​ – ________ ​       ​  ​dx 5 (sin x – 1) (sin x – 4)  1 1 1 1 = __ ​   ​ ​ Ú  ​ ________ ​      ​ dx – __ ​   ​ ​ Ú  _________ ​ ​ ​       ​ dx 5   (sin x – 1) 5   (sin x + 4) 1 1 1 1 = – ​ __ ​  Ú​   ​ ________ ​      ​ dx – __ ​   ​ ​ Ú  ​ _________ ​      ​ dx 5   (1 – sin x) 5   (sin x + 4)

______ _ 1 – ​÷x    ​  dx ​ ______  ​     ​× ___ ​  x ​  __  1 + ​÷x    ​ 

Let x = cos22q fi dx = – 2 cos x(2q) sin (2q)

÷ 

__________



dt 1 = ______ ​       ​  ​ ___  ​  (q – p) Ú t1/2



)

cos x – sin x = 2 Ú ​ __________ ​     ​  ​ × (cos x + sin x)2 dx cos x + sin x

21. Ú ​

)

 ​ The given integral reduces to

( 







( 

)

cos x – sin x Ú ​ __________ ​      ​  ​ (2 + 2sin 2x)dx cos x + sin x

18. We have,



)





1 – cos (2q) – 2cos (2q) sin (2q) = Ú ​ ​ __________        ​  ​× ________________  ​      ​ dq    1 + cos (2q) cos2(2q) 2sin (q) cos (q) sinq _____________ = – 2Ú ​ ____   ​ ×​      ​ dq    cosq cos(2q) 2sin2(q) = – 2 Ú ​ _______ ​   dq cos(2q)



(cos (2q) – 1) = 2 Ú ​ ____________        ​ dq (cos (2q)



= 2 Ú (1 – sec (2q))dq



1 = 2 ​ q – ​ __  ​ log |sec (2q) + tan (2q)|  ​ + c 2



( 

( 

| 

)

______

÷ 

|)

__ 1 1 1 __ ___ __ = 2 ​ cos–1(​÷x    ​)  – ​   ​  log​ ​  _  ​ + ​ 1 + ​   ​ ​   x ​  ​ + c ​÷x    ​  2

22. We have, dx ____________ Ú ​ ____________________         ​ (2x – 7)​÷x2   – 7x +   12 ​

Indefinite Integrals 

( 

)



dx _____________ = 2Ú ​ _____________________         ​ (2x – 7)​÷4x   2 – 28x    + 48  ​

2x + 2 ____________ Ú sin–1 ​​ ______________       ​   ​ dx 2   + 8x +   13 ​ ÷​ 4x



2 ◊ dx ___________ = Ú ​ ___________________         ​ (2x – 7) ÷ ​ (2x   – 7)2   –1  ​





dt _____ = Ú ​ _______      ​, where (2x – 7) = t t ​÷t 2 – 1 ​  

Let (2x + 2) = 3 tanq



= sec–1(t) + c



–1

= sec (2x – 7) + c

x2 + 3x + 2 23. Ú​  _____________        ​dx (x2 + 1)2(x + 1)



x2 + 3x + 2) = Ú​  _____________        ​dx (x2 + 1)2(x + 1) (x + 1) (x + 2) = Ú​ _____________        ​dx (x2 + 1)2(x + 1)



(x + 2) = Ú​ ________      ​dx (x2 + 1)2



(x + 2) = Ú​ ________      ​dx (x2 + 1)2



dx 2x 1 = __ ​   ​ Ú  ________ ​       ​dx + 2 Ú ​ ________      ​ 2 (x2 + 1)2 (x2 + 1)2



dx 1 = – ________ ​  2      ​+ 2 Ú ​ ________      ​ (x2 + 1)2 2(x + 1)



x 1 = ​ –  ​ ________      ​+ tan–1x +​ _____     ​  ​ + c 2 (x2 + 1) x2 + 1

)



3 = __ ​   ​  Ú (q sec2q)dq 2



3 = __ ​   ​  Ú (q tanq – Ú tanq dq) 2



3 = __ ​   ​  (q tanq – log |secq |) + c 2



3 = __ ​   ​  ​ q tanq – log ​ ​÷1  + tan2q  ​    ​  ​ + c 2



| 

( 

_________

|)

3 3 = ​ __ ​  (q tanq) – __ ​   ​  log (1 + tan2q) + c 2 4 2x + 2 = (x + 1) tan–1​ ​ ______  ​    ​ 3 3 – ​ __ ​  log (4x2 + 8x + 13) + c 4

( 

)

25. We have Ú (x3m + x2m + xm) (2x 2m + 3x m + 6)1/mdx = Ú (x3m – 1 + x2m – 1 + xm – 1) (2x 2m + 3x m + 6)1/m x dx

)

= Ú (x3m – 1 + x2m – 1 + x m – 1) (2x 3m + 3x 2m + 6xm)1/mdx Put (2x 3m + 3x 2m + 6x m) = t m

dx Let I1 = 2Ú ​ ________      ​ (x2 + 1)2

)

( 



( 

( 

2x + 2 _____________ = Ú sin–1​​ _______________       ​  ​ ​÷(2x   + 2)2 +   (3)2  ​

(2 x + 2) _____________ Thus, ​​ ______________      ​  ​ = sin q   + 2)2    + 32 ​ ÷​ (2 x



2

2

sec q dq = 2 Ú ​ _______  ​  ,   where x = tanq sec4q



6m (x 3m –1 + x 2m –1 + x m –1)dx = m t m – 1dt



dq = 2 Ú ​ _____   ​  sec2q

t m – 1 (x3m –1 + x 2m –1 + x m –1)dx = ____ ​   ​ dt     6 1 Thus, the given integral reduces to __ ​   ​  Ú t mdt 6



= Ú (2cos2q) dq





= Ú (1 + cos 2q) dq

1 t m + 1 = __ ​   ​  ​ _____ ​       ​  ​ + c 6 m+1



3m 2m m m + 1 1 (2x + 3x + 6x ) = __ ​   ​  ​ ​ ____________________      ​     ​ + c m+1 6



= (q + sinq + cosq) + c



x = ​ tan–1x + _____ ​  2      ​  ​ + c x +1

( 

24. We have,

)

1.159



(  )

( 

26. We have, x2 – 1 ____________ Ú​  ______________        ​dx x3÷ ​ 2x   4 – 2x2   + 1 ​

)

1.160  Integral Calculus, 3D Geometry & Vector Booster







x2 – 1 _____________ = Ú ​ ________________        ​dx 2 1 3 4 __ x ​ x ​ 2 – __ ​  2  ​  +   ​  4  ​   ​  ​ x x

) ÷  (  Ú ) ÷(     ) ( Ú ) ÷(   (  ( 

x2 – 1 ____________ = ​  ______________        ​dx 2 1 5 __ x ​ ​ 2 – __ ​  2  ​  +   ​  4  ​   ​ ​ x x



1 = ________ ​     ​   t n – 1 + c n (n – 1)



n – 1 ____ 1 = ​ _______    ​  (1 + nx n​)​ ​ n   ​ ​ + c n (n – 1)



1 __ 1 = ________ ​       ​(1 + nx n​)​(​ 1 – ​ n ​ )​​ + c n (n – 1) 

28. We have

1 1 ​ __ ​  3  ​ – __ ​  5  ​   ​ x x ____________ =  ​ ______________      ​  dx 2 1 __ ​ ​ 2 – __ ​  2  ​  +   ​  4  ​   ​  ​ x x

J – I

)

2 1 Let ​ 2 – __ ​  2  ​  + __ ​  4  ​   ​ = t2 x x 4 4 fi ​ __ ​  3  ​  – __ ​  5  ​   ​ dx = 2t dt x x

)

1 2t dt = __ ​   ​  Ú ​ ____     ​  t 4



e xdx e– xdx _____________ = Ú ​ ___________       ​ –  ​        ​ Ú e 4x + e 2x + 1 e– 4x + e– 2x + 1



(ex – e3x) dx = Ú ​ ___________        ​ e4x + e2x + 1



(1 – e2x) e xdx = Ú ​ ____________        ​ e4x + e2x + 1 Let  ex = t fi e xdx = dt



1 = __ ​   ​  × t + c 2

( 

)



1 – t2 = Ú ​ ​ _________     ​  ​ dt 4 t + t2 + 1



1 1 – __ ​  2  ​  t = – Ú ​ ​ _________     ​  ​ dt 1 2 __ t + ​  2  ​  + 1 t



1 1 – __ ​  2  ​  t = Ú ​ ​ __________      ​  ​ dt 1 2 __ ​​ t + ​   ​   ​​ ​– 1 t



1 ​ t + __ ​   ​   ​– 1 t 1 __ __________ = – ​   ​  log ​ ​      ​  ​ + c 2 1 ​ t + __ ​   ​   ​+ 1 t



 t2 – t + 1 1 = –  ​ __ ​  log ​ ​ ________    ​  ​ + c 2 t2 + t + 1

Similarly, we can write, (f0 f0 f 0....0 f )(x)



  t2 + t + 1 1 = __ ​   ​  log ​ ​ _________  ​     ​+ c 2 t2 – t + 1

x = __________ ​       ​. (1 + nx n)1/n



e2x + ex + 1 1 = __ ​   ​  log ​ ​ __________    ​  ​ + c 2 e2x – ex + 1



( 

1 2 = __ ​   ​  × ​​ 2 – __ ​  2  ​  + 2 x

)

1 1/2 __ ​  4  ​   ​​ ​ + c x

27. We have, (  f0 f) (x) = f (  f (x)) f (x) = __________ ​       (1 + f (x))1/n x = __________ ​      (1 + 2xn)1/n

 ​  ​ Also, ( f0 f0 f ) (x)

= f (( f0 f ) (x))



( f 0 f )(x) = _____________ ​        ​ (1 + ( f 0 f (x))1/n





x  = ​ __________      ​ (1 + 3xn)1/n

Thus,  I = Ú x

n – 2

g (x)dx

29. We have,

( 

(  )

( (  ) )

 | |   (  ) (  )

|  | 

|



x = Ú x n – 2 ​ __________ ​       ​  ​ dx (1 + nx n)1/n

sec2x Ú ​ ______________       ​dx (sec x + tan x)9/2



1 n – 2 n n = ​ __ n ​ Ú t dt, Where t = (1 + nx )



)

|

|

|

secx ◊ sec x = Ú ​ ______________         ​dx (sec x + tan x)9/2

...(i)

Indefinite Integrals 



Put sec x + tan x = t fi



sec x (sec x + tan x) dx = dt

dt sec x dx = __ ​   ​  t 1 1 ____________ Also sec x – tan x = ​       ​= __ ​   ​  t (sec x + tan x) fi



(  )

1 1 Thus, sec x = __ ​   ​  ​ t + __ ​   ​   ​ dt t 2 The given intergral (i) reduces to

(  )

1 ​ t + __ ​   ​   ​ dt t 1 ________ __  ​    ​ ​      ​  t 2 __________ Ú ​   ​      t9/2

1.161



2 1  (t + 1) = __ ​   ​  Ú ​ _______  ​ dt     2 t13/2



1 1 = __ ​   ​  Ú ​ ___ ​    ​ + 2 t9/2



1 2 2 = –  ​ __ ​ ​  ____ ​     ​ + ______ ​     ​   ​+ c 2 7t7/2 11t11/2



1 1 = –  ​ ____ ​  7/2    ​ + ______ ​  11/2    ​   ​+ c 7t 11t



1 1 = ​ _______________ ​       ​+ ________________ ​      ​ ​ + c 7(sec x + tan x)7/2 11(secx + tan x)11/2

( 

(  (  ( 

)

1 ____ ​  13/2    ​  ​ dt t

)

)

)

Chapter

2

Definite Integrals

Concept Booster 1.  What

is

definite Integral?

Let f (x) be a function of x defined in the closed interval [a, b] and j (x) be another function such that j ¢(x) = f (x) for every x in the domain of f (x). Then b

​Ú ​  ​ f (x) dx = [j (x) + c​] ​ba​​  = j (b) – j (a) a

is called the definite integral of the function f (x) over the interval [a, b]. Here, a is called the lower limit and b is called the upper limit.

3. Evaluation

of

definite integrals

by

substitution

Rules 1. When the variable in a definite integral is changed, the substitution in terms of new variable should be affected at three places. (a) in the integrand (f (x) will be changed) (b) in the differentials (dx will be changed) (c) in the limits (old limits will be changed)

4. Geometrical interpretation

of

definite integral

Consider the function y = f (x), where f (x) ≥ 0 for all b

x in [a, b]. The integral Ú​  ​  ​ is numerically equal to the area a

Notes: b



1. ​Ú ​  ​ is read as ‘the integral of f (x) from a to b’

bounded by the curve y = f (x), the x-axis and the lines x = a and x = b.

a

Y

2. To evaluate the definite integral, there is no need to keep the constant of integration.

C D

b



3. Geometrically, ​Ú ​  ​ f (x) dx represents the area bounded



by the curve y = f (x), the x-axis and the lines x = a and x = b. 4. Area bounded means, we shall use,

a

b

​Ú ​  ​ | f (x)| dx, when the area lies below x-axis. a

O

A x=a

B x=b

X

b

Area of the region ABCD = Ú​  ​  ​ f (x) dx a

b

2. Evaluation

of

Definite Integrals

ules R 1. Simply find the indefinite integrals of the given function. 2. There is no need to keep the constant of integration. 3. Use the limits of integration.

In general, ​Ú ​  ​ f (x) dx represents an algebraic sum of the a

area bounded by the graph of the function y = f (x), x-axis and the lines x = a and x = b. The area above the x-axis is taken as the sum with the positive sign, while the area which is below x-axis is taken as the sum with the negative sign. So, the value of the integral may be positive, negative or zero.

2.2  Integral Calculus, 3D Geometry & Vector Booster

6. Evaluation of the limit of Newton-Leibnitz Formula

Y

O a

the

sum

using

From the definition of the definite integral, we have

A1

A3

A2

A5

A4

b

X

b

​Ú ​  ​ f (x) dx a

b

Thus, ​Ú ​  ​ f (x) dx = A1 – A2 + A3 – A4 + A5 a

5.  Definite integral

as the

limit

of

h Æ 0

r = 0

( 

[  ( 

)

b – a  n  b–a = ​   lim ​ ​ _____ ​  n    ​  ​ ​S  ​ ​ ​ f  ​ a + ​ _____ ​  n    ​  ​ r  ​    n Æ • r = 0 



1 y (x) __r = ​   lim ​ __ ​ n ​  S ​    ​ ​  f ​ ​ n  ​  ​​, n Æ •

where

(i)

r = j (x)

(  )

 is replaced by Ú symbol

1 (ii) ​ __ n ​ is replaced by dx r (iii) ​ __ n ​  is replaced by x j (x) (iv) a = ​   lim ​ ​ ____ ​  n    ​  ​ n Æ •

(  ) y (x) and b = ​   lim ​  ​( _____ ​  n    ​  )​

n Æ •

Divide the interval [a, b] into n equal sub-intervals denoted by [a, a + h], [a + h, a + 2h], [a + 2h, a + 3h], ...,

[a + (n – 1)h, a + nh]

7. Properties

of

Definite Integrals

Property I

b

b

a

a

​Ú ​  ​ f (x)dx = Ú​  ​  ​ f (t)dt

Clearly,

b = a + nh

d Proof:  Let ​ ___   ​ [g(x) + c] = f (x) dx



nh = b – a





b–a h = ​ _____ ​  n   

Now, ​Ú ​  ​ f (x) dx = g(x) + c​|b​a​​ 

Ú f (x) dx = g(x) + c b

a

b

Thus, ​Ú ​  ​ f (x) dx



a

= g(b) – g(a)

b

Also, ​Ú ​  ​ f (t)dt = g(t) + c​|b​a​​ 



= Area bounded by the curve y = f (x), x-axis and the ordinates x = a and x = b.



= Area of the region PQRSP between the curve, x-axis and the ordinates x = a and x = b.

Property II

= ​   lim ​   h [f (a) + f (a + h) + f (a + 2h) + ...

d Proof:  Let ​ ___   ​ [g(x) + c] = f (x) dx



h Æ 0



+ f (a + (n – 1)h] n – 1

= ​   lim ​   h ​S ​ ​ ​ f (a + rh) h Æ 0

a

Hence, the result

( 

)

where nh = b – a which is known as the first principle of integration.

= g(b) – g(a)

b

a

a

b

​Ú ​  ​  f (x)dx = – ​Ú ​  ​ f (x) dx



r = 0

b – 1 n – 1 = ​ lim    ​ ​ ​ _____ ​  ​ ​S  ​ ​ ​ f (a + rh), n    n Æ • r = 0 

)]



sum

Let f be a continuous real function on [a, b]. Assume that all the values taken by the function are non-negative, the graph of the function is a curve above the x-axis.

 n

= ​   lim ​ h ​S  ​ ​ ​  f  (a + rh)



Ú f (x)dx = g(x) + c b

Now, ​Ú ​  ​ f (x) dx = g(x) + c​|b​a​​  a

a

Also,

= g(b) – g(a)

– ​Ú ​  ​ f (x) dx = – [g(x) + c]​|ab​ ​​  b

Definite Integrals 



= – [g(a) – g(b)]

Property V



= g(b) – g(a)

​Ú ​  ​ f (x) dx = Ú​  ​  ​ f  (a + b – x) dx

Hence, the result. Property III

b

b

a

a

Proof:  We have

b

c

b

a

a

c

b

​Ú ​  ​ f (x)dx = ​Ú ​  ​ f (x)dx + ​Ú ​  ​ f (x),

​Ú ​  ​ f (a + b – x)dx

where

Let a+b–x=t a

a

a 0, (x3 + 16)4 " x Œ (0, 1) Thus, f (x) is concave upaward.

( 

1

)

331.

0

______ ​  ​   ​​÷ 1 + x3    ​dx

Ú  0 1

( 

)

x4 1 £ ​​ x + __ ​   ​   ​​ ​​  4 0

______



1£x£2



1 £ x4 £ 16



2 £ (1 + x4) £ 17

1 1 1 fi ​ ___  ​ £ _______ ​       ​ £ __ ​    ​ 17 (1 + x4) 2 1

dx 7 1 fi ​ ___  ​ £ Ú​  ​    _____ ​​     ​  £ ___ ​    ​  17 0 1 + x4 24 •

( 

0

5 fi 1 £ ​Ú ​    ​​÷ 1 + x3    ​dx £ __ ​   ​  4 0 334. We have,

0

x fi (1 – 0)f (0) £ ​Ú ​    ​​ ______ ​  3    ​   ​ dx 0 x + 16

1

______

1

(1 – 0) £ ​Ú ​    ​(e ) dx £ e(1 – 0) 1

1

fi ​Ú ​    ​1 dx £ ​Ú ​    ​​÷ 1 + x3    ​dx £ ​Ú ​   ​(1 + x3)dx

0

1



2

)

( 

)

tan– 1ax – tan– 1x 335. Let I = ​Ú ​  ​   ​​ ​ _____________ ​  ​dx x       0

1 – (0)(f (0) + f (1) • £ ​ ​ ________________  ​       ​ 2 dI 1.x 1 ___ fi ​   ​ = Ú​  ​  ​   ​​ _________ ​     ​   ​dx x 17 da 0 (1 + a2x2)x fi 0 £ ​Ú ​    ​​ ______ ​  3      ​  ​dx £ ___ ​   ​  2 0 x + 16 • dx Hence, the result. = ​    ​   ​ Ú ​  ​   ​​ ​ ________ _____ 0 (1 + a2x2 3 Let f (x) = ÷ ​ 3  +    ​. • 3x2 dx 1 fi f ¢(x) = ________ ​  _____    = ​ __2  ​ ​Ú  ​ ​   ​​ ​ _________    ​   ​ 3 a 0 (1/a2) + x2 2​÷3  + x  

 ​ fi  ​

( 

)

3x2 f ¢(x) = ________ ​  ______     ​> 0, " x Œ (1, 3) 2​÷3  + x3   ​

Thus, f (x) increases in (1, 3). 3

______ 3 + x3) ​   dx

So, (3 – 1)f (1) £ ​Ú ​    ​(÷ ​  3





1

_____ ​  ​   ​(÷ ​ 3  + x3   ​)dx

Ú  1

£

332. We have for every x in [0, 1], _______

​÷ 4 – 2x

2

_________    ​£ ​÷4  – x2 –   x3

_____

 ​£ ​÷4  – x   2

1 1 1 ______  ​ fi ​ _______      ​£ ___________ ​  _________      ​£ _______ ​  ______     2 2 3  ​ ​÷4  – x –   x  ​ ÷ ​ 4  – 2x2  ÷​ 4  – x  

)

)

( 

)

|



• 1 =  ​ ​​__2  ​  (a tan– 1(ax))  ​​ ​ ​ 0 ​a



1 p  = __ ​  2  ​ ​  a__ ​   ​   ​ = 2 a

(  )

£ (3 – 1)f (3)

___ 2​÷30 ​    

(  ( 

p  ___ ​    ​  2a

p  I = __ ​   ​  ln a + c 2



When a = 1, I = 0 fi c = 0 p  Hence, I = __ ​   ​  ln a 2 p /2

( 

)

dx 1 + a sin x ____ 336. Let I = ​Ú ​   ​   ​ln ​ _________ ​   ​   ​ ​    ​, (|a| < 1). 1 – a sin x sin x 0

Definite Integrals 

(  Ú  (  Ú  ( 

p /2

) ) )

dI dx 2 sin x ____ fi ​ ___ ​ = Ú​  ​   ​   ​​ _________ ​     ​   ​ ​    ​, (|a| < 1) da 0 1 – a2sin2x sin x p /2



dx 2 sin x ____ = ​  ​  ​   ​​ _________ ​     ​   ​ ​    ​  2 2 sin x 0 1 – a sin x



2 = ​  ​  ​   ​​ _________ ​     ​   ​dx 0 1 – a2sin2x

p /2

p /2

( 

2

p /2



( 

xb log x d[I (b)] fi ​ ______     ​ = Ú​  ​    ​​ ______ ​     ​   ​ dx db log x 0

)

1



0

 (

)

Let  t = tan x

( 

))

______

• 2 = ________ ​  _______      ​ × ​​ tan– 1(t​÷1  – a2) ​    ​​0​ ​   – a2) ​  ÷​ (1

( 



)

p  2 = ________ ​  _______      ​ × __ ​   ​  2 ​÷(1   – a ) ​  2 p  _______ = ​ ________      ​ ​÷(1   – a2) ​ 



I = p sin– 1a + c

When a = 0, I = 0, then c = 0

( 

)

dx 1 + a sin x ____ 336. Given I = Ú​  ​   ​   ​ ln ​ ​ _________   ​  ​ ​    ​, (|a| < 1) 1 – a sin x sin x 0 p /2

( 

)

dI 1 – a sin x 2 sin x 1 fi ___ ​   ​ = Ú​  ​   ​   ​ ​​ _________   ​  ​ × __________ ​        ​ × ____ ​     ​d x da 0 1 + a sin x (1 – a sin x)2 sin x p /2



( 

( 

)

)

)



cot x p /2 –2 ______ = ​ _______     ​tan– 1​​ _______ ​  _____   ​   ​​ ​  ​  ​ ​÷1  – a2 ​ 0 ÷​ 1  – a2 



p  p  2 = _______ ​  ______      ​× __ ​   ​  = _______ ​  _____     2 2  ​ ​÷1  – a2  ÷​ 1  – a  

 ​ Integrating, we get  ​

When b = 0, then c = 0 Thus, I (b) = log(b + 1) 338. We have, x

2sec 2t (f (x))2 = Ú​  ​    ​f(t).​ _______     ​ dt 4 + tan t 0

f (x) . 2 sec2x 2f (x)f ¢(x) = __________ ​        ​ 4 + tan x sec2x fi f ¢(x) = _______ ​      ​ 4 + tan x Integrating, we get f (x) = log|(4 + tan(x))| + c When x = 0, then c = – log(4) f (x) = log|(4 + tan(x))| – log(4) p  5 fi f ​ ​ __ ​   ​ = log|(4 + 1)| – log(4) = log​ __ ​   ​   ​ 4 4 339. Given, fi

(  )

p /2



f (x) = Ú​  ​   ​   ​ log(1 + x sin2q )/sin2q dx 0 p /2



( 

)

sin2q  1 f ¢(x) = Ú​  ​   ​   ​​ ___________ ​        ​ × _____ ​  2     ​ ​dq 2 0 (1 + x sin q ) sin q 

( 

)



dq  = ​Ú ​   ​   ​​ ___________ ​       ​  ​ 0 (1 + x sin2q )



cosec2q dq  = ​Ú ​   ​   ​ ​ ______________ ​  2         ​  ​ 0 (cot q +  (1 + x))



cot q  p /2 1 _____ = ​​ – ​ ______    ​   tan– 1 ​ ______ ​  _____   ​   ​  ​​ ​  ​ ​ 1  + x   ​ ​÷1  + x   ​ 0 ÷



p  _____ = ​ _______     2​÷1  + x 

p /2

2 cosec2x = ​Ú ​   ​   ​ ​ _____________ ​  2        ​  ​dx 0 cot x + (1 – a2)

( 

I (b) = log(b + 1) + c

p /2

2 cosec2x = ​Ú ​   ​   ​ ​ __________ ​        ​  ​dx 0 cosec2x – a2 p /2



)

2 dx = ​Ú ​   ​   ​ ​ _________ ​      ​  ​ 0 1 – a2sin2x p /2



( 



(  )

Hence, I = p sin– 1a p /2

xb + 1 = ​ _____     ​ b+ 1 Integrating both sides w.r.t. b, we get

2dt 1 = _______ ​       ​ ​Ú ​  ​   ​ ​ ______________ ​      2 ​  ​ 1 2 ________ (1 – a2) 0 t + ​​ ​  _______      ​  ​​ ​   – a2) ​  ÷​ (1



= ​Ú ​    ​(xb )dx



)

( 

(  )

1

2dt = ​Ú ​  ​   ​ ​ ___________ ​       ​  ​, 0 1 + (1 – a2)t2





1

2 sec2x = ​Ú ​   ​   ​​ ______________ ​       ​  ​dx 0 1 + (1 – a2)tan2x



I = p sin– 1(a) + c When a = 0, I (a) = 0, then c = 0 Thus, I = p sin– 1(a) xb – 1 337. Given I (b) = Ú​  ​    _____ ​​   ​   dx 0 log x

2 sec x = Ú​  ​   ​   ​​ _____________ ​  2      ​  ​dx 0 sec x – a2tan2x



2.91

( 

( 

( 

 ​ Integrating, we get _________  ​ f (x) p ​÷1  + x + c   ​ When x = 0, f (0) = 0 , then c = – p

)

))

2.92  Integral Calculus, 3D Geometry & Vector Booster _____

_____

f (x) p ​÷1  + x    ​– p = p (​÷1  + x    ​– 1)

( 

1

)

x cos a – 1 340. Let I = ​Ú ​    ​​ ________ ​      ​   ​ dx logex 0

( 

1

)

x cos a log x dI fi ​ ___  ​ = Ú​  ​    ​ ​ _________ ​        ​  ​ dx da 0 logx



=



=



=



=

1

= ​Ú ​    ​ (x cos a )dx



0

( 

)

x cos a + 1 1 ________ 1 = ​​ ________ ​       ​  ​​ ​​  = ​       ​ cosa + 1 0 1 + cos a Integrating, we get



I (a ) = log|(1 + cos a )| + c p  When a = __ ​   ​ , I (a ) = 0, then c = 0 2 Thus, I (a ) = log|1 + cos a | 341. Do yourself 2

____________

0

÷ 

÷ 

___________

___________

2

2

£ ​  ​Ú ​    ​(1 + x)dx     ​× ​ ​Ú ​    ​(1 + x    )dx ​



0

) ÷(  

÷(  

4

0

)

x x5 2 = ​ ​​ x + __ ​   ​   ​​  ​ ​​  × ​ ​​ x + __ ​   ​   ​​  ​ ​​  2 0 5 0 2 2

÷(  

________

)

______ 32 = ​÷(2   + 2) ​ × ​ ​ 2 + ___ ​   ​    ​ ​ 5 ___ 42 = 2 × ​ ___ ​   ​ ​   5 Hence, the maximum value of the given integral is



÷ 

÷ 

___

42 2 × ​ ___ ​   ​ ​ .  5 343. We have,

Ú  ÷ 

÷ 

÷(  

) ÷(  

________

 ​

________

)

___

3 5 15  ​ = ​ __ ​   ​ ​   ​ __ ​   ​ ​   = ​ ___ ​   ​ ​   ___ 2 4 8 15 Hence, the maximum value is ​ ___ ​   ​ ​  . 8 344. We have, p  a + ​ __ ​  2 ​  ​  ​ ​(sin4x a p  __ ​     2​

Ú 



÷ 

+ cos4x)dx

= ​Ú ​  ​   ​(sin4x + cos4x)dx 0

)

3 = ​Ú ​  ​   ​(__ ​   ​  + 4 0

(  ( 

1 __ ​   ​  cos|4x|)dx 4

)

3 sin|4x| p /2 = ​​ __ ​   ​  x + ______ ​   ​    ​​ ​  ​ 4 16 0 3 p  = ​ __ ​   ​  × __ ​   ​   ​ 4 2 3p  = ​ ___ ​  8

)

2p 



1 = ___ ​    ​  ​   Ú  ​  ​ ​2sin2x dx 4p 0



1 = ___ ​     ​ ​Ú ​   ​   ​(1 – cos2x) dx 4p  0



sin2x 2p 1 = ___ ​    ​ ​ ​ x – _____ ​   ​    ​​ ​  ​ 4p 2 0

2p 

( 

)

1 = ___ ​     ​ (2p – 0) 4p  1 = __ ​   ​  2 2



÷  ÷  ÷  __

( 

1 – cos4x ​​ 1 – _________ ​   ​    d​ x 4

0

x2 1 x4 1 = ​ ​​ x + __ ​   ​   ​​ ​​    ​​ ​​ x + __ ​   ​   ​​  ​​  2 0 4 0 __

)

2 sin2(2x) ​​ 1 – ________ ​   ​    d​ x 4

1

3 £ ​ ​Ú ​    ​(1 + x)dx    ​ ​ ​Ú ​    ​(1 + x    )dx 0

Ú 

)

sin2(2x) ​​ 1 – _______ ​   ​    ​dx 2

dx 1 346. Mean value = ______ ​       ​ ​Ú ​    _____ ​​       ​ (2 – 0) 0 ex + 1

÷ 

1

(  Ú  (  Ú 

2p 



1

​(1 – 2 sin2x cos2x)dx

1 345. Mean Value = _______ ​       ​​Ú ​   ​ ​sin2x dx (2p – 0)  0



_____________ ​  ​   ​​ (1 + x)(1 +   x3)d ​x 0 __________ ___________





________

________







​Ú ​    ​​÷(1   + x)(1 +   x4) ​ dx

Ú 

p  __ ​   ​  2



342. We have,

p  __    ​ 2 ​ ​  ​ ​   0 p  __ ​     2​ ​  ​ ​   0 p  __    ​ 2 ​ ​  ​ ​   0 p  __    ​ 2 ​ ​  ​ ​   0

2



e– xdx 1 ______ = __ ​   ​  ​   Ú  ​   ​​  – x      ​ 20 e +1

(  ( 

)

2 1 = ​​ – ​ __ ​  log|(e– x + 1)|  ​​ ​  2 0 1 = ​ – ​ __ ​  log|2(e– 2 + 1)|  ​ 2

(  |  (  ) | )

e2 1 = ​ __ ​   ​  log ​ 2 ​ _____ ​  2      ​  ​  ​  ​ 2 e+1 1

__ 1 347. Mean value = ______ ​       ​ ​Ú ​    ​(3​÷x    ​)  dx (1 – 0) 0 1



__ 1 = ______ ​       ​​Ú ​    ​(3​÷x    ​)  dx (1 – 0) 0

)

Definite Integrals 

(  )

1 3 1 = ______ ​       ​ × ​​ __ ​    ​ x4/3  ​​ ​​  (1 – 0) 4 0 3 = __ ​   ​  4 2p  1 348. Mean value = _______ ​       ​ Ú​   ​  ​   ​(sin3x)dx (2p – 0) 0



= G (6 + 1) = 6! = 720 353. We have, 1

1 = ___ ​     ​  ​Ú ​   ​ ​(3sin x – sin|3x|)dx 8p 0



=



=



=

349. Mean value =

(  ( 

)

cos|3x| 2p 1 ___ ​    ​   ​​ – 3cos x + ______ ​   ​    ​​ ​  ​ 8p 3 0 1 1 1 ___ ​    ​   ​ – 3 + __ ​   ​  + 3 – __ ​   ​   ​ 8p 3 3 0 1 dx 1 ______ ​       ​ Ú​   ​   _____ ​​       ​ (1 – 0) 0 1 + x2

)

) = (  ​​ tan p  = __ ​   ​  4 1 ex 1 350. Mean value = ​ ______      ​ ​Ú ​    ​​ _____ ​  x      ​  ​dx (1 – 0) 0 e + 1 (x)  1​​0​​ 

– 1



(  )

= (log|(ex + 1)|​)10​ ​​ 



(  )

e+1 = log ​ ​ _____  ​    ​ 2

351. We have,

( 

1

)



=  ​ lim ​   (j – 1 – j log(j ))



=  ​ lim ​   (j – 1) – ​   lim ​ ​  ( j log(j ) )​









j Æ 0 j Æ 0

(  )

log(j ) =  ​ lim ​   (j – 1) – ​   lim ​ ​ ______ ​      ​  ​  j Æ 0 j Æ 0 1 __ ​   ​  j

(  )

1 __ ​    ​  j _____ =  ​ lim ​   (j – 1) – ​   lim ​ ​ ​       ​  ​ j Æ 0 j Æ 0 1 – ___ ​  2  ​  j 

0

= G (11) = G (10 + 1) = (10)! 354. We have, •

= – 1 352. We have,

0 • 0

= G (7) = (3)! =6 355. We have,

j Æ 0

= ​Ú ​  ​   ​(e– tt n –1) dt,



(Let  t = – log x)

0 •



= Ú​  ​  ​   ​(e– x t n – 1)dx



= G (n)

0

1

______

356. Let I = ​Ú ​    ​x4 ​÷1  – x2    ​dx 0 p /2



= ​Ú ​   ​  ​sin4q cos2q dq 0









1

0 •

= Ú​  ​  ​   ​e– xx7 – 1 dx



= G (7)



0

(  (  ) )

= ​Ú ​    ​(– log|x|)n – 1dx



0



= ​Ú ​  ​   ​ e– xx4 – 1 dx





​Ú ​  ​   ​e– xx6 dx

= ​Ú ​  ​   ​ e– xx3 dx



=  ​ lim ​   (j – 1) +   ​  lim  ​   (j ) j Æ 0



= ​Ú ​  ​   ​e– xx11 – 1 dx



0

=  ​ lim ​   (x log(x) – x​)1j​  ​​ 

j Æ 0

0

= – ​Ú  ​   ​e– tt10 dt



1 n–1 ​Ú ​    ​​​ log ​ __ ​ x ​  ​  ​​ ​dx



j Æ 0

0

1

​ lim    ​​ ​Ú  ​   ​log(x)dx  ​ j Æ 0  j 

(  (  ) )

1 10 ​Ú ​    ​​​ log​ __ ​ x ​  ​  ​​ ​ dx

2p 



2.93

(  ) (  ) (  ) (  ) (  )

2+1 4+ 1 G ​ ​ _____  ​    ​ G ​ ​ _____  ​    ​ 2 2 = _________________ ​         ​ 4 +2 +2 2G ​ _______ ​   ​    ​ 2 5 3 G ​ __ ​   ​   ​G ​ __ ​   ​   ​ 2 2 = _________ ​      ​  2G (4) 3 1 __ __ 1 __ ​ __ ​  ◊ ​ __ ​  ◊​÷p     ​ × ​   ​​ ÷ p  ​  2 2 2 = ______________ ​    ​     2×6 p  = ___ ​    ​  32

(Let  sinq = x)

2.94  Integral Calculus, 3D Geometry & Vector Booster p /2

357. We have,

I = ​Ú ​   ​ ​sin8x cos4x dx



0



(  ) (  ) (  ) (  ) (  ) (  )

358. We have,



______

​Ú ​    ​x6​÷1  – x2    ​dx 0



p /2

= Ú​  ​   ​   ​sin6q cos2q dq 0





359. We have,

(  ) (  ) (  ) (  ) (  )

6+1 2+1 G ​ ​ ____  ​    ​G​ ​ _____  ​    ​ 2 2 = ​ ________________        ​ 6+2+2 2G ​ ​  ________  ​    ​ 2 3 7 G​ __ ​   ​   ​G ​ __ ​    ​  ​ 2 2 _________ = ​   ​    2G(5) 5 3 __ 1 __ 1 __ ​   ​ ◊​__    ​ ◊​   ​​ ÷ p ​  × __ ​   ​ p  222 2    ​     = _____________ ​  2 × 24 5p  = ​ ____  ​  256

p /2

​Ú ​   ​ ​sin4x cos6x dx 0







(  ) (  ) (  ) 5 7 G​( __ ​   ​  )​G​( __ ​   ​  )​ 2 2 = _________ ​   ​   

6+1 4 +1 G ​ ​ ____  ​    ​ G ​ ​ ____  ​    ​ 2 2 = ​ ________________        ​ 4+6+2 2G​ ​  ________  ​    ​ 2

2G(6)

5 3 __ 3 1 __ __ 1 __ ​ __  ​ ◊ ​__    ​  ◊ ​÷p    ​  ​   ​  ◊ ​__    ​  ◊ ​    ​ ​÷ p ​   2 2 2 2 2 = ________________ ​     ​     2 × 120 3p  = ____ ​    ​  512 1

360. We have,

______ ​  ​   ​x10 ​÷1  – x2    ​dx

Ú  0

(Let sinq = x)

(Let  sin q = x)

( 

) (  ) (  ) (  ) (  )

10 + 1 2 +1 G ​ ​ ______  ​    ​ G ​ ​ _____  ​    ​ 2 2 = ​ _________________        ​ 10 + 2 + 2 2G ​ ​ __________  ​       ​ 2 3 11 G ​ ___ ​   ​   ​G​ __ ​    ​  ​ 2 2 __________ = ​      ​  2G(7)



3 1 __ __ 3 1 __ 7 5 __ __ ​   ​  ◊ ​__    ​  ◊ ​   ​  ◊ ​__    ​  ◊ ​÷p    ​  × ​   ​  ◊ ​__    ​  ◊ ​÷p    ​   2 2 2 2 2 2 = _____________________ ​     ​       2 ◊ (6)! 7p  _____ = ​    ​  2048



1

0

8+1 4+1 G​ ​ ____  ​    ​  G ​ ​ ____  ​    ​ 2 2 ________________ = ​         ​ 8+4+2 2G​ ​  ________  ​    ​ 2 9 5 G​ __ ​   ​   ​G​ __ ​   ​   ​ 2 2 = _________ ​   ​    14 ___ 2G​ ​   ​   ​ 2



= ​Ú ​   ​ ​sin10q cos2q dq



p /2

9 7 5 3 1 __ 1 __ ​ __  ​ ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​​ ÷ p  ​ ◊ ​ __ ​​ ÷ p ​   2 2 2 2 2 2 = __________________ ​       ​     2 × (6!) 21p  = ​ ____ ​  512

361. We have, p /2

p /2

____ dx ​Ú ​   ​   _____ ​​  ____   ​  × ​Ú ​   ​ ​÷sin x    ​ dx ​ sin x    ​ 0   ÷ 0 p /2

p /2

0

0

1 __ ​    ​

= ​Ú ​   ​ ​sin–1/2x cos0x dx x × ​Ú ​   ​   ​ si​n​2 ​ x cos0x dx x

(  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) 1 = ​​( G​( __ ​   ​  )​ )​​ ​ 2

3 1 1 1 G​ __ ​    ​  ​G​ __ ​   ​   ​ G​ __ ​    ​  ​G​ __ ​   ​   ​ 4 2 4 2 = ​ _________  ​    × ​ _________  ​    3 5 __ __ 2G​ ​    ​  ​ 2G​ ​   ​   ​ 4 4 3 1 1 1 G​ __ ​    ​  ​G​ __ ​   ​   ​ G​ __ ​    ​  ​G​ __ ​   ​   ​ 4 2 4 2 = ​ _________  ​    × ​ _________ ​  3 1 1 2◊​     ​◊G​ __ ​   ​   ​ 2G​ __ ​    ​  ​ ​4 ​ 4 4 2

= p 362. We have, •

​Ú ​  ​   ​​e​– ​a​ ​​x​  ​​dx 2  2

0





1 = ___ ​    ​ ​ Ú  ​ ​   ​e– t t – 1/2dt, 2a 0



1 ​ 1 – ​ __ ​   ​ 1 = ___ ​    ​ ​ Ú ​  ​   ​e– t t​ ​ 2 ​ dt 2a 0

(  )



363. We have,

(  )

1 G​ __ ​   ​   ​ 2 _____ = ​      ​  2a __ ​ p     ​  ÷ = ___ ​   ​  2a p /2

​Ú ​   ​   ​sin7x cos5x dx 0



( 

) (  ) (  )

5+ 1 7+1 G​ ​ _____  ​    ​G ​ ​ _____  ​    ​ 2 2        ​ = ​ ________________ 7 +  5 + 2 2G​ ​ _________  ​    ​ 2

(Let  (ax)2 = t)

Definite Integrals 

364. We have,

G(2)G(3) = ________ ​   ​    2G(7) 3.2.1.2.1 = ___________ ​        ​ 2.6.5.4.3.2.1 1 = ____ ​     ​  120 p /2

​Ú ​   ​   ​sin10x dx 0

365. We have,

9 7 5 3 1 p  = ___ ​    ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __  ​ ◊ ​ __ ​  ◊ ​ __ ​  10 8 6 4 2 2 63p  = ____ ​   ​  512 p /2 0

366. We have,

6 4 2 = __ ​   ​  ◊ ​ __ ​  ◊ ​ __  ​ 7 5 3 16 = ___ ​   ​  35

p /4

​Ú ​   ​ ​ 8 cos4x sin4x dx 0

p /4



1 = __ ​   ​  ​Ú ​   ​   ​16 cos4x sin4x dx 2 0



1 = __ ​   ​  ​Ú ​   ​   ​(sin2x)4dx 2 0



1 = __ ​   ​  ​Ú ​   ​   ​(sin4t)dx 2 0

p /4

p /2

367. We have, p /2

1 3 1 p  = __ ​   ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  4 4 2 2 3p  = ___ ​   ​  64



5 3 1 __ 3 1 __ __ ​    ​ ◊ ​ __ ​  ◊ ​ __ ​​ ÷ p  ​  ◊ ​ __  ​ ◊ ​ __ ​  ◊ ​÷p    ​   2 2 2 2 2 = _________________ ​     ​     2 × (5!) 3p  ____ = ​    ​  512 370. We have, p /2 0

1

= ​Ú ​    ​t7 dt,

(Let sin x = t)

0

(  )

t8 1 = ​​ __ ​   ​   ​​ ​​  8 0 1 __ = ​   ​  8 371. We have, p /2

​Ú ​   ​   ​sin7x cos5x dx

(  ) (  ) (  )

0

5+1 7+1 G​ ​ _____  ​    ​ G​ ​ _____  ​    ​ 2 2 = ​ _______________        ​ 7+5+2 2G​ ​ _________  ​    ​ 2 G(4)G(3) = ________ ​   ​    2G(7) (3!) × (2!) = __________ ​      ​  2 × (6!) 6×2 1 =​ _______     ​ = ____ ​     ​  2 × 720 120 372. We have, p /2

​Ú ​   ​   ​sin x cos x dx 0

(  ) (  ) (  ) (  ) (  )

6+1 4+1 G​ ​ _____  ​    ​G​ ​ _____  ​    ​ 2 2 _______________ = ​         ​ 6+4+2 2G​ ​ ________  ​    ​ 2 5 7 G​ __ ​    ​  ​G​ __ ​   ​   ​ 2 2 = _________ ​   ​    2G(6)

​Ú ​   ​ ​sin7x cosx dx

​Ú ​   ​   ​cos7x dx

6

5

(5◊3◊1)(4◊2) = ____________ ​        ​ (11◊9◊7◊5◊3◊1) 8 = ____ ​     ​  693 p /2

368. We have, Ú​  ​   ​   ​sin5x cos3x dx 0



(4◊2)(2) = ________ ​     ​  (8◊6◊4◊2)



1 = ___ ​    ​  24 p /2

369. We have, Ú​  ​   ​   ​sin6x cos4x dx 0

2.95

​Ú ​   ​ ​sin11x dx 0

( 

)( 

)( 

)( 

)( 

)

–9 – 3 11 – 5 11 – 7 11 11 – 1 11 = ​ ​ ______  ​    ​​ ​ ______   ​  ​​ ​ ______ ​   ​​ ​ ______ ​   ​​ ​ ______ ​   ​ 11 11 – 2 11 – 4 11 – 6 11 – 8 10 8 6 4 2 = ___ ​   ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  11 9 7 5 3 256 = ____ ​   ​  693 p /2 373. We have, Ú​  ​   ​   ​cos8x dx 0

(  )( 

)(  )(  )

p  8 – 1 _____ 8 – 3 _____ 8 – 5 _____ 8 – 7 __ = ​ _____ ​   ​    ​​ ​     ​  ​​ ​     ​  ​​ ​     ​  ​ ◊ ​   ​  8 8–2 8–4 8–6 2 7 5 3 1 p  = __ ​   ​  ◊ ​ __ ​  ◊ ​ __  ​ ◊ ​ __  ​ ◊ ​ __ ​  8 6 4 2 3 35p  ____ = ​   ​  256

2.96  Integral Calculus, 3D Geometry & Vector Booster





1. Let I = ​Ú ​   ​ ​(|sin x| – |cos x|)dx



1 8 ×9 = __ ​   ​  × ​ _____  ​    3 2



= 12

0

2p 

10p 

2p + p /4

= ​Ú ​   ​   ​(|sin x| – |cos x|)dx + ​Ú ​  ​ ​ (|sin x| – |cos x|)dx 0



4. Let I = ​Ú ​   ​ ​([sec– 1x] + [tan– 1x])dx 1

2p 

p 

sec 1

p /4

= 2​Ú ​  ​   ​(|sin x| – |cos x|)dx + ​Ú ​   ​   ​(|sin x| – |cos x|)dx

= ​Ú ​   ​ ​([sec– 1x] + [tan– 1x])dx



1

0

0

p /2

10p 

+  ​Ú  ​ ​ ​([sec– 1x] + [tan– 1x])dx



p /4

sec 1

= 4​Ú ​   ​   ​(sin x – cos x)dx + ​Ú ​   ​   ​ (sin x – cos x)dx 0

0

= 4(– cos x –

sin x​)p /2 ​0​  ​ +

(– cos x –

__

sec 1

= ​Ú ​   ​ ​(0 + 0)dx + Ú​   ​ ​ ​(1 + 0)dx



sin x​)p /4 ​ ​  ​ 0

1



= 4 . 0 + (1 + ÷ ​ 2 ​   ) 

5p /12



5 Let I = ​Ú ​   ​ ​[tan x]dx 0

Hence, the value of the given integral __

= Î(1 + ÷ ​ 2 ​   )  ˚ = – 1 sq.u.

[  [  (  ) ] ] p x = Ú​  ​ ​   ​​[ x​[ 1 + cos​( ___ ​   ​  )​ ]​ + 1 ]​dx 2 p x +  ​Ú ​   ​​[ x​[ 1 + cos​( ___ ​   ​  )​ ]​ + 1 ]​dx 2 p x +  ​Ú​    ​​[ x​[ 1 + cos​( ___ ​   ​  )​ ]​ + 1 ]​dx 2

p x 2. Let  I = Ú​   ​   ​​ x​ 1 + cos​ ___ ​   ​  ​  ​ + 1  ​dx 2 – 2 – 1

– 2

1

2

0

1

= ​Ú ​    ​[tan– 1x]dx + Ú​  ​    ​[tan– 1x]dx

1



sec 1

= (10p – sec 1) sq. u.

__

= (1 + ÷ ​ 2 ​   ) 



10p 

3



5p /12

+ ​Ú ​    ​[tan– 1x]dx + Ú​  ​   ​   ​[tan– 1x]dx 2

3

= 0 + (tan– 12 – tan– 11)◊1 + (tan– 13 – tan– 12) ◊ 2

0



  – 1 1





0



– 1

0

1

– 2

– 1

0

= Ú​  ​ ​   ​1.dx + ​Ú  ​   ​0.dx + ​Ú ​    ​1.dx



= 1( – 1– ( – 2)) + 0 + 1(1 – 0)



=1+1



= 2 sq.u. 3







5p  p  = ___ ​   ​ – __ ​   ​  – (tan– 13 + tan– 12) 4 4 = p + p – tan– 1( – 1) 9p  = ___ ​   ​ sq.u. 4 p /4



6. Let I = ​Ú ​   ​   ​ [sin x + {cos x + tan x + (sec x)}]dx 0

p  Since 0 < x < __ ​   ​  4 __ \ 1 < sec x < ÷ ​ 2 ​   

(  [  ] [  ] )

1 2 3. Let I = Ú​  ​    ​​ [x] + ​ x + __ ​   ​   ​ + ​ x + __ ​   ​   ​  ​dx 3 3 0



( 

1/3

2/3

1

0

1/3

2/3

= Ú​  ​   ​   ​0. dx + Ú​  ​ ​   ​1. dx + Ú​   ​   ​2. dx 4/3

5/3

2

1

4/3

5/3

7/3

8/3

3

2

7/3

8/3

Ú​  ​   ​   ​6. dx + ​Ú ​ ​   ​7. dx + Ú​   ​   ​5. dx

1 = __ ​   ​  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) 3



[sec x] = 1



[tan x + [sec x]] = [tan x + 1]



+ Ú​  ​   ​   ​3. dx + ​Ú ​ ​   ​4. dx + Ú​   ​   ​5. dx

)

5p  + ​ ___ ​   ​ – tan– 13  ​◊3 12



= [tan x] + 1 = 0 + 1 = 1



[cos x + [tan x + [sec x]]]



= [cos x + 1] = [cos x] + 1 = 0 + 1 = 1



[sin x + [cos x + [tan x + [sec x]]]]



= [sin x + 1] = [sin x] + 1 = 0 + 1 = 1 p /4

Thus, I = Ú​  ​   ​ ​[sin x + [cos x + [tan x + [sec x]]]dx 0

Definite Integrals 

( 

p  m Now, ​ __ ​ p ​  + n p + __ ​   ​  + 4  ​ 2 = 50 + 6 + 4

p /4

= ​Ú ​   ​ ​  1.dx



0

p  = __ ​   ​  4





p /2

10. Let

0

I = ​Ú ​ ​   ​tan(x2 – 6)dx + ​Ú ​ ​   ​tan(x2 + 18x + 75)dx

(  ) (  ) (  ) (  )

p–1 p–2 p–3 = ​ ​ _____  ​    ​ + ​ ​ _____  ​    ​ + ​ ​ _____  ​    ​ 2 2 2 3p – 6 = ​ ​ ______  ​    ​ sq.u 2 sin(sin– 1b)



8. Let

|  | 

=

– 1

|

– 2

– 3

– 6

– 7

– 2

– 3

– 6

– 7

7

– 3

3

– 7

7

= ​Ú ​ ​   ​tan(x2 – 6)dx + ​Ú ​    ​tan(y2 – 6)dx

|

= ​Ú ​ ​   ​tan(x2 – 6)dx + ​Ú ​    ​tan(x2 – 6)dx – 3

cos(cos x) ​  ​   ​​ __________ ​     ​  ​ dx sin(sin– 1x) cos(cos– 1a)

Ú​  

– 7

= ​Ú ​ ​   ​tan(x2 – 6)dx + ​Ú ​ ​   ​tan(x + 9)2 – 6)dx

cos(cos– 1x) = ​   ​​ __________ ​     ​  ​ dx Ú​   ​  sin(sin– 1x) cos(cos– 1a) sin(sin– 1b)



)

= 60

7. Let I = ​Ú ​   ​   ​[sin– 1(cos x) + cos– 1(sin x)]dx

Graph:

2.97

3

7

7

3

3

= ​Ú ​    ​tan(x2 – 6)dx + Ú​  ​    ​tan(x2 – 6)dx

b 

= 0

a 

11. We have,

b x ​ ​a ​​ 





= ​Ú ​   ​1dx



=



= (b – a)

2n p 

In = ​Ú   ​ ​   ​|sin x|[sin x]dx – 2n p  2n p 

= ​Ú   ​ ​   ​|sin x|[sin x]dx



– 2n p 

9. We have, 100



2n p 

m = ​Ú ​   ​   ​sec– 1(secp x)dx

= ​Ú   ​ ​   ​|sin x|(– 1 – [sin x])dx



0

– 2n p 

2

= 50 × Ú​  ​    ​sec– 1(secp x)dx



0

1 = 50 × __ ​   ​  × 2 × p 2 = 50p





2n p 

fi 2In = – ​Ú   ​ ​   ​|sin x|dx – 2n p 

= Ú​  ​   ​   ​[sec (secp x)]dx + Ú​  ​ ​   ​[sec (secp x)]dx – 1





= – 2​Ú ​   ​ ​|sin x|dx 0 2n p 

1/2

2/p 

3/p 

1/p 

2/p 

+ ​Ú  ​ ​ ​[sec– 1(secp x)]dx + ​Ú  ​ ​ ​[sec– 1(secp x)]dx 1/p 

2/p 

1/2

(  ) (  6 1 = (​  __ ​ p ​ – __ ​   ​  )​ 2

1/p 

fi In = – ​Ú ​   ​   ​|sin x|dx 0

p 

3/p 



= – 2n​Ú ​  ​   ​|sin x|dx

2/p 



= – 2n × 2 = – 4n

= Ú​  ​   ​   ​0. dx + ​Ú ​ ​   ​1. dx + Ú​   ​ ​   ​2. dx + Ú​   ​ ​   ​3. dx 0



2n p 

1/p 

– 1

1/2



– 2n p 

– 2n p 

0

0

– 2n p  2n p 

3/p 



2n p 

= –  ​Ú   ​ ​   ​|sin x|dx – In



Also, n = Ú​  ​   ​ ​[sec– 1(secp x)]dx 1/2

2n p 

= –  ​Ú   ​ ​   ​|sin x|dx – ​Ú   ​ ​   ​|sin x|[sin x]dx



) ( 

)

3 2 1 1 2 1 = 0 + 1.​ __ ​ p ​ – __ ​   ​   ​ + 2.​ __ ​ p ​ – __ ​ p ​   ​ + 3.​ __ ​ p ​ – __ ​ p ​   ​ 2

0

100

Now, S ​   ​ ​   ​(In) n = 1



100

= ​S  ​ ​   ​(– 4n) n = 1

2.98  Integral Calculus, 3D Geometry & Vector Booster

( 

n = 1



= – 4(1 + 2 + 3 + ........... + 100)



( [  ] )

0

|sin x| m = Ú​   ​   ​​ _______ ​      ​  ​ dx x 1 – 2 ​ __ ​ p ​   ​ + __ ​   ​  2 Let  x = – y  fi  dx = – dy



 ( [  ] )  ( [  ] ) (  [  ] ) ( [  ] )

0

|sin(– y)| Thus, m = ​Ú ​    ​​ ________ ​  – y      ​  ​ × – dy 1 ___ __ 2 ​ ​  p ​    ​ + ​   ​  2

1 1 3. ​ __ ​  £ x2 + __ ​   ​  £ 1 fi 2 2 1 fi 0 £ x £ ___ ​  __  ​  ​ 2 ​    ÷ 3 1 4. 1 £ x2 + __ ​   ​  £ __ ​    ​ fi 2 2 1__ fi ​ ___   ​ £ x £ 1 ​ 2 ​    ÷

2

|sin y| = – ​Ú ​    ​​ _________ ​     ​  ​dy y   1 0 – __ ​   ​  – ​ __ ​ p   ​ ​ 2



( [  ] )

– 1

1



– 1

0

p /2

2

( 

1/​÷2 ​   

__ 1/​÷2 ​   



p /2



)

1

+ 2​   ​Ú ​   ​ ​(cos– 1( – 1))dx + Ú​   __​ ​   ​cos– 1(0)dx  ​ 0

1/​÷2 ​   

(  (  ) ) (  (  (  ) (  )

p  p  1 = 2​ 0 + __ ​   ​​  1 – ___ ​  __  ​  ​  ​ + 2 ​ ___ ​  __  ​ + 2 ​ 2 ​    ​ 2 ​    ÷ ÷ p  1 = p ​ 1 – ___ ​  __  ​  ​ + 2​ __ ​   ​  + 2 ​ 2 ​    ÷

p  ____ ​  __  ​  ​ 2​÷2 ​   

)

Dividing the numerator and the denominator by sin2 x, we get

)

1

( 

8 + 7 cos x 15. Let I = ​Ú ​   ​ ​ ​ ___________       ​  ​dx 0 (7 + 8 cos x)2

= 2​   ​Ú ​   ​   ​ (sin– 1(0))dx + Ú​   __​ ​   ​ (sin– 1(1))dx  ​ 0

(  )

(  (  ) )

1

0

( 

0

)

p  p  = – ​ __ ​ ​  0 – ​ – ​ __ ​   ​  ​ 2 3 2 p  = ​ ___ ​  6

2

2

__

( 

p  = ​Ú   ​ ​  ​ __ ​   ​   ​ dx – p /3 2

0

1/​÷2 ​   

0

– 1

p  = ​Ú   ​ ​  – p + __ ​   ​   ​ dx 2 – p /3

1



– 1

  – p /3

(  [  ] [  ] ) 1 1 = 2​Ú​    ​​( sin  ​[ x + __ ​   ​  ]​ + cos ​[ x – __ ​   ​  ]​ )​dx 2 2 1 1 = 2​Ú​    ​​( sin ​[ x + __ ​   ​  ]​ )​dx + 2​Ú​    ​​( cos ​[ x – __ ​   ​  ]​dx )​ 2 2 – 1

]

0

1

2

[ 

)) ) (  (  (  1 1 = Ú​   ​ ​​​ ( – p + tan  ​( cos x – __ ​    ​ )​ + cot  ​( cos x – __ ​   ​  )​ )​dx 2 2

1 1 I = Ú​   ​   ​​ sin– 1​ x2 + __ ​    ​  ​ + cos– 1​ x2 – __ ​   ​   ​  ​dx 2 2 – 1 – 1

1 Ï ÔÔ0 : 0 £ x £ 2 1 5. ​ x2 + __ ​   ​   ​ = Ì 2 Ô1 : 1 £ x £ 1 ÔÓ 2 0

|sin x| = – ​Ú ​    ​​ _______ ​     ​   ​dx x 1 0 ​ __ ​ p   ​ ​+ __ ​   ​  2 = – n fi m + n = 0. Hence, the result. 13. Let



1 __ ​    ​ £ x2 £ 1 2

2 1 I = ​Ú   ​ ​  ​ cot– 1​ _________ ​       ​  ​ + cot– 1 ​ cos x – __ ​   ​   ​  ​dx 2 cos x – 1 2 – p /3

|sin y| = – ​Ú ​    ​​ _______ ​  y    ​   ​dy 1 0 ​ __ ​ p ​   ​+ __ ​   ​  2 2

1 0 £ x2 £ __ ​   ​  2

14. Let

2



1 1 1 2. ​ __ ​  £ x2 + __ ​   ​  £ 1 + __ ​   ​  2 2 2



0

|sin(y)| = – ​Ú ​    ​​ ___________ ​    ​  ​ × dy y    1 __ 2 – 1 – ​ ​ p ​   ​+ __ ​   ​  2



)

Notes: 1. 0 £ x £ 1 fi 0 £ x2 £ 1

100 × 101 = – 4 × ​ _________  ​    2 = – 20200

12. Given

) ( 

1 1 = p ​ 1 – ___ ​  __  ​  ​ + p  ​ 1 + ____ ​  __    ​  ​ ​ 2 ​    2​÷2 ​    ÷ = 2p

100

= – 4​S  ​ ​   ​(n)

))

p  1 __ ​   ​ ​  1 – ___ ​  __  ​  ​  ​ 2 ​ 2 ​    ÷



( 

)

8 cosec2 x + 7 cosec x cot x I = ​Ú ​   ​   ​​ ______________________ ​           ​  ​dx 0 (7 cosec x + 8 cot x)2 Let

7 cosec x + 8 cot x = t



(8 cosec2 x + 7 cosec x cot x)dx = – dt 7

(  )

Thus,  I = – Ú​   ​   ​​ __ ​  2 ​   ​ • t 7 1 1 = ​​ ​ __ ​   ​​  ​​  = __ ​   ​  t • 7

(  )

Definite Integrals 



Put

x=0=y





f (0) = 0



Put

y = – x, we get, f (x) – f (– x) = 0





f (x) = f (– x)



\

f (x) is an even function.

– 1

3

Now, a = Ú​  ​    ​(x – 1) f (x – 1)dx 2

1 2



(  (  ) ) 1 – cos a  – cos a  = ​( tan ​( ​ ________        ​ ​ – tan ​(__________  ​ – 1sin a         ​ )​ )​ sin a  ) 1 – cos a t = ​​ tan– 1 ​ _____ ​     ​ ​  ​​   ​  sin a  – 1 – cos a

16. Given f (x + y) = f (x) – f (y)



= ​Ú ​    ​t f (t)dt, 2

(Let  x – 1 = t)

– 1

(  ( 

(  (  (  ) ) ( 

a  p  __ a  = ​ __ ​   ​  + __ ​   ​  – ​   ​   ​ 2 2 2

)

x3______ sin– 1x 19. Let I = ​Ú ​    ​​ ​ ________  ​   ​dx 0 ​÷1  – x2 ​ 

1

= ​Ú  ​   ​y2f (y)dy,

(Let x + 1 = y)

– 2

p /2

0

(  ( (  (  ( 

) )

4 ​ (y – 2)2 + 1 )​sin(y – 2) = ​Ú ​    ​​ ​ ___________________         ​  ​ dy 0 2(y – 2)2 – 7



2



)

(t2 + 1)sin t = ​Ú  ​   ​​ __________ ​  2    ​   ​ dt, – 2 2t – 7)

(Let y – 2 = t)

)

(y2 + 1) sin y = ​Ú  ​   ​​ ​ __________     ​    ​dy – 2 2y2 – 7 = 0,  1

( it is an odd function.)

( 



( 



cos3t = 0 – Ú​  ​   ​ ​  ​ _____ ​   ​   – cos t  ​ dt 3 0



1 = – ​ __ ​  ​Ú ​   ​ ​(cos3t)dt + Ú​  ​   ​ ​cos t dt 3 0 0



sin3t p /2 1 = – ​ __ ​  ​​ sin t – ____ ​   ​    ​​ ​  ​ + (sin t​)p /2 ​0​  ​ 3 3 0



1 1 = – ​ __ ​ ​  1 – ___ ​    ​  ​ + 1 3 13



2 = ​ 1 – ​ __ ​   ​ 9



7 = __ ​   ​  9



))

( 

)

p /2

p /2

( 

p /2

p /2

( 

)

)

|  |

( 

)

)



sin a  = ​Ú  ​  ​   ​​ _________ ​  2  ​   ​ dt – 1 – cos a  t + sin2a 

1



( 

)

( 

1

Let  x – cos a = t fi dx = dt 1 – cos a 

(  ( 

)

sin a  = ​Ú  ​ ​ ________________ ​    2      ​ ​ dx 2 – 1 x – cos a) + sin a



)

1 – x2 _______ 1 20. Let I = Ú​  ​    ​ ​ ​ _____2 ​  × ​  ______    ​    ​ dx 0 1+x ​÷1  + x4 ​ 

sin a  18. Let I = ​Ú  ​   ​​ ______________ ​  2       ​  ​dx – 1 x – 2x cos a + 1 1

( 

cos3t cos3t = ​​ t ​ ​ _____  ​   – cos t  ​  ​​ ​  ​ – ​Ú ​   ​ ​ _____ ​   ​   – cos t  ​dt 3 3 0 0 p /2

(y2 – 4y + 5)sin(y – 2) 17. Let I = ​Ú ​    ​​___________________ ​          ​ ​ dy 0 2y2 – 8y + 1

2

)



= 2a

Thus, the value of 2a – b + 4 = 0 + 4 = 4

p /2

p /2 cos3t = ​​ t Ú sin3t dt  ​​0​  ​ – ​Ú ​   ​ ​ _____ ​   ​   – cos t  ​dt 3 0

2

= 2​Ú ​    ​x2f (x)dx

( 



– 2



dx Let  sin– 1 x = t fi _______ ​  ______     ​= dt  ​ ÷​ 1  – x2  

0

= ​Ú  ​   ​y2f (x)dx

4

)

Thus, I = Ú​  ​   ​ ​(t sin3t)dt

2



( 



2



(  (  ) ) )

0 1

= ​Ú ​    ​x2f (x)dx

))

a  a  = ​ tan– 1 ​ tan ​ __ ​   ​   ​  ​ + tan– 1 ​ cot​ __ ​   ​   ​  ​  ​ 2 2

a  = ​ __ ​  2

– 3



( 

)

2sin2(a /2) 2cos2(a /2) = ​ tan– 1 ​__________ ​          ​ ​ + tan– 1​__________ ​       ​   ​  ​ sin a sin a 

0 2

Also, b = Ú​   ​   ​(x + 1)2f (x + 1)dx

2.99

dx 1 – x2 = Ú​  ​    ​​ ________     ​ × _______ ​  ______     ​ 1 1 0 x2​ x + __ ​ x ​  ​ ​ x2 + __ ​  2    ​ ​  x 1 __ 1 ​ 1 – ​  2  ​   ​ x dx = Ú​   ​   ​ ​ _______ ​  × ____________ ​  __________      1 1 2 0 ​ x + __ ​ x ​  ​ ​ ​​ x + __ ​ x ​     ​​ ​– 2 ​

( 

(  )

( 

)

÷ 

) ÷(   

)

)

2.100  Integral Calculus, 3D Geometry & Vector Booster

( 

(  )

)

1 1  ​Put ​ x + __ ​ x ​  ​ = t fi ​ 1 – __ ​  2  ​   ​dx = dt x

p /2



= 2​Ú ​   ​ ​(log secq )dq 0

2

dt  = – ​Ú  ​   _______ ​​  _____    •  t ​÷t 2 – 2 



p /2



0

2

t dt  = – ​Ú  ​   ________ ​​  _____     ​ •  t2 ​÷t 2 – 2 ​  

 ​  ​

Let  t2 – 2 = y2 fi t dt = y dy



= – 2​Ú ​   ​ ​(log cosq )dq

(  (  ) )



p  1 = – 2 ​ __ ​   ​  log​ __ ​   ​   ​  ​ 2 2



= p log 2



p  = 8 ​ __ ​   ​  log 2  ​ 8 = 8 m

__

( 

)



​÷2 ​    dy = ​Ú ​ ​   _____ ​​       ​ • y2 + 2



y ​÷2 ​    1__ – 1 ___ = ​​ ​ – ​ ___   ​tan   ​ ​  __  ​  ​  ​  ​​ ​ ​    ​÷2 ​    • ​ ​÷2 ​



p  1__ __ = – ​ ___   ​(​     ​  – ​ 2 ​   4 ÷ p  = ____ ​  __  ​  4​÷2 ​   

2x 2x cos– 1 ​ _____ ​   2   ​  ​+ tan– 1 ​ _____ ​   2   ​  ​ 1 + x 1 –x _________________________ 22. Let I = ​Ú __ ​ ​   ​ ​ ​       ​     ​dx ex + 1 – 1/​÷3 ​   

( 

21. Given, 1

( 

(  ) ) |

__

p  __ ​   ​ ) 2

Hence, the result.

)



p /4

= ​Ú ​   ​ ​log (1 + tan q )dq



0

p /4

( 

( 

))

p  = ​Ú ​   ​ ​log ​ 1 + tan​ __ ​   ​  – q   ​  ​dq 4 0

(  ) 1 + tan q + 1 – tan q  = ​Ú​   ​ ​log ​( __________________ ​             )​ ​ dq 1 + tan q  

0

p /4

( 

)

)



(  ) p  dx = __ ​   ​  ​Ú  ​ ​   ​​( ______ ​      ​  ​ 2 e + 1) p  dx = __ ​   ​  ​Ú __ ​ ​   ​​ _____ ​  x      ​  ​ 2 – 1/​÷3 ​ e +1   

...(i)

__

1/​÷3 ​   



  __ – 1/​÷3 ​   

–x

__ 1/​÷3 ​   



= p /2​Ú __ ​ ​   ​ (ex/ex + 1)dx

p /4

p /4

0

0

__

1/​÷3 ​   

p  = __ ​   ​  log 2 – m 4 p  fi 2 m = __ ​   ​  log 2 4 p  fi m = __ ​   ​  log 2 8 • log(1 + x2) Also, n = Ú​   ​ ​   ​​ ​ _________  ​     ​dx 0 1 + x2

( 

)

(  )

__

1/​÷3 ​   



p  p  2 = __ ​   ​  ​Ú __ ​ ​   ​dx = __ ​   ​  × ___ ​  __  ​  2 – 1/​÷3 ​ 2 ​ 3 ​    ÷   

p  fi I = ____ ​  __  ​  2​÷3 ​   

(  Ú    ( (  Ú    ( ( 

5p /4

) ) )

sin x + cos x 23. Let I = ​Ú   ​ ​    ​ ​ ​ __________    ​   ​dx p  ​( x – ​ __ ​  )​ – 3p /4 ​e​ 4 ​+ 1 5p /4

2



cos x + sin x = ​  ​  ​   ​​ ​ __________       ​  ​dx p  p  ​ __ ​   ​  – x– ​ __ ​   ​ – 3p /4 ​e​ 2 4 )​+ 1

= ​Ú ​   ​ ​(log sec2q )dq



cos x + sin x = ​  ​  ​   ​ ​ ​ __________       ​  ​dx p  –​ x– ​ __ ​   ​ – 3p /4 ​e​ 4 )​+ 1

= ​Ú ​   ​ ​[log(1 + tan q )]dq

0

...(ii)

p  1 + ex fi 2I = __ ​   ​  Ú​  __ ​ ​   ​​ ​ _____  ​   ​dx 2 – 1/​÷3 ​ ex + 1   

0 p /2



( 

Adding Eqs (i) and (ii), we get

= ​Ú ​   ​ ​log(2)dq – ​Ú ​   ​ ​log(1 + tan q )dq



)

– 1/​÷3 ​   

2 = ​Ú ​   ​ ​log ​ ________ ​     ​   ​dq 1 + tan q  0

p /2

(  )

__

p /4



(  )

)

1/​÷3 ​   

p /4

1 – tan q  = ​Ú ​   ​ ​log ​ 1 + ​ ________   ​ ​dq 1 + tan q  0

(  )

p  2x 2x ​ __ ​  – sin– 1 ​ _____ ​   2   ​  ​+ tan– 1​ _____ ​   2 ​  ​ 2 1+x 1–x = ​Ú __ ​ ​   ​ ​____________________________ ​        ​     ​dx x e + 1 – 1/​÷3 ​    __ p  __ ​   ​ – 2tan– 1x + 2 tan– 1x 1/​÷3 ​    2 = ​Ú __ ​ ​   ​ ​ __________________ ​       ​     ​dx ex + 1 – 1/​÷3 ​    __

1/​÷3 ​   

log(1 + x) m = Ú​  ​    ​​ _________ ​   ​     ​dx 0 1 + x2

(  )

(  ( 

__

1/​÷3 ​   

5p /4

...(i)



( 



p  ​ x– ​ __ ​   ​

)

1

cos x + sin x)​e(​ 4 )​  = ​Ú   ​ ​    ​ ​ ________________ ​         ​  ​dx p  ​  x– ​ __ ​   ​ – 3p /4 ​e(​ 4 )​+ 1 5p /4

...(ii)

(  ​  x– ​ __p  ​   ​ ) )

(cos x + sin x)​ ​e(​ 4 ) ​+ 1  ​ 2I = ​Ú   ​ ​    ​​ _____________________      ​    dx p  ​( x– ​ __ ​  )​ – 3p /4 4 ​ ​e​ ​+ 1  ​ 5p /4

( 

5p /4

= ​Ú   ​ ​    ​ (cos x + sin x)dx



– 3p /4

5p /4

fi 24. Given,

( 

(  ( 

1__ I = – ​ ___   ​ ​​  cos​ x + ​ 2 ​    ÷ 1

( 

)

5p  ___ p  ​  4   ​ __ = ​   ​   ​  ​​ 3p   ​  4 – ​ ___   ​ 4

))

0

)

(  ) q  = Ú​ ​   ​   ​​( _________ ​     ​  ​ dq sin q cos q ) 2q  = ​Ú​   ​   ​​( __________ ​       ​ ​dq 2sin q cos q ) 2q  = Ú​ ​   ​   ​​( _____ ​    ​     ​dq sin 2q )

0





t = Ú​  ​   ​   ​​ ____ ​       ​  ​dt, sin t 0



x = Ú​  ​   ​   ​​ ____ ​     ​  ​dt sin x 0





1 = ​ __ ​ I1 2



(Let  2q = t)

(  )

I1 Thus, __ ​   ​  = 2 I2



Now,

Thus,

( 

)

p /2

x2 I2 = Ú​  ​    ​​ _________ ​  3      ​  ​dx 0 ​ex​ ​(2 – x3)

1

(  ) Ú  (  )

sin nx ​   ​  ​dx Ú ​( _____ sin x )

)



dt 1 = __ ​   ​  ​Ú ​    ​​ _________ ​       ​  ​ 3 0 e1 – t(t + 1)



et dt 1 = ___ ​     ​ ​  ​   ​​ ______ ​      ​  ​ 3e 0 (t + 1)

( 

)

sin(n – 2)x = Ú2 cos(n – 1)x dx + Ú ​ ​ _________     ​   ​dx sin x sin 5x ​   ​  ​ dx Ú ​ _____ sin x sin3x = Ú2 cos 4 x dx + Ú ​ _____ ​   ​  ​dx sin x

(  )

(  )

(  )

sin 5x ​Ú ​   ​ ​ ​ _____ ​   ​  ​dx sin x 0

1 (Let  1 – x3 = t fi x2 dx – __ ​   ​  dt) 3 0 dt 1 __ _________ = – ​   ​  Ú​   ​   ​​ ​  1 – t      ​  ​dx 3 1 e (t + 1)

( 

In + 1 = In = In – 1 = In – 2 = ... = I1 = I0

Hence, In = p, n ≥ 0. 27. We have, sin nx – sin(n – 2)x = 2 cos(n – 1)x sin x

0

(  )

2 = _____ ​       ​(sin(n + 1)x​)p​0​ ​ = 0 n+1

Therefore, I0 = ​Ú ​  ​ ​ sin x dx = (x​)p0​ ​ ​ = p

p /4

1

(  )

p 

0

25. Given,

)

= 2 ​Ú ​    ​cos(n + 1)x dx





p /2

)

Thus, In + 1 – In



p /2

( 



q  = Ú​  ​   ​   ​​ ____ ​       ​ ​ sec2 q dq tan q 0

p /4



)



1 1 sin ​ n + 1 + __ ​   ​   ​x – sin ​ n + __ ​   ​   ​x  2 2 ___________________________ = ​Ú ​    ​​ ​         ​ dx x  ​  __ 0 sin ​ ​    ​  ​ 2

0

0



 ( (  (  )) )  ( ( 

1 sin ​ n + __ ​   ​   ​x  2 __________ 26. Let In = ​Ú ​  ​   ​​ ​   ​   ​dx. x    __ 0 sin ​ ​   ​   ​ 2 p 

x

tan– 1x I2 = Ú​  ​    ​​ ______ ​  x    ​  ​dx 0

p /4



I1 Thus, __ ​   ​  = 3e I2

x

p /4



)

Now, In + 1 – In

__ p  = ​÷2  ​​     Ú   ​ ​    ​ sin ​ x + __ ​   ​   d​ x 4 – 3p /4



( 

ex dx 1 = ___ ​     ​ ​Ú ​    ​​ ______ ​    ​   ​ 3e 0 (x + 1) I1 = ​ ___  ​  3e



Adding Eqs (i) and (ii), we get

2.101

Definite Integrals 

p /2

p /2

(  )



sin3x = 2​Ú ​   ​ ​cos4 x dx + ​Ú ​   ​ ​ _____ ​   ​  ​ dx sin x 0 0



3sin x – 4sin3x = 0 + Ú​  ​   ​   ​ ​ ​ ____________       ​  ​dx sin x 0



= Ú​  ​   ​   ​ (3 – 4sin2 x)dx

p /2

( 

)

p /2 0 p /2

1



= Ú​  ​   ​   ​[3 – 2(1 – cos2 x)]dx 0

2.102  Integral Calculus, 3D Geometry & Vector Booster p 

p /2

= ​Ú ​   ​ ​(1 + 2 cos 2 x)dx

sin y B = ​Ú ​  ​   ​​ _____ ​       ​  ​ dy y +2 0



sin x = ​Ú ​  ​   ​​ _____ ​     ​  ​ dx x +2 0



p cos x 1 = ​​ _____ ​       ​ Úsin x dx  ​​ ​ ​ – ​Ú ​  ​   ​​ _______ ​       ​  ​dx 2 x+2 0 0 (x + 2)

0

p 

= (x + sin 2x​)p /2 ​ ​  ​ 0

(  )

p  = ​ __ ​   ​   ​ 2 28. Given

( 

1

m = ​Ú ​    ​x50(2 – x)50 dx 0

(Let x = 2t fi dx = 2dt) 1/2

m = 2 ​Ú ​   ​   ​250 t 50 250(1 – t)50dt



1/2



= =

1 2100 ​  ​   0

Ú 

Ú  ​ x

50

(1 – x) dx = 2





0

( 

)

( 

)



(  )

(  )



3 3 sin3x sin x = __ ​   ​  ​   Ú ​  ​   ​​ ____ ​  x    ​  ​ dx – __ ​   ​  ​   Ú ​  ​  ​​ _____ ​      ​  ​dx 40 40 3x



siny 3 sin x 1 = __ ​    ​  ​Ú ​  ​  ​​ ____ ​  x    ​  ​dx – __ ​    ​  ​Ú ​  ​   ​​ ____ ​  y    ​  ​dy, (Let  3x = y) 40 40



(  )



(  )



)

3 p  __ 1 p  = ​ __ ​    ​ × __ ​   ​  – ​   ​  × __ ​   ​   ​ 4 2 4 2 p  = __ ​   ​  4 30. We have, p /2

( 

)

sin2 x B = ​Ú ​   ​   ​ ​ ______ ​     ​   ​dx (x + 1) 0 y dy ​ Let x = __ ​    ​ fi dx = ___ ​   ​   ​ 2 2

( 

(  )

(  )

3 sin x sinx 1 = __ ​   ​  ​   Ú ​  ​   ​​ ____ ​  x    ​  ​dx – __ ​    ​ ​Ú ​  ​   ​​ ____ ​  x    ​  ​dx 40 40

( 

)

)

p /2

3sin x _____ sin3x 1 = ​ __ ​  ​   Ú ​  ​   ​​ _____ ​  x    ​ – ​  x    ​  ​ dx   40



( 

p /2

– sin3x 1 3sin x = __ ​   ​  ​   Ú  ​ ​  ​​ ___________ ​  ​ dx x     ​   40



)

32. Let I = ​Ú ​   ​   ​log(a2 cos2 x + b 2 sin2x)dx

3





)

p  p  = ​ ___________________          ​ = ___ ​    ​  2(2 + 3)(3 + 0)(0 + 2) 60



0



( 

Let  a = 2, b = 3 and c = 0, dx ​Ú ​  ​   ​​ ______________ ​  2       ​  ​ 0 (x + 4)(x2 + 9)

(  ) 4 sin x 1 = __ ​   ​   ​   Ú​  ​   ​​( ​ ______ ​   )​ dx x    4 •

1 __ ​   ​  – A 2 1 1 A + B = _____ ​       ​ + __ ​    ​ p+2 2

( 



sin3x 29. Let I = ​Ú ​  ​  ​​ _____ ​  x    ​  ​ dx 0



)

p  = ​ __________________ ​           ​  ​ 2(x + a)(x + b)(x + c)

.n





( 

)

1 = _____ ​       ​ + p+2



100

m 100 fi ​ __ n ​  = 2 Hence, the result.



p 

( 

x2 ​Ú ​  ​   ​​ ______________________ ​  2        ​  ​dx 0 (x + a2)(x2 + b2)(x2 + c2)

– t)50dt

50

)

)





0

1 2100 ​  ​   ​t 50(1 0

( 

p 

– cos x p cos x = ​​ ______ ​   ​   ​​ ​ ​ – ​Ú ​  ​   ​​ _______ ​      ​  ​ dx x + 2 0 0 (x + 2)2

31. We have,

= 2100◊2 ​Ú ​   ​   ​t 50(1 – t)50dt



(  )





0

(  )





= ​Ú ​   ​   ​log[a2 (cos2 x + k 2 sin2x)]dx 0

(Let  k = b/a)

p /2



= p log a  + Ú​  ​   ​ ​log (cos2 x + k 2 sin2x))dx



= p log a + I1,

0

p /2

Where

I1 = ​Ú ​   ​ ​log (cos2 x + k 2 sin2x))dx p /2

( 

0

)

dI1 2 k sin2x  fi ​ ___ ​ = Ú​  ​   ​  ​​ ​ ______________      ​  ​dx dk 0 cos2 x + k 2sin2x

(  Ú  ( 

)

p /2



tan2x ◊ sec2x  = 2k ​Ú ​   ​  ​​ ____________________ ​          ​  ​dx 0 (1 + k 2 tan2x)(1 + tan2x)

)

p /2





t2 dt = 2k ​  ​  ​   ​​ _______________ ​         ​  ​ dx, 2  2 0 (1 + k  t  )(1 + t 2) (Let t = tan x) • 2k  1 1 = ______ ​  2     ​​Ú  ​ ​  ​​ _____ ​       ​ – _______ ​     ​   ​dt k  – 1  0 1 + t 2 1 + k 2 t 2

( 

( 

)

)

• 2k  1 = ______ ​  2     ​​​ tan– 1t – __ ​   ​ tan– 1(tk )  ​​ ​ ​ k 0 k  – 1

Definite Integrals 

( 





p  p  2k  __ = ______ ​  2     ​ ​ ​   ​  – ___ ​    ​  ​ k  – 1 2 2k 



p  k – 1 2k  = ______ ​  2     ​ × __ ​   ​ ​  ​ _____     ​  ​ k  – 1 2 k 



)



(  ) p  k – 1 2k  = ___ ​   ​ – 1 × __ ​   ​ ​ ( _____ ​      ​  ​  2 k ) k 



2

When k = 1, I1 = 0, then c = – p log 2

|  |

|  | |  | |  |

1+k Therefore, I = p log a + p log ​ ​ ____  ​    ​ 2



|  |

( 





p  ln2 2 p  __ = ___ ​   ​  × ___ ​  __  ​ ​  __ ​   ​  – ​   ​   ​ 2 6 ​ 3 ​    2 ÷

) )

( 



( 

)

0

1



ln(1 + x) = – ​Ú ​    ​​ ​ ________ ​  ​dx x    0

)

 ((  ) ) (  )



1 ln ​ __ ​ y ​  ​ 1 1 __ ____________ __ = – ​    ​ Ú​   ​   ​​ ​          ​  ​ dy, ​ Let  t = ​ y ​  ​ 2 • __ 1 1 1 ​ ​  2  ​ + ​ __   ​ + 1  ​__ ​  2  ​  y y y



– ln(y) 1 = – ​ __ ​  ​Ú  ​   ​​ __________ ​  2      ​  ​dy 2 • (y + y + 1)



ln(y) 1 = __ ​   ​  ​Ú  ​   ​​ __________ ​  2       ​  ​dy 2 • (y + y + 1)

0

0

0

( 





( 

( 

)

)

)

ln(y) 1 = – ​ __ ​  ​Ú ​  ​   ​​ __________ ​  2       ​  ​dy 2 0 (y + y + 1)

( 

)

( 

)

( 

)

x2 x3 __ x4 x – __ ​   ​  + __ ​   ​  – ​   ​  +  ... 2 3 4 = – ​Ú ​    ​​ ​ __________________       ​  ​ dx x  1



)

)

ln(1 + x) = 0 – ​Ú ​    ​​ ​ ________ ​  ​ dx x    0

0

ln t  1 Now, I2 = __ ​   ​  ​Ú ​  ​   ​​ ________ ​     ​   ​dt 2 0 (t2 + t + 1

( 





( 

ln(1 + x) = (ln x ln(1 + x)​)10​ ​​  – ​Ú ​    ​​ ​ ________ ​  ​ dx x   

1

= I1 + I2 (say)

( 

)

(  )

1

dt ln t dt ln2 1 = ___ ​   ​  ​Ú ​  ​   ​​ _________ ​     ​   ​ + __ ​   ​  ​Ú ​  ​   ​​ _________ ​      ​  ​ 2 0 (t2 + t + 1) 2 0 (t2 + t + 1)



( 

1



ln2 + ln t = 2​Ú ​  ​   ​​ ​ ___________       ​  ​dt 0 4(t2 + t + 1) •

(  (  ) )

ln2 2 2 1 • = ___ ​   ​  × ___ ​  __  ​  tan– 1 ​​ ___ ​  __  ​ × ​ t + __ ​   ​   ​  ​​ ​ ​ 2 2 0 ​ 3 ​    ​÷3 ​    ÷

1

)

( 

)

)



(Let  x = 2t fi dx = 2dt) •

 ( ( 

dt ln2 = ___ ​   ​  Ú​  ​  ​   ​​ __________ ​       ​  ​ 2 0 3 1 2 __ __ ​​ t + ​   ​   ​​ ​+ ​    ​ 2 4

ln x 34. Let I = ​Ú ​    ​​ _____ ​   ​     ​ dx. 1 +x 0

ln x 33. Let I = ​Ú ​  ​   ​​ __________ ​  2       ​  ​dx 0 x + 2x + 4

)



a +b = p log a + p log ​ ​ _____    ​  ​ 2a a+b = p log ​ ​ _____  ​    ​ 2



( 

p ln 2 = _____ ​  __ ​  3​÷3 ​    p ln 2 p ln 2 Thus, I = 0 + _____ ​  __ ​ = _____ ​  __ ​  3​÷3 ​    3​÷3 ​   

1 + b/a = p log a + p log ​ ​ _______  ​    ​ 2







I1 = p log|k + 1| + c



I2 = 0

dt ln2 Also, I1 = ___ ​   ​  Ú​  ​  ​   ​​ __________ ​        ​  ​ 2 0 (t2 + t + 1)

1+k Thus, I1 = p log ​ _____ ​   ​    ​ 2

)

fi 2 I2 = 0

p  = _____ ​       ​ k+1 Integrating, we get

( 

ln(t) 1 = – ​ __ ​  ​Ú ​  ​   ​​ _________ ​  2     ​  ​dt 2 0 (t + t + 1) = I2

( 

)

x x2 __ x3 = – ​Ú ​    ​​ 1– ​ __  ​ + __ ​   ​  – ​   ​  +  ...  ​dx 2 3 4 0

( 

)

1 x2 x3 __ x4 = – ​​ x – ​ __2  ​ + __ ​  2  ​ – ​  2  ​ +  ...  ​​ ​​  2 3 4 0

( 

)

1 1 1 = – ​ 1 – __ ​  2  ​ + __ ​  2  ​ – __ ​  2  ​ + ...  ​ 2 3 4

p 2 = – ​ ___ ​  12 1 ln(1 + x4) 35. Let I = Ú​   ​   ​​ _________ ​    ​   ​ dx x  0

( 

( 

)

x8 x12 ___ x16 x20 x4 – __ ​   ​ + ___ ​   ​ – ​   ​ + ___ ​   ​ – ... 2 3 4 5 = ​Ú ​    ​​ _________________________ ​          ​  ​dx x 1



)

0

2.103

2.104  Integral Calculus, 3D Geometry & Vector Booster 1

( 

x7 = ​Ú ​    ​​ x3 – __ ​   ​  + 2 0

( 

4

8

x11 ___ ​   ​ – 3 12

)

x15 ___ ​   ​ + 4

x19 ___ ​   ​ – ...  ​dx 5

In + 2 – 2In +1 – In

)



3 1 sin ​ n + __ ​   ​   ​x – sin ​ n + __ ​   ​   ​x 2 2 _______________________ = ​Ú ​  ​   ​​ ​         ​dx x  ​  __ 0 sin​ ​    ​  ​ 2



x 2 cos(n + 1)x ◊ sin ​ __ ​    ​  ​ 2 = ​Ú ​  ​   ​​ ​ _________________       ​ dx x  ​  0 sin ​ __ ​    ​  ​ 2



= ​Ú ​  ​   ​2 cos(n + 1)x dx

p 

1

16

x x x x = ​​ __ ​   ​  – ___ ​    ​ + ___ ​   ​ – ___ ​   ​ + ...  ​​ ​​  4 16 36 64 0

( 

)

1 1 1 1 = ​ __ ​   ​  – ___ ​    ​ + ___ ​    ​ – ___ ​    ​ + ...  ​ 4 16 36 64

(  ( 

p 

) )

1 1 1 1 = ​ __ ​  2  ​ – __ ​  2  ​ + __ ​  2  ​ – __ ​  2  ​ + ...  ​ 2 4 6 8

( 

)

1 1 1 1 = ​ __ ​  2  ​ – __ ​  2  ​ + __ ​  2  ​ – __ ​  2  ​ + ...  ​ 2 4 6 8

)

p 2 p 2 1 ___ = ___ ​   ​ – __ ​    ​ ◊ ​   ​  24 8 6 p 2 = ___ ​   ​  48 36. Given,

( 

( 

)

p 

( 

p 

= In + 2 – In – 1 = I1 – I0.

Thus,

In – In – 1 = I1 – I0 = p – 0 = p



In = p + In – 2 = p + p + In – 2 = 2p + In – 2 = 3p + In – 3 = ... = n p + I0 = n p + 0 = n p

)

)

) (  )

( 

p 

( 

)

1–1 Now, I0 = ​Ú ​  ​   ​​​ _______   ​   ​ dx = 0 1 – cos x 0 p 

( 

3 x ​    ​  ​ 2 sin ​ n + __ ​   ​   ​ x sin ​ __ 2 2          ​  ​dx = Ú​  ​  ​   ​ ​ __________________ ​  1 – cos x 0

Subtracting, we get

3 x p  sin ​ n + __ ​   ​   ​x sin​ __ ​    ​  ​ 2 2 = Ú​  ​  ​   ​ ​ ​ ________________  ​     ​dx x    2  __ 0 sin ​ ​    ​  ​ 2

 ( (  ()  ) (  ))  ( (  (  ) ) )  ( (  (  ) ) )

3 sin​ n + __ ​   ​   ​x 2 __________ = Ú​  ​  ​   ​ ​ ​   ​   ​dx x    __ 0 sin ​ ​    ​  ​ 2 p 

Subtracting Eq. (ii) from Eq. (i), we get

I0 – I1 = p



In = I0 + n p = n p



In = n p p /2

...(i)

(  )

p /2

( 

...(ii)

) )



1 – cos(2 nq ) = ​Ú ​   ​   ​​ ____________ ​        ​  ​ dq 1 – cos(2q ) 0



1 – cos(n x) 1 = ​ __ ​  ​Ú ​  ​   ​​ ___________ ​        ​  ​dq = n p 2 0 1 – cos(x)

p 

p 

In + 2



sin2 nq  Now, In = ​Ú ​   ​   ​​ ______ ​  2  ​    ​ dq 0 sin q 

Similarly,

1 sin ​ n + __ ​   ​   ​x 2 __________ – In  = Ú​  ​  ​   ​ ​ ​   ​   ​dx x    __ 0 sin​ ​    ​  ​ 2

)

1 – cos x  I1 = ​Ú ​  ​   ​ ​ ​ ________ ​   ​ dx = p 1 – cos x 0

and

)

)

1 – x cos n x In = ​Ú ​  ​   ​​ ​ __________      ​   ​dx = n p. 1 – cos x 0



cos(n + 1)x – cos(n + 2)x = ​  ​ ​   ​​ ______________________ ​           ​  ​dx 1 – cos x 0

( 

In + 2 – In +1 = In + 1 – In

p 

)

( 

In + 2 – 2In +1 – In = 0





1 – cos(n + 2)x 1 – cos(n + 1)x = Ú​  ​  ​   ​​ _____________  ​          ​  ​dx – ​Ú ​  ​   ​​ ​ _____________         ​  ​dx 1 – cos x 1 – cos x 0 0

p 

)

=0

)

In + 2 – In + 1

(  Ú  ( 

(  )

Similarly, In + 2 – In +1 = In + 1 – In

p 

p 

(  )

)

(  )



1 – x cos n x In = Ú​  ​  ​   ​​ ​ __________       ​  ​ dx 1 – cos x 0

Now,

(  )

)

2 = ​ _____ ​       ​  ​ sin(n + 1)x​)p0​ ​ ​ n +1

2 1 1 – ​ __2  ​ ​  1 + __ ​  2  ​ + ___ ​   2 ​ + ...  ​ fi 4 2 12 fi



( 

( 

0

1 1 1 – 2 ​ __ ​  2  ​ – __ ​  2  ​ + ___ ​   2 ​ +  ...  ​ 4 8 12

( 

)

p 

1 1 1 1 = ​ __ ​  2  ​ – __ ​  2  ​ + __ ​  2  ​ – __ ​  2  ​ +  ...  ​ 2 4 6 8

 ( ( 

( 

37. We have

( 

)

(12 + 22 + 33 + ... + n2)(13 + 23 + 33 + ... + n3) ​ lim    ​ ​ ______________________________________ ​              ​  ​ n Æ • (16 + 26 + 36 + ... + n6)

Definite Integrals 

(  ( 

r = 1

)

(  )

(  )

n

n

​S  ​ ​ ​(r2) × S ​   ​ ​ ​(r3) r = 1 r = 1 =   ​ lim ​ ​ ​ _____________     ​     ​ n n Æ • ​   ​ ​ ​(r6) S

)

1 n r 2 __ 1 n r 3 __ ​ n ​ ​S  ​ ​ ​​​ __ ​ n ​   ​​ ​× ​ n ​ ​S  ​ ​ ​​​ __ ​ n ​   ​​ ​ r = 1 r = 1 =   ​ lim ​ ​ __________________ ​      ​     ​ n Æ • 1 n r 6 __ ​ n ​  ​S  ​ ​ ​​​ __ ​ n ​   ​​ ​ r = 1

(  )

(  ) (  ) ( Ú  ) 1

1

​  ​Ú ​  ​x  dx  ​× ​ ​Ú ​  ​ x  dx  ​ 0 0 ________________ = ​      ​    2

3

 ((  ()  ()  ) ) 0

x x4 1 ​​ __ ​   ​   ​​ ​​  ​​ __ ​   ​   ​​ ​​  3 0 4 0 = ​ ​ __________     ​   ​ x7 1 __ ​​ ​   ​   ​​ ​​   7 0 1 1 __ ​   ​ × __ ​   ​  3 4 ___ 7 _____ = ​   ​   = ​    ​  1 12 __ ​   ​  7 38. We have, n n – r   4r  ​ lim    ​ ​S  ​ ​ ​ ​ _____  ​    cos ​ ___ ​  n ​   ​  ​ 2 n Æ • r = 1 n n n – r  1 4r  =   ​ lim ​ __ ​   ​  S ​   ​ ​ ​ ​ ​ _____ ​  ​cos ​ ___ ​  n ​   ​  ​ n    n Æ • n r = 1

(  ) )

( (  ) (  ) ) 1 r  4r  =   ​ lim ​ __ ​ n ​  ​S ​ ​ ​( ​( 1 – __ ​ n ​ )​cos ​( ___ ​  n ​  )​ )​ n

  r = 1

1

= ​Ú ​    ​(1 – x)cos(4x)dx

( 

)

1

sin (4x) 1 __ 1 = ​​ (1 – x)​ ______  ​    ​​ ​​  + ​   ​  ​Ú ​    ​sin(4x)dx 4 4 0 0 1

1 = 0 + __ ​   ​  ​Ú ​    ​sin(4x)dx 4 0

( 

( 

)

(  Ú  ( 

)

p /2

3 1

0

p 

sinq  ​Ú ​  ​   ​​ _______________ ​  2  2         ​   ​ dq , " a, b Œ R +, a > b 2  2 0 a cos q + b sin q  p /2

​ ​  ​ ​ ​ x6 dx  ​

n Æ •

)}

1 1 =   ​ lim ​ ​ ​ __ ​   ​  – _____ ​       ​  ​  ​ n Æ • 2 n+2 1 = ​ __ ​   ​  – 0  ​ 2 1 = __ ​   ​  2 40. We have

sinq  = 2 ​Ú ​   ​ ​  ​ _______________ ​  2  2       ​   ​ dq  0 a cos q + b2 sin2q 

1

( 

{ (  (  )

2.105

)

sinq  = 2 ​  ​  ​   ​​ ____________________ ​  2  2           ​   ​ dq  0 a cos q + b2 – b2 cos2q

( 

p /2

)

sinq  = 2 ​Ú ​   ​   ​​ _________________ ​  2        ​ ​ dq  0 b + (a2 – b2)cos2q  0

Let  cosq = t

( 

)

dt = – 2 ​Ú ​    ​​ ____________ ​  2      ​  ​ 1 b + (a2 – b2)t2 1

( 

)

dt = 2 ​Ú ​    ​​ ____________ ​  2       ​  ​ 0 b + (a2 – b2)t2 1

 (

)

dt  2 = _______ ​  2  2    ​ ​Ú ​    ​​ ___________ ​        ​  ​ (a – b ) 0 _______ b2 ​  2  2    ​+ t2 (a – b )

( 

______

)

1

​÷a  2 – b2   ​ 2 1 = _______ ​  2   2    ​ × ________ ​       ​tan– 1 ​​ ​ _______     ​   t  ​​ ​​  b b 0 (a – b ) ________ ​  ______      ​ 2 2   ​ ÷​ a  – b  

( 

______

)

​÷a  2 – b2   ​ 2 = __________ ​  _______      ​ × tan– 1​ ​ _______       ​  ​ 2 2 b b​÷(a   – b ) ​ 

)

cos (4x) 1 = ​​ – ​ _______  ​    ​​ ​​  16 0 1 = ___ ​    ​  [1 – cos (4x)] 16

b 

39. We have, n

1

​ lim    ​ ​S  ​ ​ ​ ​Ú ​  ​ ​ (xr – xr + 1)dx n Æ • r = 1 0 n

( 

)



= b sin2q – a(1 – cos2q)

( 

)



= b sin2q – a sin2q)

1 1 =   ​ lim ​ ​S  ​ ​ ​ _____ ​       ​ – _____ ​       ​  ​ n Æ • r = 1 r + 1 r+2

( 

(x – a) = a cos2q + b sin2q – a

Now,

xr +1 xr + 2 1 =   ​ lim ​ ​S  ​ ​ ​​​ _____ ​      ​ – _____ ​       ​  ​​ ​​  n Æ • r = 1 r + 1 r+2 0 n

÷ 

______

x–a ​Ú ​   ​​ ​ _____ ​    d ​x b–x a  Let  x = a cos2q + b sin2q fi dx = (b – a)sin(2q )

1 =    ​ lim   ​ ​ __ ​   ​  – n Æ • 2

) ​( __​ 13 ​  – __​ 14 ​  )​ + ​( __​ 14 ​  – __​ 15 ​  )​ + ... 1 1 + ​( _____ ​       ​ – _____ ​       ​  ​ n + 1 n + 2)

1 __ ​   ​   ​ + 3

and

= (b – a)sin2q (b – x) = b – a cos2q – b sin2q = b (1 – sin2q) – a cos2q = (b – a)cos2q

2.106  Integral Calculus, 3D Geometry & Vector Booster a

The given integral reduces to p /2

÷ 

(b – a)sin2q ​Ú ​   ​   ​​ ​ ___________         ​× (b – a)sin(2q )dq 0 (b – a)cos2q

0



sinq = Ú​  ​   ​ ____ ​      ​ × (b – a)sin(2q )dq cosq 0



= (b – a) Ú​  ​   ​ ​(2sin2q )dq

p /2

( 

)

p /2

p /4



0

p  aI + bJ = __ ​   ​   2

Also,

b cos x – a sin x  bI – aJ = Ú​  ​   ​   ​​​ _____________       ​  ​dx a cos x + b sin x 0

...(i)

( 

)



= (log|a cos x + b sin x|​)p /2 ​ ​  ​ 0



b = log​ __ ​ a ​  ​

(  )

...(ii)

(  ) ) (  ) )

a

(  )

p  ​Ú ​    ​log(cot a + tan x)dx, a Œ ​ 0, __ ​   ​   ​ 2 0

( 

a

( 

)

)



= ​Ú ​    ​log[cos(a – x)]dx – ​Ú ​    ​log(sin a)dx

a

0

0

0

0

a

0

= ​Ú ​    ​log(cos x)dx – ​Ú ​    ​log(sin a)dx a



( 

{  ( 

)}

)

p  4 – 3 sin2​ 2​ __ ​   ​  – x  ​  ​ 4 1 = __ ​   ​  ​Ú ​   ​ ​ ​​  ______________________         ​  ​dx p  p  4 0 sin ​ __ ​   ​  – x  ​ + cos​ __ ​   ​  – x  ​ 4 4 p /4

( 

( 

( 

)

)

)

4 – 3 cos22x 1 = ____ ​  __    ​ Ú​  ​   ​ ​ ​ ​ __________ ​ dx cos x   ​   4​÷2 ​    0

(  Ú  ( 

)

p /4

4 –  3(2cos22x – 1)2 1 = ____ ​  __    ​ Ú​  ​   ​  ​​ ​ _________________   ​  ​dx cos x     4​÷2 ​    0

)

1 = ____ ​  __    ​ Ú​  ​   ​ ​(sec x + 12cos x – 12cos3x)dx 4​÷2 ​    0

– ​Ú ​    ​log(cos x)dx a

)

p /4

a

a

( 

4 – 3(4cos4x – 4cos2x + 1) 1 = ____ ​  __    ​ ​  ​  ​ ​ ​ ______________________ ​          ​  ​dx cos x 4​÷2 ​    0

cos(a – x) = ​Ú ​    ​log ​ _________ ​   ​   ​dx sin  a cos x 0



)

p /4

sin x ____ ​ cos x   ​  ​dx





)

4 – 3 sin22x 1 = ​ __ ​  ​Ú ​   ​ ​ ___________ ​      ​  ​dx 4 0 sin x + cos x p /4

(  ( 

cos a = ​Ú ​    ​log ​ _____ ​   ​ + sin a 0

(  Ú  ( 

sin6x + cos6x I = ​Ú ​   ​ ​ ​ ____________ ​         ​  ​dx sin x + cos x 0

p /4

3. We have,



)

p /4

ap  b 1      ​​ ___ ​   ​ + b log​ __ ​ a ​  ​  ​ I = ________ ​  (a2 + b2) 2 bp  b 1  2  ​ ​  ​ ___ ​ – a log ​ __ ​ a ​  ​  ​. J = ​ ________ 2 2 (a + b )

a

( 

sin6x + cos6x = 2​Ú ​   ​ ​ ​ ____________ ​         ​  ​dx sin x + cos x 0

1 – 3 sin2x cos2x = ​  ​  ​ ​ ​​ _____________         ​   ​ dx sin x + cos x 0

Solving Eqs (i) and (ii), we get



)

p /4



p /2

( 

...(ii)

sin6x + cos6x 2I = ​Ú ​   ​ ​ ____________ ​        ​  ​dx sin x + cos x 0

2. Now, aI + bJ = ​Ú ​   ​ ​dx

and

)

Adding Eqs (i) and (ii), we get

p /2



( 

...(i)

0

sin(2q ) p /2 = (b – a)​​ q – _______ ​   ​    ​​ ​  ​ 2 0 p  __ = ​   ​  (b – a) 2



)

p /2

= (b – a) Ú​  ​   ​ ​ (1 – cos(2q ))dq



( 

sin6x 4. Let Ú​  ​   ​ ​​ __________ ​        ​  ​dx. 0 sin x + cos x

cos6x = ​Ú ​   ​ ​​ __________ ​       ​  ​dx 0 sin x + cos x

0



= a log(cosec a) p /2

p /2



= – a log(sin a)



p /2



= – ​Ú ​    ​ log(sin a)dx



___________

– ​Ú ​    ​log(cos x)dx 0

1__ = ​ ____    ​   [log|sec x + tan x| + 12sinx 4​÷2 ​   

[ 

( 

)]

p /4 1 – 12 ​​ ​ sin x – __ ​   ​  sin3x  ​  ​​ ​  ​ 3 0 ​

( 

__ __ 1 1 = ____ ​  __    ​ ​ log(​÷2 ​     + 1) + 6​÷2 ​     – 12 ​ ___ ​  __  ​ – 4​÷2 ​    ​ 2 ​    ÷ __ __ 1 = ____ ​  __    ​   [log(​÷2 ​     + 1) + ÷ ​ 2 ​   ]  4​÷2 ​   

)]

1 ____ ​  __    ​  ​  ​ 6​÷2 ​   

Definite Integrals 



( 

5. We have 1

( 

)

dx I = ​Ú ​    ​​ ______________________ ​         ​  ​ 0 (5 + 2x – 2x2)(1 + e(2 – 4x))

...(i)

dx = ​Ú ​    __________________________________ ​​            ​ 2 2 – 4(1 – x) 0 {5 + 2(1 – x) – 2(1 – x) }(1 + e ) dx = Ú​  ​    _____________________ ​​          ​ 2 4x – 2  0 (5 + 2x – 2x )(1 + e )

...(ii)

( 

p 

{ 

}

{ 

}

dx 1   _____ 1 = Ú​  ​    ____________ ​​      2 , ​ since ​ _____ ​  2 – 4x      ​ + ​  4x – 2     ​  ​ = 1 0 (5 + 2x – 2x ) e e 1

dx 1 fi  I = __ ​    ​ ​Ú ​    _____________ ​​        ​ 2 0 5 2 – 2 ​ x – x – __ ​   ​   ​ 2

( 

)



= – p 2 + 2k

 |

(  ) (  ) (  ) (  ) ___

|)

|

___



1 + ​÷11 ​     1 ___ ​   = ____ ​  ___    ​   log ​ ​ _______   ​ ​ 11 ​     ​÷10 ​     ÷

( 

)

( 

4

)

(  Ú  (  Ú  ( 



p  2k = ​Ú ​  ​   _______ ​​       ​ dx 0 1 + sin x



dx 2k = 2p  ​Ú ​  ​   _______ ​​      ​ 1 + sin x 0



dx k = p  ​Ú ​   ​ ​​ _____________       ​ p  0 1 + cos ​ __ ​   ​  – x  ​ 2

p /2



)

( 

1

)

t4(t4 – 4t3 + 6t2 – 4t + 1) = ​  ​   ​​ _____________________ ​       ​     ​ dt 0 t2 + 1

)

1

( 

( 

7

6

4t ___ ​   ​ + t5 6 1 2 = ​ __ ​    ​ – __ ​   ​  + 1 – 7 3 t = ​​ __ ​   ​  – 7

( 

(  ) p  p  x k = __ ​   ​  Ú​ ​   ​ ​​( sec  ​( __ ​   ​  – __ ​    ​  ​  ​dx 2 4 2 )) p  x k = ​​( p tan ​( __ ​   ​  – __ ​    ​  ​  ​​ ​ ​ 4 2 ))

4



2

0

p  ​ __ ​  2 0

k=p

Thus, J – I = – p 2 + 2p = p (2 – p ) 8. We have, p /2

)

4 = Ú​  ​    ​​ t – 4t + 5t – 4t  + 4 – _____ ​  2      ​  ​ dt 0 t +1 5

)



(t8 – 4t7 + 6t6 – 4t 5 + t4) = ​  ​   ​​ _____________________ ​       ​     ​ dt 0 t2 + 1 6

)

dx k = p ​Ú ​   ​ ____________ ​       ​ p  x 0 2cos2 ​ __ ​   ​  – __ ​    ​  ​ 4 2 p /2



t4(t – 1)4 1 = Ú​  ​    ​​ ________ ​  2  ​     ​ dt, ​ Let  t = __ ​ x ​  ​ fi 0 t +1

1

( 

p /2

(x – 1) ​Ú ​  ​   ​​​ _______    ​   ​dx 1 x8 + x10 1

(p – x) k = ​Ú ​  ​   ​​ _______     ​ dx 0 1 + sin x

p 

6. We have, •



p 

1

​÷11 ​     1 ​ x – __ ​   ​   ​ – ​ ____ ​   ​    ​ 2 2 1 1 ___  ​  ​  ​​ ​​  = ​​ – ​ __  ​ × ______ ​  ___    ​log ​   ​ ______________    4 ​ 11 ​     ÷ ​ 11 ​     ÷ 1 2◊​____    ​    ​ x – __ ​   ​   ​ + ​ ____ ​   ​    ​ 2 2 2 0 (​÷11 ​    + 1) 1 1 = __ ​   ​  × ____ ​  ___    ​   log​_________ ​  ___  ​    ​ 4 ÷ ​ 11 ​     (​÷11 ​    – 1)



p 

( (  ) (  ) )

___

)

p 

)

| 

( 

– x2 x = ​​ _________ ​      ​  ​​ ​ ​ + 2 ​Ú ​  ​ ​ ​ _______ ​       ​  ​dx (1 + sin x) 0 0 1 + sin x

1

( 

p 

p



x where k = ​Ú ​  ​   _______ ​​       ​ dx 1 + sin x 0

dx 1 = –  ​ __ ​  ​Ú ​    _________________ ​​         ​ ___ 4 0    2 1 2 ​÷11 ​ ​ ​​ x – __ ​   ​   ​​ ​– ​​ ____ ​   ​    ​​ ​  ​ 2 2



)

x2(1 + cos x) and J = ​Ú ​  ​   ​​ ___________ ​        ​  ​ dx 0 (1 + x sin x)2 x2 cos x (J – I) = Ú​  ​  ​   _________ ​​       ​ dx 2 0 (1 + sin x)

dx 1 1 2i ​Ú ​    ___________ ​​        ​​ _________ ​       ​ + _________ ​       ​  ​ 2 2 – 4x  0 (5 + 2x – 2x ) (1 + e ) (1 + e4x – 2 )



)

Now,

Adding Eqs (i) and (ii), we get

( 

( 

2 x 7. Given I = Ú​  ​  ​   ​​​ ________ ​       ​  ​​ ​ dx 1 + x sin x 0 p 

1

1

p 



1

1

)

22 = ​ ___ ​   ​ – p  ​ 7

2

)

1

3

4t – ___ ​   ​ + 4t – 4 tan– 1t  ​​ ​​  3 0 4 – 1 __ ​   ​  + 4 – 4 tan (1)  ​ 3

)

____

_____

​Ú ​   ​   ​(÷ ​ sin x    ​ + ​÷cos x      ​) – 4 dx 0

p /2



dx = ​Ú ​   ​   _______________ ​​  ____     4 ​ _____ 0 (​÷sin x    ​+ ÷   ​ cos x    ​)   



sec2 x dx = ​Ú ​   ​   ___________ ​​  ____      ​ 0 (​÷tan x    ​ + 1) 4  

p /2

2.107

2.108  Integral Calculus, 3D Geometry & Vector Booster •



dt = ​Ú ​  ​   ​ _______ ​      ​ 0 (t + 1) 4



• 1 1 = ​​ – ​ __ ​  × ______ ​       ​  ​​ ​ ​ 3 (t + 1) 0



1 = ​ __ ​  3



( 

10. Given, p /4

)

In = ​Ú ​   ​ ​(tan n x)dx 0

P /4

= ​Ú ​   ​   ​(tann – 2x◊ tan2x)dx



0

9. We have, p 

( 

P /4

)

0

p 

 (

0

))

dx = ​Ú ​  ​   ​​ ________________ ​        ​  ​ 0 1 – tan2(x/2) ___________ a – ​ ​     ​  ​ 1 + tan2(x/2)



p 

(  ( 

( 

sec2(x/2)dx = ​Ú ​  ​   ​ _____________________ ​          ​  ​ 0 (a – 1) + (a + 1)tan2(x/2)

( 

)



 (

)

÷  ÷ 

______

(  ÷ 

_______ •

)



(a + 1) __ p  2 = ______ ​       ​ × ​ ​ _______   ​   ​× ​   ​  (a + 1) (a – 1) 2 p  = _______ ​  _____     2 ÷​ a  – 1 





1 In + In – 2 = ​ _____ ​       ​  ​ n –1

(  )

1 ​ _______      ​ = 4 (I5 + I3 ) 1 ​ _______      ​ = 5 (I6 + I4 ) 1 and _______ ​       ​ = 6 (I7 + I5 ) Clearly, 3, 4, 5 and 6 are in AP. p 

11. Let I = ​Ú ​  ​   ​q 3log(sinq )dq 

...(i)

0 p 



p 

= ​Ú ​  ​   ​(p – q )3log(sin(p – q ))dq  0 p 

p  dx  ​ Thus, Ú​  ​  ​   _________ ​​       ​ = _______ ​  _____      ​◊ a > 1 2 (a – cos x) 0  ​ ​÷a  – 1 ​ 



= ​Ú ​  ​   ​(p – q )3log(sinq )dq  0

Diffeerentiating w.r.t a, we get

Adding Eqs (i) and (ii), we get

p 



t n – 1 1 In + In – 2 = ​​ _____ ​       ​  ​​ ​​  n –1 0

1 Thus, _______ ​       ​ = 3 (I2 + I4 )

(a + 1) (a + 1) 2 = ______ ​       ​ × ​ ​ ______     ​  ​tan– 1 ​​ t ​ ​ _______     ​   ​ ​​ ​  ​ (a + 1) (a – 1) (a – 1) 0 _______

(  )



1 fi ​ _________      ​ = (n – 1) (In + In – 2 )

)

2

dt 2 = ​ ______      ​ ​Ú ​  ​   ​​ __________ ​        ​  ​ (a + 1) 0 (a – 1) 2 ______ ​     ​+ t  (a + 1)

0

0

sec (x/2)dx 1 = ______ ​       ​ ​Ú ​  ​   ​​  ​ ________________       ​  ​ (a + 1) 0 (a – 1) ​ ______     ​+ tan2 (x/2) (a + 1)



0

= ​Ú ​   ​   ​(tann – 2x◊ sec2x)dx – In – 2



)





P /4

P /4



p 

P /4

= ​Ú ​   ​   ​(tann – 2x◊ sec2x)dx – ​Ú ​   ​ ​(tann – 2x dx



sec2(x/2)dx = ​Ú ​  ​   ​ ​ __________________________  ​           ​  ​ 2 2 0 a(1 + tan (x/2)) – (1 – tan (x/2)) p 

= ​Ú ​   ​   ​(tann – 2x(sec2x – 1))dx



dx ​Ú ​  ​   ​​ a_______ ​  – cos x    ​   ​

p a dx – ​Ú ​  ​   __________ ​​      2 ​ = – ​ _________    ​  0 (a – cos x) (a2 – 1)3/2 p 

p 

2I = ​Ú ​  ​   ​{(p – q )3 + q 3}log(sinq )dq  0 p 

p a dx fi ​Ú ​  ​   __________ ​​      2 ​ = _________ ​  2  3/2   ​ 0 (a – cos x) (a – 1)

= ​Ú ​  ​   ​{p 3– 3p 2q + 3p q 2}log(sinq )dq



= p 3 ​Ú ​  ​   ​log(sinq )dq – 3p 2 ​Ú ​  ​   ​(q )log(sinq )dq

(Let  a = 2)

0

p 

0

p 

2p  dx fi ​Ú ​  ​   __________ ​​      2 ​ = ____ ​  __  ​  3​÷3 ​    0 (2 – cos x)



p 

0 p 

+ 3p ​Ú ​  ​   ​(q 2)log(sinq )dq 0

= – p 4log2 – 3p 2I1 + 3p I2

...(ii)

Definite Integrals  p 



(n + 1)In + 1 = In + 2 – G(n + 1)

0 p 



(n + 1)In + 1 = In + 2 – G(n + 1)

Also,

n2In = nIn + 1 – nG(n + 1)

p 

Thus,

In + 2 – (n + 1)In + 1 = nIn + 1 – n2In

0

fi 13. Given,

In + 2 – (n + 2)In + 1 + n2In = 0

Now, I1 = ​Ú ​  ​   ​q log(sinq )dq = ​Ú ​  ​   ​(p – q )log(sinq )dq



0

= p ​Ú ​  ​   ​log(sinq )dq – I1



p 



fi 2I1 = p ​Ú ​  ​   ​log(sinq )dq



= – p 2log(2)

p  fi I1 = – ​ __ ​ log(2) 2

( 

( 

)

2

p  Now, 2I = – p  log2 – 3p   ​ – ___ ​   ​  log(2)  ​ + 3p I2 2 2

( 

)

( 

) (  1 1 f (x) = (​  _______ ​    ​     ​ sin ​( x – __ ​ x ​ )​ (a + b)x)

p 

__ 3p  p 3 3p  = ___ ​   ​  ◊ ​ ___ ​  log(​÷2 ​   )  + ___ ​   ​  ​Ú ​  ​ ​ [q 2log sin(q )]dq 2 6 2 0 p 

I = ​Ú  ​   ​f (x)dx, (a π b) 2

3p  p  3p  = ___ ​   ​  ◊ ​ ___ ​  log2 + ___ ​   ​ ​Ú ​  ​ ​ [q 2log sin(q )]dq 2 6 2 0



1 1 1 = ______ ​       ​ ​Ú  ​   ​​ __ ​   ​ sin ​ x – __ ​ x ​  ​  ​dx (a + b) 1/2 x



1 1 1 1 = ______ ​     ​   ​Ú ​   ​ ​ ​ __ ​   ​ sin ​ y – __ ​ y ​  ​  ​ dy, x = __ ​ y ​ (a + b) 2 y    1/2

= – I

fi fi

2I = 0 I=0 2

0 •

{ ( 

) }

xn xn = ​​ e– xlog x ◊ ​__  n ​   ​​0​ ​ – ​Ú ​  ​  ​​ ​ e– x ◊ __ ​ 1 ​ – e– xlog x  ​ ​ __ n ​   ​dx x 0 •

1 = 0 – __ ​ n ​ ​Ú ​  ​   ​​{ (e– x ◊ xn – 1 – e– xlog x ◊ xn) }​dx 0 •

= ​Ú  ​   ​f (x)dx = 0



= Ú​  ​  ​   ​{(e– xlog x) ◊x n – 1}dx



1 1 = __ ​ n ​ ​Ú ​  ​   ​e– xlog x ◊ xn dx – __ ​ n ​ ​Ú ​  ​   ​e– x◊ xn – 1dx 0 0 In – 1 ____ G(n) = ____ ​  n    ​ – ​  n     ​ Thus, nIn = In – 1 – G(n) Replacing n by (n + 1), we get

1/2

14. We have, p /6

( 

___________

)

​÷3cos(2x)      – 1 ​ ​Ú ​   ​   ​​ ​ ____________     ​   ​ dx cos(x) 0 p /6



))

(  (  ) ) 1 1 1 = – ​ ______    ​ ​Ú ​  ​​( __ ​ y ​ sin ​( y – __ ​ y ​ )​ )​dy (a + b) 1/2



In = Ú​  ​  ​   ​(e– xx n – 1log x)dx

)

(  ( 

2



Hence, the result. 12. Given, •



) (  ) )

1 1 = ​Ú  ​   ​​ ​ _______ ​     ​   ​sin​ x – __ ​ x ​  ​  ​ dx (a + b)x 1/2

2

p 

__ 3p  = ___ ​   ​  ◊ ​Ú ​  ​   ​q 2log(​÷2 ​   s  in(q ))dq 2 0



( ( 



p 

__ 3p  3p  = ___ ​   ​  ◊ ​Ú ​  ​   ​q 2log(​÷2 ​   )  dq + ___ ​   ​  ​Ú ​  ​ ​ [q 2 log sin(q )]dq 2 0 2 0

( 

)

1/2

p 

0

...(ii)

2

p  3p  =  ___ ​   ​  log2 + ___ ​   ​ ​Ú ​  ​   ​[q 2log sin(q )]dq 4 2 0 3

)

b 1 (a2 – b2) f (x) = ​ a – __ ​ x ​  ​ sin ​ x – __ ​ x ​  ​

Let

p 

4

( 



p 4 3p  =  ​ ___ ​  log2 + ___ ​   ​ I2 4 2

)

1 1 af (– x) + bf (x) = __ ​ x ​ sin ​ x – __ ​ x ​  ​ From Eqs (i) and (ii), we get fi



p 4 p 2 3p  3 fi I = – ​ ___ ​  log2 – __ ​   ​ p 2 ​ – ___ ​   ​  log(2)  ​ + ___ ​   ​ I2 2 2 2 2

...(i)

1 1 af (– x) + bf (x) = – __ ​ x ​ sin ​ __ ​ x ​ – x  ​



4



(  )

1 1 af (x) = bf (– x) = __ ​ x ​ sin ​ x – __ ​   ​   ​ 2 Replacing x by – x, we get

0

2.109

( 

_________

)

  2x     – 4 ​  ÷​ 6cos   ​  ​ dx = ​Ú ​   ​   ​​ ​ __________ cosx 0 p /6

( ÷ 

_________

)



6cos2x – 4 = ​Ú ​   ​   ​​ ​ ​ _________     ​ ​   ​ dx 0 cos2x



2 = ​Ú ​   ​   ​(÷ ​ 6  – 4sec   x) ​dx

p /6 0

__________

2.110  Integral Calculus, 3D Geometry & Vector Booster p /6

( 

(  )

)



6__________ – 4sec2x  = ​Ú ​   ​   ​​​ ___________        ​ ​ dx 2 0 x  ​ ÷​ 6  – 4 cos  



6 sec2x = ​Ú ​   ​   ​​ ___________ ​  _________     ​  ​ dx + 4 ​Ú ​   ​ ​   ​ ___________ ​  __________      ​  ​ dx 2 2 0 0 x ​ ​÷6  – 4sec   x ​ ÷​ 6  – 4sec  



6cos x sec2x = ​Ú ​   ​   ​​ ___________ ​  __________      ​  ​dx + 4 ​Ú ​   ​   ​​ ___________ ​  _________      ​  ​ dx 2 0 0 ​÷6cos   2x –  4 ​ ​ 2 – 2tan   x ​



6cos x sec2x = ​  ​  ​   ​​ __________ ​  _________      ​  ​dx + 4 ​Ú ​   ​   ​​ ___________ ​  _________      ​  ​ dx 2 0 0 ​ 2 – 6sin2x ​  ​ 2 – 2tan   x ​

p /6

( 

p /6

)

(  Ú    ( ÷ 

p /6

) )

p /6



p /6

p /6

(  ( ÷  ( ÷ 

) ) )

Let  sin x = t and tan x = v 1/2

( 

)

__

1/​÷3 ​   

( 



( ÷  ) ( ÷  ) __

6p  1 2 = ____ ​  __  ​ – 4◊​__    ​  sin– 1​ ​ __ ​   ​ ​    ​ 2 3 3​÷6 ​    __ 2p  2 = ___ ​  __ ​ – 2sin– 1​ ​ __ ​   ​ ​    ​ 3 ​÷6 ​    15. We have

__

​÷3 ​   

)

dv 6t  = ​Ú ​   ​   ​​ ________ ​  _______    ​   ​dx ​  _______    ​   ​dx + 4 ​Ú ​   ​   ​​ ________ 2 0 0 ÷​ 2  – 2v2 ​  ÷​ 2  – 6t   ​ 

( 

__

( 

)

x4 + 2x2 + 1 = ​Ú __ ​ ​   ​​ ___________ ​  2     ​   ​dx (x + 1)3  – ​÷3 ​    __

​÷3 ​   

( 

)

(x2 + 1)2 = ​Ú __ ​ ​   ​​________ ​  2  ​   ​dx 3  – ​÷3 ​     (x + 1) __

​÷3 ​   

( 

)

dx = Ú​  __ ​ ​   ​​ _______ ​  2    ​   ​ (x + 1)  – ​÷3 ​    __

​÷3 ​   

dx = 2​Ú ​   ​   _______ ​​  2      ​ 0 (x + 1) __

(  ) (  )

p /2 0

(  )

9 G ​ __ ​    ​  ​ __ 2 = _____ ​     ​  ×÷ ​ p     ​ 2G(5)



)

(  )

7 5 3 1 __ ​    ​ ◊ ​ __ ​  ◊ ​ __ ​  ◊ G ​ __ ​   ​   ​ __ 2 2 2 2 ____________ = ​         ​ × ÷ ​ p     ​ 2 ◊ (4!)



__

__ 105 × ​÷p     ​  = ​ ________  ​     × ​÷p    ​  4 2 × 24



35 × p  = _______ ​  7 ​    2 So, L = 3, M = 5, P = 2 and Q = 7 Hence, the value of L+M+P–Q =3+5+2–7 =3 3. We have,

p  I1 = ​Ú ​   ​   ​log(sin x)dx = __ ​   ​  log 2 8 0



__

= 2[tan– 1(​÷3 ​   )  – 0] 2p  = ___ ​   ​  3

Integer Type Questions 1. As we know that

(  ) (  ) (  )

n+1 G​ ​ _____  ​    ​ __ 2 ​Ú ​   ​  ​sinnx dx = ​ _________     ​ × ÷ ​ p     ​ n+2 0 2.G​ ​ _____  ​    ​ 2 11 p /2 G​ ___ ​   ​   ​ __ 2 So, ​Ú ​   ​   ​sin10x dx = ______ ​   ​  ×÷ ​ p    ​  2G(6) 0 p /2

Thus, A = 2 and B = 8 Hence, the value of B – A is 6. 2. As we know that n+1 p /2 G​ ​ _____  ​    ​ __ 2 ​Ú ​   ​   ​cosnx dx = ​ __________       ​ × ​÷p     ​ n+2 0 2 . G​ ​ _____  ​    ​ 2

p /2

   = (  ​​ 2tan– 1(x) )​÷​​0​ 3 ​ ​



__

__ 63 × 15 × ÷ ​ p     ​  = ____________ ​  5       ​   × ​÷p     ​ 2 × 120 63 × p  = _______ ​  5  ​  2 ×8 63 × p  = ​ ______  ​    28

So, ​Ú ​   ​ ​cos8x dx

x4 + x3 + 2x2 + x tan2x + x2sin3x + tan– 1(x) + 1 ​Ú __ ​ ​   ​​_______________________________________ ​             ​  ​dx x6 + 3x4 + 3x2 + 1  – ​÷3 ​    ​÷3 ​   

9 7 5 3 1 __ ​    ​ ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  G​ __ ​   ​   ​ __ 2_____________ 2 2 2 2 = ​         ​ × ÷ ​ p     ​ 2 ◊ (5!)

p /2

p  and I2 = Ú​  ​   ​   ​log(cos x)dx = __ ​   ​  log 2 8 0 Hence, the value of I1 – I2 + 5 = 5 1



log(1 + x) 4. Let L = Ú​  ​    ​​ _________  ​    dx 0 (1 + x2) Let  x = tanq fi d x = sec2q dq

p /4



log(1 + tanq ) 2 = ​Ú ​   ​   ​​ ___________       ​sec q dq 0 (1 + tan2q )

Definite Integrals  •

p /4



= ​Ú ​   ​   ​log(1 + tanq )dq 0 p /4

( 

...(i)

0

( 

))

p  = ​Ú ​   ​   ​log ​ 1 + tan ​ __ ​   ​  – q   ​  ​dq 4 0



1 + 1 – tan q  = ​Ú ​   ​   ​log ​ ​ ___________         ​  ​dq 1 + tan q  0

(  ) 2 = ​Ú​   ​   ​log ​( ________ ​     ​     ​dq 1 + tan q )





p /4



0

p /4

p /4

0

0

= ​Ú ​   ​   ​log|2|dq – ​Ú ​   ​   ​log(1 + tan q )dq p /4



= ​Ú ​   ​   ​log|2|dq – I 0

p /4

fi 2I = ​Ú ​   ​   ​log 2 dq 0

p  = __ ​   ​  log 2 4 p  fi I = ​ __ ​  log 2 8

__ 3 = ​ __ ​  × ÷ ​ p    ​  2 3 = __ ​   ​  × (p)1/2 2 Hence, the value of L + M + N is 5 1 1 1 1 1 6. Clearly, M = __ ​    ​ × 1 × __ ​   ​  + __ ​    ​ × 1 × __ ​   ​  = __ ​   ​  2 2 2 2 2 1 1 and N = 20 × __ ​   ​  × 1 × __ ​   ​  = 5 2 2 Hence, the value of 2 M + N + 2 = 1 + 5 + 2 = 8 7. We have, 2

M = ​Ú  ​   ​ (– 1)[x] dx

p /4

and Let M = ​Ú ​   ​   ​log(1 + tan x)dx

( 

( 

))

p  = ​Ú ​   ​   ​log ​ 1 + tan ​ __ ​   ​  – x  ​  ​dx 4 0

(  ) 1 + tan x + 1 – tan x = ​Ú​   ​   ​log ​( _________________ ​          ​ )​ dx 1 + tan x 2 = Ú​ ​   ​   ​log ​( _______ ​     ​   ​ dx 1 + tan x ) p /4



1 – tan x = ​Ú ​   ​   ​log ​ 1 + ________ ​     ​  ​dx 1 + tan x 0  

0

p /4





0



p /4

p /4

0

0

= Ú​  ​   ​   ​log 2 dx – ​Ú ​   ​   ​log(1 + tan x)dx

p  = __ ​   ​  log 2 – I 4 p  __ fi 2I = ​   ​  log 2 4 p  __ fi I = ​   ​  log 2 8 p  p  p  Now, L + M = __ ​   ​  log 2 + __ ​   ​  log 2 = __ ​   ​  log 2 8 8 4

So, A = 4 and B = 2 Hence, the value of A + B + 3 = 9. 5. We have, I = Ú​  ​  ​   ​e– xx3/2 dx 0

1

– 2

– 1

0

= ​Ú ​ ​  ​(– 1)

0

– 2

2

+ ​Ú ​   ​(– 1)[x] dx 1

1

 dx + ​Ú  ​  ​(– 1)

(– 2)

 dx + Ú​  ​    ​(– 1)(0) dx

(– 1)

– 1

0

2

+ ​Ú ​    ​(– 1)(1) dx – 1

0

1

2

– 2

– 1

0

1

1

= ​Ú ​ ​  ​1 ◊ dx + Ú​   ​  ​(– 1) ◊ dx + ​Ú ​    ​(1) dx + Ú​  ​    ​(– 1)dx = (– 1 + 2) – (0 + 1) + (1 – 0) – (2 – 1) = 1 – 1 + 1 – 1 = 0 4

and N = Ú​  ​    ​[x + 1]dx 0 4



= ​Ú ​    ​([x] + 1)dx 0



4

4

0

0

= ​Ú ​    ​[x]dx + ​Ú ​    ​ 1◊dx

43 = ___ ​   ​ + 4 = 10 2 Hence, the value of M + N – 1 = 9. 8. We have,

3



L = ​Ú  ​   ​(|x – 1| + 1)dx – 2





0

– 1

p /4



– 2 – 1

= ​Ú ​ ​   ​(– 1)[x] dx + ​Ú  ​   ​(– 1)[x] dx + ​Ú ​    ​(– 1)[x] dx

0

p /4

(  ) 3 1 = __ ​   ​  G ​( __ ​   ​   ​ 2 2) 5 = G ​ __ ​    ​  ​ 2



p /4



= ​Ú ​  ​   ​e– xx5/2 – 1 dx







2.111



1 1 = __ ​   ​  (4 + 1) × 3 + __ ​   ​  (1 + 3) × 2 2 2

2.112  Integral Calculus, 3D Geometry & Vector Booster 23 = ___ ​   ​  2



Thus, the value of 8

Now, M = ​Ú ​    ​|x – 2|dx 0

1 = 2 × __ ​   ​  × 2 × 2 2 =4 2 2 23 Thus, __ ​    ​(L – M) = __ ​   ​ ​  ___ ​   ​ – 4  ​ = 5 3 3 2

( 

1

)

​Ú  ​   ​x2 d(ln x) – 1 e

9. Let L = Ú​  ​    ​[log|x|]dx 1



3

2p 

1



__



10p 



0

Hence, the value of B ​ __ ​ = 5. A 11. We have, 1 ​ lim    ​ ​ ___ ​  __  ​ + n Æ • ÷ ​ n     ​

( 

( 

1 ____ ​  ___    ​ + ​ 2n     ​ ÷

1 ____ ​  ___    ​ + ​ 3n     ​ ÷

)

1 1 ____ ​  ___    ​ + ... + ​ ___  ​  ​ 2n ​ 4n     ​ ÷

)



1 1 1 1 1 ​  __  ​ + ___ ​  __  ​ + ___ ​  __  ​ + ... + ___ ​    ​  ​ =  ​ lim ​ ___ ​  __  ​ ​  1 + ___ n Æ • ​÷n     ​ 2n ​ 2 ​     ​÷3 ​    ÷ ​ 4 ​    ÷



1 4n 1_ ​​    ​  =  ​ lim ​ ___ ​  __  ​  ​ S   ​ ​ ___ n Æ • ÷ ​ n     ​r = 1 ​÷r    ​  1 4n 1__ ​​      =  ​ lim ​ __ ​   ​ ​S   ​ ​ ___ n Æ • n r = 1 __ r ​ ​ n ​ ​  4 dx__ = Ú​  ​    ​ ​ ___   ​  ​ x     ​ ÷ 0

÷ 

 ​

__

__

4 = (2​÷x     ​​)​ ​​  = (2​÷4 ​     – 0) = 4 0



 ( )  ( )

15.

(  )

1 e4 – 1 = __ ​   ​ ​  ​ _____  ​    ​ 2 e2

1

dx ​Ú ​    __________________ ​​  _____   _____    ​ 1  + x   ​+ ÷ ​ 1  – x    ​+ 2 0 ÷

 ​ Put fi

x = sin(2q ) dx = 2cos(2q )dq

p /4



2cos(2q )dq = ​Ú ​   ​   _____________________________ ​​  __________         __________    ​÷1  + sin(2q )     ​+ ÷ ​ 1  – sin(2q )     ​+ 2 0



2cos(2q )dq  = ​Ú ​   ​   ___________________________ ​​              cosq + sinq  + cosq – sinq  + 2 0



2cos(2q )dq  = Ú​  ​   ​   __________ ​​         ​ 2(cosq + 1) 0



cos(2q ) = ​Ú ​   ​   _________ ​​       ​dq (cosq + 1) 0

n(n – 1) _______ Ú​  ​    ​[x]dx ​   ​    0 2 ​ _______ ​ n    ​   ​ = ​ _______  ​  = (n – 1) n   __ ​   ​  2 Ú​   ​   ​{x}dx



1 – 2sin2q ) = ​Ú ​   ​  ​​ __________    ​  dq 0 (cosq + 1)



1 – 2(1 – cos2q ) = ​Ú ​   ​   ​​  _____________        ​dq (cosq + 1) 0



1 = ​Ú ​   ​   ​​ ________ ​       ​– 2(1 – cosq )  ​dq 1 + cosq  0



1 = ​Ú ​   ​   ​​ _________ ​     ​  – 2(1 – cosq )  ​dq 2 0 2cos (q /2)

p /4

p /4

p /4

0

10

Ú​   ​ ​   ​[x]dx 0 Thus, ​ ________ ​ 10      ​  ​ = (10 – 1) = 9.  ​Ú ​  ​   ​{x}dx

p /4

p /4

0

13. As we know that

)

 f (x) b–a ​Ú ​    ​​ ________________ ​         ​  ​ dx = ​ _____  ​    2 f (a + b + x) + f (x) a

 ​

p /4

p /4

n

( 

x2 = ​​ __ ​   ​   ​​   ​  2 1/e 1 1 = __ ​   ​ ​  e2 – __ ​  2  ​   ​ 2 e

Clearly, m = 4 and n = 2. Hence, the value of (m + n) = 6. We have,

12. As we know that

b

(  ) (  ) e



and B = Ú​  ​   ​ ​[sin x + cos x]dx = 5p



= ​Ú  ​   ​x dx 1/e

A = ​Ú ​   ​   ​[÷ ​ 2 ​   s  in x]dx = p 0

1 = ​Ú  ​   ​x2 ◊ ​__  x ​ dx 1/e e

and M = ​Ú  ​ ​   ​[|log x|]dx and, then find the value L of ​ __  ​ + 5. M 10. We have,

)

8–2 = ​ _____  ​   = 3 2 14. We have



3

( 

[x2] ​Ú ​    ​​ ___________________ ​  2         ​  ​dx 2 [x – 20x + 100] + [x2]

4

p /4



( 

( 

(  (  )

)

)

)

q  1 = ​Ú ​   ​   ​​ __ ​   ​ sec2 ​ __ ​   ​   ​ – 2(1 – cosq )  ​dq 2 2 0

 ​

Definite Integrals 

(  (  )

p  __

)

​   ​  q  = ​​ tan ​ __ ​   ​   ​ – 2(q – sinq )  ​​4​ ​ 2 0



(  (  ) ( 

p /2

= ​Ú ​   ​   ​2((cos x + cos 3x + ... + cos(2k – 1)x)cos x dx 0 p /2

))

p  p  1 = ​ tan ​ __ ​   ​   ​ – 2 ​ __ ​   ​  – ___ ​  __  ​  ​  ​ 4 ​÷2 ​ 8    __ __ p  = (​÷2 ​     – 1) – __ ​   ​  + ÷ ​ 2 ​    2 __ p  = ​ 2​÷2 ​     – __ ​   ​  – 1  ​ 2 Thus, a = 2, b = 2, c = – 1 Hence, the value of (a + b + c) = 3.

( 

= ​Ú ​   ​   ​[2cos 2x + 2cos 3x cos x + ... 0



)

+ 2cos(2k – 1)x cos x]dx p /2

= ​Ú ​   ​   ​ [(1 + cos 2x) + (cos 4x + cos 2x) + ... 0



Questions asked in Past Iit-Jee Examinations

+ cos(2k)x + cos(2k – 2)x]dx

( 

( 

)

1. ​Ú   ​ ​ [  f (x) + f ( – x)](g(x)) – g( – x))dx

p  = __ ​   ​  2

= ​Ú   ​ ​  h (x)dx = 0 – p /2



where h(x) = [  f (x) + f ( – x)](g(x) – g(– x)

0

x

the curve y + ​Ú ​    ​ f (t)dt = 2

p /2

2

2. Let I = ​Ú ​   ​   ​f (sin 2x)sin x dx

...(i)

0

= ​Ú ​   ​   ​f (sin 2x)cos x dx

...(ii)

0



Adding Eqs (i) and (ii), we get 2I = ​Ú ​   ​   ​f (sin 2x)sin x + cos x )dx

p /2

(  ( 





__ x  = ​÷2 ​     ​Ú ​   ​   ​ f (sin 2x) ​ sin ​ x +  ​ __ ​   ​  ​dx 4 0

=

__ p /4 ​÷2 ​     ​  ​ ​   ​f (cos2t)(cos t)dt

Ú 

))

x  Let ​ __ ​   ​  – x  ​ = t 4

– p /4



)



__ p /4

= 2​÷2 ​     ​Ú ​   ​   ​f (cos2t)(cos t)dt

)

( 

( 

)

( 

( 

)

)

( 

( 

)

)

)

p  (x – p)sin(2x)sin ​ __ ​   ​ cos(x)  ​ 2 ______________________ = Ú​  ​  ​   ​​ ​       ​     ​ dx (2x – p) 0 p 



)

p  (p – x)sin(2x)sin ​ __ ​   ​  cos(x)  ​ 2 = Ú​  ​  ​   ​​ ​ _______________________          ​  ​dx p – 2x 0 p 

( 

( 

p  (p – x)sin(2p – 2x)sin ​ __ ​   ​ cos(p – x  ​ 2 = ​Ú ​  ​   ​​ ​ ______________________________            ​  ​dx 2(p – x) – p  0 p 

p /2 0

( 

0

p  x sin(2x)sin​ __ ​   ​ cos x  ​ 2 _________________ 5. Let I = ​Ú ​  ​   ​ ​ ​         ​  ​dx ...(i) 2x – p  0 p 

p /2



x

4. If f is a continuous function with ​Ú  ​   ​f (t)dt Æ • as |x| Æ •, then show that every line y = mx intersects

fi h(x) is an odd function.

]

sin(2k)x ___________ cos(2k – 2)x p /2 + _______ ​      ​ +  ​ ​​     ​    ​​ ​  ​ 2k ​ (2k – 2) 0



– p /2 p /2

)

sin 2x p /2 sin 4x _____ sin 2x p /2 = ​​ 1 + _____ ​   ​    ​​ ​  ​ + ​​ _____ ​   ​   + ​   ​    ​​ ​  ​ 2 0 4 2 0

p /2



2.113

...(ii)

Adding Eqs (i) and (ii), we get

0



=

__ p /4 2​÷2 ​     ​  ​  ​  

Ú 

p 

​f (cos2x)(cos x)dx

0

__ p /4



2I = 2​÷2 ​     ​Ú ​   ​   ​f (cos2x)(cos x)dx



I = 2​÷2 ​     ​Ú ​   ​   ​f (cos2x)(cos x)dx

__

0 p /4 0

p 



( 

)

sin2 kx = ​Ú ​   ​   ​​ ______ ​       ​  ​ cos x dx sin x 0

))

( 

( 

))

p 

( 

( 

))



p  = ​Ú ​  ​   ​​ sin(x)cos x sin ​ __ ​   ​  cos(x)  ​  ​dx 2 0



4 = – ​ ___2  ​  ​Ú  ​  ​   ​(t sin t )dt, p  p /2

3. Let I = ​Ú ​   ​   ​sin(2kx)cot x dx 0 p /2

( 

p  fi 2 = 2 ​Ú ​  ​   ​​ sin(x)cos x sin ​ __ ​   ​  cos(x)  ​  ​ dx 2 0

p /2



( 

p  2 = ​Ú ​  ​   ​​ sin(2x)sin ​ __ ​   ​  cos(x)  ​  ​dx 2 0

– p /2

( 

p  ​ Let ​ __ ​  cos x = t  ​ 2

)

2.114  Integral Calculus, 3D Geometry & Vector Booster

(  )

– p /2

fi 

4 = – ​ ___2  ​   ​Ú  ​  ​ ​(t sin t )dt p  p /2



8 = – ​ ___2  ​  ​Ú ​   ​   ​(x sin x )dx p  0



8 = – ​ ___2  ​  (– x cos x + sin x ​)p /2 ​ ​  ​ 0 p 

p /2



5





1 = ___ ​    ​   ​Ú ​   ​   ​|sin t |dt, 2p 0



1 = ___ ​    ​   ​Ú ​   ​   ​|sin x |dx 2p 0



1 2 = ___ ​    ​ × 4 = __ ​ p ​ 2p

)

4 = ​Ú ​    ​​ 1 + _____ ​  2      ​  ​dx 3 x –4

1

10. Given integral = Ú​  ​    ​e x(x – 1)n dx

(  |  | ) = ​​( x + log​ _____ | ​ xx +– 22  ​ |​ )​​ ​​  = ​( 5 + log ​ __ | ​ 37 ​  |​ – 3 – log ​| __​ 15 ​  |​ )​ = ​( 2 + log ​ ___ | ​ 157 ​  |​ )​ x–2 5 1 = ​​ x + 4 ◊ ​ ___  ​  log ​ _____  ​     ​  ​  ​​ ​​  2.2 x+2 3

Let I = ​Ú ​    ​e x(x – 1)n dx 0

5

1



3

0



= – (– 1)n – n I n – 1



In = – (– 1)n – n I n – 1 1

= ​Ú  ​   ​f (x)dx

0

– p 

1

= 0, since (1 – x2)sin x cos2x is an odd function.



= ​​( (x – 1)e x )1​​0​​  – ​Ú ​    ​exdx 0



= –  (– 1) – (e x​)10​ ​​ 

= 1 – (e – 1) = 2 – e

– 1

From Eq. (i), we can write

1

= ​Ú  ​ ​|x – 1|dx

I2 = – 1 – 2I1

– 1

= – 1 – 2(2 – e) = 2e – 5

0

Again, from Eq. (i), we can write

= ​Ú  ​ ​|t|dx, – 2

(Let  (x – 1) = t)



I3 = 1 – 3I2

= 1 – 3(2e – 5) = 16 – 6e

0



= ​Ú  ​ ​|x| – 2

p /2

= ​Ú  ​ ​(– x)dx – 2

( 

)

1 11. Given integral is Ú​  ​   ​   ​​ ________ ​       ​  ​dx 0 1 + tan3x

0



...(i)

Now, I1 = Ú​  ​    ​e x(x – 1)dx

1



= (– 1)n – n ​Ú ​    ​(x – 1)n – 1e x dx 0

8. Given integral = Ú​   ​ ​|1 – x|dx



= ​​( (x – 1)n e x )1​​0​​  – ​Ú ​    ​n(x – 1)n – 1e x dx 1

– p 



0

1

7. Given, Ú​   ​   ​(1 + x2)sin x cos2x dx



(Let  t = 2p x)

2p 

p 



9. Given integral = Ú​  ​    ​|sin(2p x)|dx 2p 

p 



=2

0

(  )

( 



1

x2 6. Given Ú​  ​    ​​ _____ ​  2      ​  ​ dx 3 x –4



– x2 0 = ​​ ____ ​   ​     ​​   ​  2 – 2



8 8 = – ​ ___2  ​  (1 – 0) = ___ ​  2  ​  p  p  5





p /2



( 

)

cos3x = ​Ú ​   ​   ​​ ___________ ​  3      ​  ​dx 0 cos x + sin3x

...(i)

Definite Integrals  p /2

( 

)

sin3x = ​Ú ​   ​   ​​ ___________ ​  3      ​  ​dx 0 sin x + cos3x Adding Eqs (i) and (ii), we get

p /2



( 

3

...(ii)

sin x + cos x 2I = ​Ú ​   ​   ​​ ​ ___________     ​  ​dx 0 sin3x + cos3x



3

( 

)

(  (  ( 

3

5

3

4

)

2

)

(2x3(x2 – 1)) + (x2 + 1)2 = ​Ú ​    ​​ _____________________ ​          ​  ​dx 2 (x2 + 1)2(x2 – 1)



3

) (  ) 3

(2x3) dx = ​Ú ​    ​​ _______ ​  2      ​  ​dx + ​Ú ​    ​​ _______ ​  2      ​  ​ 2 2 2 (x + 1) (x – 1)



3

( 

)

(  |  | )

(  ) (  |  |

p /4

= p (tan j – sec j ​)3p /4 ​p /4​ ​ __

(  ) (  |  | )



3 1 1 1 = ​Ú ​  ​   ​​ __ ​   ​  – __ ​    ​   ​dt + ​ __ ​   ​  log ​ __ ​   ​   ​  ​ t t2 2 2 5



3 1 10 1 = ​​ log|t| + __ ​   ​   ​​ ​  ​ + ​ __ ​    ​log ​ __ ​   ​   ​  ​ t 5 2 2

__

= – 2p (​÷2 ​     + 1) __

fi I = – p (​÷2 ​     + 1) 1

( 

|  | ) ) (  |  | )

) ( 

3p /4



( 

(  )

(  ) Ú  (  ) 1

x2  = – 2​  ​   ​​ _____ ​       ​  ​dx 3 – |x| 0



0 V 

n p + V

0 V 

V n p 

0 V 

0

= ​Ú ​  ​   ​|sin x|dx + ​Ú ​  ​   ​|sin x|dx = ​Ú ​  ​   ​sin x dx + Ú​   ​  ​   ​|sin x|dx p 

= ​Ú ​  ​   ​sin x dx + n ​Ú ​  ​   ​|sin x|dx 0

V



= – (cos x) ​ ​0​​  + n × 2



= 1 – cos V + 2n



= (2n + 1 – cos V)

16. The given integral = 3

)

)

0

)

p – j  = ​Ú  ​ ​   ​​​ _________     ​  ​ dj 1 + sin(j) p /4

1

1



p – j  = ​Ú  ​ ​   ​​ ​ ____________       ​  ​ dj 1 + sin(p – j) p /4 3p /4

( 

x2  = 0 – ​Ú  ​  ​​ _____ ​     ​   ​ dx – 1 3 – |x|



)

( 

1

sin x  x2  = ​Ú  ​   ​​ _____ ​     ​   ​ dx – ​Ú  ​   ​​ _____ ​       ​  ​dx – 1 3 – |x| – 1 3 – |x|





j  13. Let I = ​Ú  ​ ​   ​​ ________ ​     ​  ​ dj ...(i) 1 + sin j p /4

)

n p + V

(  1 1 = ​( __ ​   ​ log|6| – ___ ​    ​  )​ 2 10 3p /4

( 

sin x – x2 14. Given integral = Ú​   ​   ​​ ​ ________  ​     ​dx 3 – |x| – 1

15. Given integral = Ú​  ​   ​   ​|sin x|dx

3 1 1 = ​ log|2| – ___ ​    ​  ​ + ​ __ ​    ​log ​ __ ​   ​   ​  ​ 10 2 2



__

= p [( – 1 – ÷ ​ 2 ​   )  – (1 + ÷ ​ 2 ​   )  ]

|  | )

Let  x 2 + 1 = t

)

3p /4

t–1 1 1 1 1 = Ú​  ​  ​   ​​ ____ ​  2 ​    ​dt + ​ __ ​   ​  log ​ __ ​   ​   ​ – ​ __ ​  log ​ __ ​   ​   ​  ​ 2 2 2 3 t  5



)

= p  ​Ú  ​ ​   ​(sec2j – secj  tan j)dj



( 

(  ( 

3p /4

x2.2x dx x–1 3 1 __ _____ = Ú​  ​    ​​ _______ ​  2    ​    ​ + ​​ ​   ​    l og ​ ​     ​  ​  ​​ ​​  2 x+1 2 2 (x + 1)2

10

)

(1 – sin j)  = p  ​Ú  ​ ​   ​​ ​ _________       ​  ​ dj p /4 cos2j



10

( 

3p /4

(2x – 2x ) + (x + 2x + 1) = ​Ú ​    ​​ ​ ________________________          ​  ​dx 2 (x2 + 1)(x4 – 1)



)

(1 – sin j )dj  = p  ​Ú  ​ ​   ​​ ​ ____________       ​   ​ p /4 1 – sin2(j )

2x5 + x4 – 2x3 + 2x2 + 1 12. Given integral = Ú​  ​    ​​ ______________________ ​          ​  ​dx 2 (x2 + 1)(x4 – 1) 3

( 

3p /4

p  = ​Ú ​   ​ ​(1)dx = __ ​   ​  2 0 p  I = __ ​   ​  4

3p /4

dj  = p  ​Ú  ​ ​   ​​ _________ ​      ​  ​ 1 + sin(j) p /4

p /2



Adding Eqs (i) and (ii), we get p  2I = ​Ú  ​ ​   ​​ _________ ​       ​  ​ dj 1 + sin(j) p /4

)

3

2.115

...(ii)

( 

__

)

​ x     ​ ÷ ​Ú ​    ​​ ___________ ​  __     __ ​  ​dx ​÷5 ​    – x + ÷ ​ x     ​ 2

3– 2 = ​ _____  ​    2

2.116  Integral Calculus, 3D Geometry & Vector Booster 1 = __ ​   ​  2

1__ ​ ___   ​  ​ 3 ​    ÷

17. Given integral = Ú​  ​   ​ ​ [2sinx]dx p/4

3p/4

p

0

p/4

3p/4

= ​Ú ​   ​ ​  [2sinx]dx + Ú​  ​ ​ ​  [2sinx]dx + ​Ú   ​ ​   [2sinx]dx 5p/4

7p/4

2p

p

5p/4

7p/4



  + ​Ú ​  ​ ​  [2sinx]dx + Ú​   ​ ​ ​  [2sinx]dx + Ú​   ​ ​   [2sinx]dx

(  ) 7p 5p 7p + ​( ___ ​   ​ – ___ ​   ​  )​ ◊ (– 2) + (​  2p – ___ ​   ​  )​ ◊(–1)  4 4 4

)

3p p 5p = 0 + ​ ___ ​   ​ – __ ​   ​   ​ ◊ (1) + 0 + ​ ___ ​   ​ – p   ​ ◊ (– 1) 4 4 4  

( 

p p p = __ ​   ​  – __ ​   ​  – p – __ ​   ​  2 4 4 = – p



1__ ___   ​  ​ 3 ​    ÷ ​  x4 =   ​  ​ ​   ​ _____ ​   4   ​  ​ p – 1__ 1 – x ___ – ​    ​  ​ 3 ​    ÷ 1 ___ ​  __    ​ 3 ​    ÷ ​ x4 = p  ​  ​ ​   ​ _____ ​   4   ​    ​dx 1__ 1 – x – ​ ___   ​  ​ 3 ​    ÷

=

(  )

(  )

__ p x 1 18. Given f (x) = Asin ​ ___ ​   ​  ​ + B, f ¢ ​ __ ​   ​   ​ = 2​÷2 ​    2 2

Ú 

(  ( 

Ú 

(  (  ) )

p x 2A fi ​Ú ​  ​  ​ Asin ​ ___ ​   ​  ​ + B  ​ dx = ___ ​  p ​  2 0

)

1 Asin(p x/2) 2A fi ​​ –​ __________     ​  + B  ​​ ​​  = ___ ​  p ​  (p/2) 0

( 

)

2A 2A fi ​ – ___ ​  p ​ + B  ​ = ___ ​  p ​  4A fi B = ___ ​  p ​  __ 1 Also, f ¢ ​ ​ __ ​   ​ = 2​÷2 ​    2

Ú 

(  )

(  )

p p 1 1 f ¢ ​ __ ​   ​   ​ = A ​ __ ​  cos ​ __ ​   ​  × __ ​    ​  ​ 2 2 2 2

( 

)

(  )

Ap p Ap = ___ ​   ​ cos ​ __ ​   ​   ​ = ____ ​  __  ​  2 4 2​÷2 ​   

__ Ap__ fi ​ ____   ​ = 2​÷2 ​    2​÷2 ​    8 fi A = __ ​ p ​ 32 4 8 ___ fi B = __ ​ p ​ × __ ​ p ​ = ​  2 ​  p 1 ___   __  ​  ​ 3 ​    ÷ ​ x4 2x =  ​  ​ ​    ​ _____ ​   4   ​ cos–1  ​ _____ ​   2   ​   ​  ​ dx.  1__ 1 – x 1+x – ​ ___   ​  ​ 3 ​    ÷

( 

(  ) Ú  (  ) Ú  (  )

x4 = 2p ​Ú ​   ​ ​  ​ _____ ​   4   ​ ​ dx 0 1–x



1__ ​ ___   ​  ​ 3 ​    ÷

x4 I = p  ​  ​  ​ ​  ​ _____ ​   4   ​  ​ dx 0 1–x



1 ___ ​  __  ​  ​ 3 ​    ÷

x4 = – p ​  ​  ​ ​ ​ _____ ​  4      ​  ​ dx 0 x –1

( 

( 

))

)

1 = – p ​Ú ​   ​ ​  ​ 1 + _____ ​  4      ​  ​ dx 0 x –1

(  )



Ú 

​÷3 ​   

x4 2I = p   ​Ú   ​ ​  ​ _____ ​   4   ​  ​ dx 1__ 1 – x – ​ ___   ​ 







19. Let I

(  (  (  )))

  x4 2x – ​Ú   ​ ​ ​ _____ ​   4   ​  ​ cos–1  ​ _____ ​   2   ​   ​  ​  ​ dx 1 1 – x 1 +x __  ​  – ​ ___

1 ___ ​  __  ​  ​ 3 ​    ÷

p px f ¢(x) = A ​ __ ​  cos ​ ___ ​   ​   ​ 2 2



1 ___ ​  __  ​  ​ 3 ​    ÷

1 ___ ​  __   ​ 3 ​    ÷  ​ x4 ​   4   ​  ​ dx – I p   ​  ​ ​  ​ _____ 1__ 1 – x – ​ ___   ​  ​ 3 ​    ÷ 1 ___ ​  __  ​  ​ 3 ​    ÷



(  ) (  )

)))

​÷3 ​    1 ___ ​  __  ​  ​ 3 ​    ÷

2A Also, ​Ú ​  ​ f (x) dx = ___ ​  p ​  0

( 

( 

2x cos–1  ​ _____ ​   2   ​   ​  ​  ​ dx 1+x

(  )

1

1

))

​÷3 ​   

0

( 

( 

x4 – 2x =  ​Ú   ​ ​   ​ _____ ​   4   ​ cos–1  ​ _____ ​      ​   ​  ​ dx 1 1 – x 1 + x2 __  ​  – ​ ___

2p



= – p

1 ___ ​  __   ​ 3 ​    ÷  ​ ​  ​  ​ ​  ​1 0

(  Ú  (  (  Ú 

1 ___ ​  __   ​ 3 ​    ÷  ​ ​  ​  ​ ​   ​ 1 0

)

1 + _____________ ​  2      ​  ​ dx (x – 1)(x2 + 1)

))

1 1 1 + __ ​   ​ ​  _______ ​       ​ – _______ ​       ​  ​  ​ dx 2 (x2 – 1) (x2 + 1)



= – p



​  __  ​  x–1 1 __ 1    = – p  ​​ x + ​ __ ​  ​   ​    ​ log ​ ​ _____   ​  ​ – tan–1x  ​  ​​​÷​ 3 ​ ​ 2 2 x+1 0



1–÷ ​ 3 ​     __ p 1 1 1 __  = – p  ​ ___ ​  __  ​ + __ ​    ​  ​ __ ​   ​  log ​ ​ ______  ​  ​ – ​   ​   ​  ​ 2 2 6 ​ 3 ​    1+÷ ​ 3 ​    ÷

(  (  |  |

(  | 

( 

20. We have, Un + 2 – Un + 1 p

( 

)

p

( 

1 ___

))

__

| )) )

1  – cos(n + 2)x 1  – cos(n + 1)x = Ú​  ​  ​ ​ ______________ ​          ​  ​ dx – ​Ú ​  ​ ​ ______________ ​          ​  ​ dx 1 – cosx 1 – cosx 0 0

Definite Integrals  p

( 

p

)

cos(n  + 1)x – cos(n + 2)x = ​Ú ​  ​  ​ ______________________ ​           ​  ​ dx 1 – cosx 0

( 

( 

)

)

3 2sin ​ n + __ ​   ​   ​x 2 = ​Ú ​  ​ ​ ​ ___________  ​   ​ dx x    __ 0 sin ​ ​    ​  ​ 2 p

(  )

21. Given

(  ( 

) (  ) (  ) )

( 

)

fi  Un + 2 – Un + 1



1 2sin ​ n + __ ​   ​   ​x 2 = ​Ú  ​ ​  ​ ​ ___________     ​   ​ dx x __ 0 sin ​ ​    ​  ​ 2 p

(  )



( 



( 

(  ) x 2cos(n  + 1)x sin ​( __ ​    ​ )​ 2 = ​Ú​  ​   ​ __________________ ​        ​ dx x  ​  sin ​( __ ​    ​ )​ 2

( 



0

)



))

)

p



= ​Ú ​  ​ (2cos(n + 1)x) dx 0

( 

)



sin(n  + 1)x 0 = 2 ​​ __________ ​        ​ ​​  ​​  (n + 1)x p =0

Thus,

Un + 1 + Un = 2Un + 1



[ 

fi Now,

Thus, fi fi

(  ) 1 – cosx = Ú​ ​  ​ ​(​  _______   ​  ​ dx = p 1 – cosx )  

(  ( 

)

 ( ( 

)

)



1 1 = _______ ​  2   2    ​ ​Ú ​  ​ ​ a ​ __ ​ x ​ – 5  ​ – b(x – 5)  ​ dx (a – b ) 1



x2 1 = _______ ​  2   2    ​ ​​ a(log|x| – 5x) – b ​ __ ​   ​  – 5x  ​  ​​ ​​  3 1 (a – b )



22b 1 = ​ _______  2    ​ ​ ​ a(log|2|) – ____ ​   ​    ​ + 10b – 5a  ​ 2 3 (a – b )

22. Let

x sin2nx I = ​Ú ​   ​ ​ ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx

2

(  ( 

)

)

( 

( 

( ( 

)

( 

)

( 

)



(2p – x)sin2nx = ​Ú ​   ​ ​ ​ ​ ____________        ​  ​ dx 0 sin2nx + cos2nx



sin2nx = 2p ​Ú ​   ​ ​  ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx

(  Ú  (  Ú  (  Ú  (  Ú  ( 

) ) )

sin2nx = 2p ​  ​  ​ ​ ​ ____________ ​  2n       ​  ​ dx – I 0 sin x + cos2nx

)

2p

)



sin2nx 2I = 2p ​  ​  ​ ​ ​ ____________ ​  2n      ​   ​ dx 0 sin x + cos2nx

)



sin2nx I = p ​  ​  ​ ​  ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx



(1 – cosnt) 1 = __ ​   ​  ​Ú ​  ​  ​ ​ _________ ​   ​ dt, 2 0 (1 – cost)

( 

)



2p

(1 – cos2nq) = Ú​  ​   ​ ​   ​​ __________       ​  ​ dq 0 (1 – cos2q) p

)

1 a ​ __ ​ x ​ – 5  ​  – b(x – 5) __________________ = ​Ú ​  ​  ​ ​      ​     ​ dx 1 (a2 – b2) 2



2sin (nq) = ​Ú ​   ​ ​  ​ ________ ​  2  ​     ​ dq 0 sin (q) p/2

)

x sin2nx   – ​  ​  ​ ​    ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx

sin nq Also, ​Ú ​   ​ ​  ​ ______ ​  2  ​    ​ dq 0 sin q

( 

2

2p

(  )

( 

( 

2p

2

2

...(ii)

1 (a2 – b2) f (x) = a ​ __ ​ x ​ – 5  ​ – b(x – 5) 1 a ​ ​ __ x ​ – 5  ​  – b(x – 5) __________________ f (x) = ​      ​    (a2 – b2)

1

0

p/2

(  )

2p

U1 – U0 = p U1 = U0 + p Un = U0 + np = np] p/2

...(i)

​Ú ​  ​ f (x) dx

p

U1

1 __ ​ x ​ – 5

1 a f  ​ __ ​ x ​  ​ + b f (x) = x – 5

2p

p

1–1 Now, ​ U0 = Ú​  ​  ​ ​​ _______     ​  ​ dx  ​= 0 1 – cosx 0 ​

(  )

Multiplying (i) by a and (ii) by b, and subtracting, we get 1 a2f (x) – b2f (x) = a ​ __ ​ x ​ – 5  ​ – b(x – 5)

3 1 2 sin ​ ​ n + __ ​   ​   ​ x  – sin ​ n + __ ​    ​  ​x  ​ 2 2 = ​Ú ​  ​    ​ __________________________ ​       ​     ​ dx x 0 sin ​ __ ​    ​  ​ 2 p



( (  )

np 1 = __ ​   ​  × np = ___ ​   ​  2 2

Replacing x by 1/x, we get

Therefore, (Un + 2 – Un + 1) – (Un + 1 – Un) p

)

(1 – cosnx) 1 = ​ __ ​  ​Ú ​  ​   ​ ​ __________    ​   ​ dx 2 0 (1 – cosx)

1 a f (x) + b f  ​ __ ​ x ​  ​ =

3 2sin ​ n + __ ​   ​   ​x 2 = ​Ú ​  ​  ​ ​ ___________     ​   ​ dx x __ 0 sin ​ ​    ​  ​ 2 p

( 

2.117

2p

(Let  2q = t)

)

))

2

)

2.118  Integral Calculus, 3D Geometry & Vector Booster

(  Ú  ( 

) )

2p



2p



37

sin2nx I = 4p ​Ú ​   ​ ​  ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx sin2nx = 4p ​  ​  ​ ​   ​ ____________ ​  2n       ​  ​ dx 0 sin x + cos2nx

...(i)

1

p/2

( 

)

sin2nx + cos2nx 2I = 4p ​Ú ​   ​ ​  ​ ​ ____________     ​  ​ dx 0 sin2nx + cos2nx p/2



= 4p ​Ú ​   ​ ​  dx



p = 4pp ​ __ ​  = 4p 2 2 I = 2p 2 p

23. Let

( 

)

2x sin x = 0 + Ú​   ​ ​ ________ ​       ​ dx – p 1 + cos2x x sin x = 4 ​Ú ​  ​ ________ ​       ​ dx 2 0 1 + cos x (p – x)sin(p –  x) = 4 ​Ú ​  ​  ​ ______________         ​ dx 0 1 + cos2x (p – x)sinx = 4 ​Ú ​  ​  ​ _________  ​    dx 2 0 1 + cos x p



p sinx xsinx = 4 ​Ú ​  ​ ________ ​       ​ dx – 4 Ú​  ​  ​ ________ ​       ​ dx 2 2 0 1 + cos x 0 1 + cos x p sin x = 4 ​Ú ​  ​ ________ ​       ​ dx – I 2 0 1 + cos x p



p sinx 2I = 4 ​Ú ​  ​  ​ ________      ​ dx 2 0 1 + cos x p



psinx I = 2 ​Ú ​  ​ ________ ​       ​ dx 2 0 1 + cos x



sinx I = 4p ​Ú ​   ​ ​  ​ ________      ​ dx 2 0 1 + cos x



= – 4p (tan–1 (cosx)​)​2​ ​



= – (–1 – 1)

25. Given

=2

p  __ ​  ​ 

( 

0

p = – 4p ​ 0 – __ ​   ​   ​ 4 = p2

)

( 

2

)

4

( 

2

)



2x ​esin(x ​ )​ = ​Ú ​  ​ ​ _______ ​   ​    ​ dx 2 1



esin t = ​Ú ​  ​ ​ ​ ____ ​      ​   ​ dt, x2 = t t 1



esin x = ​Ú ​  ​ ​   ​ ____ ​  x    ​  ​  dx 1



= (F(x))​|16 ​ ​  ​ 1



= F(16) – F(1)



k = 16

26. Given

a + b = 4.

Let

f (a) = Ú​  ​  ​ g(x) dx + Ú​  ​  ​ g(x) dx

16

(  )

16

(  )



b

0

0

a

4 – a

0

0

= ​Ú ​  ​ g(x) dx + ​Ú ​   ​ ​  g(x) dx

df (a) fi ​ _____    ​ = g(a) – g(4 – a) da df (a) fi ​ _______     ​ = g(a) – g(4 – a) d(b – a) df (a) fi ​ ________     ​ = g(a) – g(4 – a) d(4 – 2a)

p/2





a

p

p



= – (cos(37 p) – 1)

p

2x 2x sin x = ​Ú  ​ ​ ________ ​   2    ​ dx + Ú​   ​ ​ ________ ​       ​ dx – p 1 + cos x – p 1 + cos2x

p





2​esin(x ​ )​ Now, ​Ú ​  ​  ​ ______ ​  x      ​  ​  dx 1

p



= – (cos t)​|37p ​ ​  ​ 0

4

2x(1 + sinx) I = ​Ú  ​ ​   ​ ​ __________      ​   ​ dx – p 1 + cos2x

p





(  )

p



(Let  p ln x = t)

0

esinx fi ​Ú ​  ​ ​ ____ ​  x    ​  ​ dx = F(x)  

p



= ​Ú ​   ​ ​  sin tdt,



d esinx ​ ___  ​  (F(x)) = ____ ​  x    ​,  x > 0 dx  

0



)

37p

...(ii)

Adding Eqs (i) and (ii), we get

( 

e p sin(p lnx) 24. Given integral = Ú​  ​   ​ ​ ​ _________ ​  ​  ​ dx x      



df (a) – ​ _____ ​ = g(a) – g(4 – a) 2da

df (a) _____________ g(a  – 4) – g(a) fi ​ _____    ​ = ​   ​      >0 2 da Thus,

a

b

0

0

f (a) = Ú​  ​  ​ g(x) dx + Ú​  ​  ​ g(x) dx

It increases as (b – a) increases.

Definite Integrals 

27. Given integral



x

g (x) = Ú​  ​  ​ cos4t dt 0

Now,

g(x + p)





= ​Ú ​   ​ ​ cos t dt



0

x



= ​Ú ​  ​ cos t dt + Ú​  ​   ​ ​ cos t dt 4

x

0

28. Given

= ​Ú ​  ​ cos t dt + Ú​  ​  ​ cos t dt 4

0

= g(x) + g(p)

x



(1 + x) f (x) = 1



1 f (x) = _____ ​       ​ 1+x 1 f (1) = __ ​   ​  2



1



–1



= ​Ú  ​ ​ (x – [x]) dx 1

1

( 

31. Let

–1

= 0 – ​Ú  ​ ​ ([x]) dx

p = ​ __ ​  – 2 ​Ú ​  ​ tan–1 x dx 2 0 1 p 1 __ = ​   ​  – 2 ​​ xtan–1 x – __ ​   ​  log|x2 + 1|  ​​ ​​  2 2 0 p p 1 = __ ​   ​  – 2 ​ __ ​   ​  – __ ​   ​  log2  ​ 2 4 2 p p = __ ​   ​  – __ ​   ​  + log2 2 2 = log 2

(  ( 

0

1

–1

0

0

1

dx I = ​Ú ​ ​ ​ _______ ​      ​ ...(i) 1 + cosx p/4

–1

0

dx = ​Ú ​ ​ ​ _______ ​      ​ p/4 1 – cosx 3p/4

3p/4

= ​Ú  ​ ​ dx

( 

(  )

2 = ​Ú ​ ​ ​ ​ _____ ​  2     ​  ​  dx p/4 sin x



= ​Ú ​ ​ ​ (2cosec2x) dx

3p/4



= (x)​|0–1 ​   ​ 

30. Given,

= [0 – (– 1)] = 1

p/4

3p ​ ___ ​  4 – (2cot x)​|​p ​  ​ __ ​   ​  4



=

1 ​Ú ​  ​ tan–1  ​ ________ ​       ​  ​  dx 0 1 – x + x2



= – 2(–1 – 1)

1



=4

( 

)

)

x  – (x –  1) = ​Ú ​  ​ ​ tan–1 ​ ___________ ​         ​  ​ dx 1  + x(x – 1) 0

...(ii)





)

1 1 2I = ​Ú ​ ​ ​ ​ _______ ​       ​ + _______ ​       ​  ​ dx 1 + cosx 1 – cosx p/4



–1



)

Adding Eqs (i) and (ii), we get

= – ​Ú  ​ ​ (–1) dx – ​Ú ​  ​ (0) dx

( 

)

3p/4



= – ​Ú  ​ ​ ([x]) dx – ​Ú ​  ​ ([x]) dx

1

)

3p/4

= ​Ú  ​ ​ (x) dx – ​Ú  ​ ​ ([x]) dx

0



0

p 1 = __ ​   ​  – Ú​  ​  ​ tan–1 ​ ________ ​       ​  ​ dx 2 0 1 – x + x2



–1



= 2 ​Ú ​  ​ tan–1 x dx



1



0

1

– 1



1

= ​Ú ​  ​ tan–1 x dx – ​Ú ​  ​ tan–1 (x) dx

p = __ ​   ​  – Ú​  ​  ​ cot–1 (1 – x + x2) dx 2 0



–1

0

1





1

1

0

1

​Ú  ​ ​ f (x) dx



1

0

f (x) = 1 – x f (x)



0

1

1

1



29. Given,

0

Also, ​Ú ​  ​ tan–1 (1 – x + x2) 

​Ú ​  ​ f (t) dt = x + ​Ú ​  ​ t f (t) dt



1

1

x

0

1

0

4

0

0

= ​Ú ​  ​ tan–1 x dx – ​Ú ​  ​ tan–1 (– x) dx

p

x





0

= ​Ú ​  ​ tan–1 x dx – ​Ú ​  ​ tan–1 [(1 – x) – 1] dx

x + p

4

1

= ​Ú ​  ​ tan–1 x dx – ​Ú ​  ​ tan–1 (x – 1) dx

x + p

4

1

2.119

I=2

2.120  Integral Calculus, 3D Geometry & Vector Booster 32. Given,

2



p/2

Adding Eqs. (i) and (ii), we get

​Ú ​ ​ ​ [2sinx]dx



5p/6

p

p/2

5p/6

= ​Ú ​ ​ ​ [2sinx] dx + ​Ú   ​ ​  [2sinx] dx 7p/6

7p/6

p

3p/2

( 

)

( 

)

p 7p __ ​   ​   ​  ◊ 1 + (0) + ​ ___ ​   ​ – p   ​ ◊ (–1) 2 6

5p = ​ ___ ​   ​ – 6

( 

)

3p 7p   + ​ ___ ​   ​ – ___ ​   ​   ​ ◊ (– 2) 2 6 2p __ p ___ 4p ___ = ​   ​ – ​   ​  – ​   ​  6 6 6 p __ = – ​   ​  2

(  Ú  (  p

33. Let

...(i) ...(ii)

Adding Eqs (i) and (ii), we get

( 

3

– 2

34. Given

)

2

​  ​ ​ ecosx sinx dx – 2 ____________

3

=  ​        ​ + ​Ú ​  ​ 2dx odd function 2



= 0 + 2(3 – 2)



=2

|  |

= ​Ú  ​ ​ tdt, loge x = 1

(  )



t2 2 = ​​ __ ​   ​   ​​   ​  2 –1

x



1 = ​ 2 – ​ __ ​   ​ 2

0



3 = ​ __ ​  2

= p I = __ ​   ​  2

g(x) = Ú​  ​  ​ f (t) dt

37. We have,

g(2) = Ú​  ​  ​ f (t) dt 1

2

0

1



lnt f (x) = Ú​  ​  ​ ____ ​      ​ dt 1 +t 1

Now,

lnt 1 f  ​ __ ​ x ​  ​ = Ú​  ​   ​ ​ ​ ____    ​ dt 1 +t 1

= Ú​  ​  ​ f (t) dt + Ú​  ​  ​ f (t) dt

1 Now, ​ __ ​  £ f (t) £ 1 2

(  )

...(i)

1/x

1 1 Let  t = __ ​ y ​ fi dt = – ​ __2  ​  dy y The given integral reduces to

1



1 fi ​Ú ​  ​ ​ __ ​  dt £ ​Ú ​  ​  1 ◊ dt 02 0 1

1 fi ​ __ ​  £ ​Ú ​  ​ f (t) dt £ 1 2 0 1 Also, 0 £ f (t) £ __ ​   ​  2 2

(  ) x

0

2

– 2

–1

(x​)p0​ ​ ​

1

3

= ​Ú  ​ ​ ecos x sinx dx + Ú​  ​  ​ 2dx

2

= Ú​  ​  ​ dx



2

2





2



– 2

Ú 

0



3

loge x 36. Given ​Ú  ​ ​  ​ _____ ​  x    ​  ​ dx e–1

p



2

= ​Ú  ​ ​ f (x) dx + ​Ú ​  ​ f (x) dx

e2

ecos x + e– cos x 2I = Ú​  ​  ​ ​​ ___________     ​  ​ dx e– cos x + ecos x 0



2

2

e– cos x = ​  ​ ​ ​ ___________ ​  – cos x       ​  ​ + ecos x 0 e p

1

35. Given ​Ú  ​ ​ f (x) dx



) )

p

2

3 1 fi ​ __ ​  £ ​Ú ​  ​ f (t) dt + ​Ú ​  ​ f (t) dt £ __ ​   ​  2 0 2 1



ecos x I = ​Ú ​  ​ ​ ___________ ​  cos x       ​  ​ + e– cos x 0 e



1

...(ii)

1 1 ​ __ ​  £ ​Ú ​  ​ f (t) dt + ​Ú ​  ​ f (t) dt £ 1 + __ ​   ​  2 0 2 1

  + ​Ú ​  ​ ​ [2sinx]dx + ​Ú  ​ ​ ​ [2sinx] dx

1 0 £ ​Ú ​  ​ f (t) dt £ __ ​   ​   2 1

3p/2

...(i) 2

1 fi ​Ú ​  ​ 0 dt £ ​Ú ​  ​ f (t) dt £ ​Ú ​  ​ __ ​    ​ dt 1 1 1 2

y



(  ) (  )

1 ln ​ __ ​ y ​  ​ dy = ​Ú ​  ​ _______ ​       ​ × – ​ ___2 ​  1 1 1 + ​ __ y ​ y ​  ​ y

–ln(y) dy = ​Ú ​  ​ _____ ​     ​ × – ​ ___ y ​  1 1 + y

Definite Integrals  y



ln(y) = ​Ú ​  ​ _______ ​      ​ dy y(1 + y) 1 t



ln(t) = ​Ú ​  ​ ______ ​      ​ dt t(1 + t) 1

...(ii)

x

(  )

3x2 3 F¢(x2) = ___ ​   ​ + 1 = ___ ​    ​ + 1 2x 2x



3 f (x2) = ___ ​     ​ + 1 2x

Putting x = 2, we get

Adding Eqs (i) and (ii), we get



x

ln(t) ln(t) 1 f (x) + f  ​ __ ​ x ​  ​ = Ú​  ​  ​ ______ ​      ​ dt + Ú​  ​  ​ ______ ​      ​ dt 1 (1 + t) 1 t(1 + t)



3 f (4) = __ ​   ​  ◊ 2 + 1 = 4 2

40. **

x

x

(1 + t)ln(t) = ​Ú ​  ​ ​ _________ ​ dt     t (1 + t) 1



41. Given



ln(t) = ​Ú ​  ​ ____ ​      ​  dt t 1



(ln t)2 (ln x)2 =  ​ ​​_____  ​    ​​  ​​  = _____ ​   ​    2 ​ 2 1

|

x

(  ) (  )

lne 1 1 f (e) + f  ​ __ ​ e ​  ​ = ​​ ___ ​   ​  ​​ ​ = __ ​   ​ . 2 2 2

(  ) Ú  (  ) Ú  (  ) p

38. Let

2

cos x I = ​Ú  ​ ​ ​ _____ ​     ​  ​ dx x  –p 1 + a

...(i)

x2 – f ¢(x) = 0



x2 = ​÷2  – x2   ​



x4 = 2 – x2



x4 + x2 – 2 = 0



(x2 + 2)(x2 – 1) = 0



x = ± 1

...(ii)

( 

)

p



= ​Ú  ​ ​ (cos2x)dx



= 2 ​Ú ​  ​ (cos2x)dx



1 = __ ​   ​   ​Ú ​   ​ ​ f (t)dt, 2 6



1 = __ ​   ​  ​Ú ​  ​ ​ f (t)dt 2 0



1 = __ ​   ​  ​Ú ​  ​ ​ f (x)dx 2 0



1 = __ ​   ​  × 6 ​Ú ​  ​ f (x)dx 2 0



= 3 I

6I

1

–p

p

0



( 

)

2

1 + cos x = 2 ​Ú ​  ​ ​​ ________  ​    ​ dx 2 0

(  ( 

2

(Let  2x = t)

6I

(1 + ax) cos2x 2I = ​Ú  ​ ​ ​ ​ ___________     ​   ​ dx (1 + ax) –p

p

_____

6 + 6I

ax cos2x = ​  ​ ​ ​ _______ ​     ​ ​ dx 1 + ax –p p

Also,

3

Adding Eqs (i) and (ii), we get fi

f ¢(x) = ÷ ​ 2  – x2   ​

42. Given ​Ú ​   ​ ​ f (2x)dx

cos2x = ​  ​ ​ ​ ______ ​       ​  ​ dx – x –p 1 + a p



_____



3 + 3T

p



_____

f (x) = Ú​  ​  ​ ​÷2  – t2   ​ dt 1

x

Thus,

2.121

))

p

sin x 1 I = ​​ __ ​   ​  ​   x + _____ ​   ​    ​  ​​ ​ ​ 2 2 0 p = __ ​   ​  2

43. Given, 1/2

( 

(  ) )

1–x ​Ú   ​ ​  ​ [x] + ln ​​ _____  ​   ​  ​ dx 1+x –1/2 1/2

1/2

(  (  ))



1–x = ​Ú   ​ ​  ([x])dx + ​Ú   ​ ​  ​ ln ​​ _____  ​  ​  ​ dx 1+x –1/2 –1/2



= ​Ú   ​ ​  ([x])dx + 0

x

39. Given

F(x) = Ú​  ​  ​ f (t)dt



F ¢(x) = f (x)

Also,

F(x2) = x2 (x + 1) = x3 + x2



F¢(x2) ◊ 2x = 3x2 + 2x

0

1/2

–1/2



0

1/2

–1/2

0

= ​Ú   ​ ​  ([x])dx + Ú​  ​   ​ ​ ([x])dx

2.122  Integral Calculus, 3D Geometry & Vector Booster

0

1/2



f ¢(x) = 2x ​( ​e– (x ​  + 2x  + 1)​ – e​ – x ​ ​ )​

–1/2

0



f ¢(x) = 2x​e– x ​ ​  ​( ​e– (2x ​  + 1)​ – 1 )​

= ​Ú   ​ ​  (–1)dx + ​Ú ​   ​ ​ (0)dx = (–1)(x)​|0–1/2 ​   ​ 

( 

)|



2 47. Given ​Ú ​  ​ ​ x f (x)dx = __ ​   ​  t 5 5 0

I(m, n) = Ú​  ​  ​ t  (1 + t) dt n

m + 1

)|

1

1

t n m + 1 =  ​​​ (1 + t)n _____ ​     ​   ​  ​​ ​​ – _____ ​     ​Ú​   ​  ​t (1 + t)n – 1 dt m+1 0 m+10 ​ n 2n = _____ ​       ​– ​ _____     ​ I(m + 1, n – 1) m+1 m+1 I = ​Ú ​   ​ ​ f (sin2x)sin x dx

...(i)



t 2 f (t 2)(2t) = 2t 4



1 f (t 2) = __ ​   ​  t 5 1 ​     ​ = __ ​    ​ (  ) ____ 2 2 ​( __ ​   ​  )​ 5

4 f  ​ ___ ​    ​  ​ = 25



p/2

= ​Ú ​   ​ ​ f (sin2x)cos x dx

...(ii)

0

Adding Eqs (i) and (ii), we get

2I =

p __ ​    2​ ​  ​ ​   0

Ú 

p __ ​   ​  2



1–x 48. Given ​Ú ​  ​ ​ ​ _____     ​ ​  dx 1+x 0

(  ( 

)) p Let ​( __ ​   ​  – x )​ = t 4

p __ ​   

=

4 __  ​ ​÷2 ​  ​      ​ ​ f (cos2t)(cost)dt

=

4 __ ​ 2​÷2 ​     ​  ​ ​ ​ f (cos2t)(cost)dt

Ú 

p – ​ __ ​  4

Ú 



p __    ​ 





=

Ú 

__

0 p __ ​   ​  4

2I = 2​÷2 ​     ​Ú ​  ​ ​ f (cos2x)(cosx)dx 0

__

p __ ​   ​  4

I = ​÷2 ​     ​Ú ​  ​ ​ f (cos2x)(cosx)dx 0

x2 + 1

46. Given

f (x) = Ú​  ​  ​ ​ ​e​ ​ dt



 ( ((   )))  ( ((   )))

Let  x = cosq





q sin ​ __ ​   ​   ​ 2 q q _______ = Ú​  ​   ​ ​ ​ ​     ​   ​ 2sin ​ __ ​   ​   ​ cos ​ __ ​   ​   ​ dq 2 2 q 0 __ cos ​ ​   ​   ​ 2



q = Ú​  ​   ​ ​ 2sin2  ​ __ ​   ​   ​ dq 2 0



= Ú​  ​   ​ ​ (1 – cosq)dq

p/2

p/2

(  ) (  )

(  )

p/2 0

p __ ​   ​ 



= (q – sinq)​|0​2​ ​



p = ​ __ ​   ​  – 1  ​ 2

|  |

49. Let f (x) be a differentiable function defined as f : [0, 4] Æ R, show that (i) 8f ¢(a) f (b) = {f (4)}2 – {f (0)}2 when a, b Œ (0, 4)

(ii) ​Ú ​  ​ f (x)dx = 2[a f (a 2) + b f (b 2)] 0

x2

2

)

4

–t2

2

________

q p/2 sin ​ __ ​   ​   ​ 2 = Ú​  ​   ​ ​ ​ _______ ​     ​   ​ sinq dq q 0 cos ​ __ ​   ​   ​ 2

0

4 __ ​ ​  2​÷2 ​     ​  ​ ​ f (cos2x)(cosx)dx

( ÷ 

1 – cosq = – ​Ú  ​ ​ ​ ​ ​ ________     ​   ​ sinq dq, 1 + cosq p/2

p  __ ​ 



÷ 

______

0

__ p = ​÷2 ​     ​Ú ​  ​ ​ f (sin2x) ​ sin ​ x + ​ __ ​   ​  ​ dx 4 0



1

​ f (sin2x)(sinx + cosx)dx

2 Let  t = __ ​    ​, then 5



0



+

t2

p/2

45. Let

2

Clearly f (x) increases in (0, •).

m

( 

4

4

O

1 = (–1) ​ ​ 0 + ​ __ ​   ​  ​ 2 ​ 1 __ = – ​   ​   2 0



4



1

44. Given

4

4

f ¢(x) = e​ – (x ​  + 1) ​ ◊ 2x – e​ – x ​ ​ ◊ 2x

when 0 < a, b < 2 [IIT-JEE, 2004]

p/3

50. Let

( 

)

2

p + 4x3 I = ​Ú   ​ ​ ​ ​ _____________       ​  ​ dx p – p/3 2 – cos ​ |x| + __ ​   ​   ​ 3 p/3



Definite Integrals 

( 

( 

)



( 

)

)

( 

p/3

Differentiating both sides w.r.t. x, we get x2

3

)

4x   + Ú​    ​ ​ ​ _____________ ​        ​  ​ dx p – p/3 2 – cos ​ |x| + __ ​   ​   ​ 3 p/3



 ( ( 

( 

)

)

p/3



)

)

)

( 

)

( 

)

( 

(  (  ( 

)

( 

)

cosx   + cosx ​ ________ ​      ​  ​ (2x) 1 + sin2x

(  )

dy (–1) Now, ​​ ___ ​    ​  ​​ ​ = 0 + (–1)(2p) ◊ ​ _____     ​ 1+0 dx x = p = 2p 52. The given integral can be written as 0

​Ú  ​ ​ ((x + 1)3 + 2 + (x + 1) cos (x + 1))dx – 2



Let  (x + 1) = t 1



= ​Ú  ​ ​ (t3 + 2 + t cost) dt –1 1



1

= ​Ú  ​ ​ (t3 + t cos t) dt + ​Ú  ​ ​ 2dt –1

–1



= 0 + Ú​   ​ ​ 2dt

53. Given,

= 2(1 – (–1)) = 4

–1

sinx

)

(Let  t/2 = y)



0 – sin2x f (sinx) ◊ cosx = – cosx

1 f (sinx) = _____ ​  2   ​  sin x 1 fi f (x) = __ ​  2  ​  x 1 1 __  ​  ​ = _____ fi f  ​ ​ ___ ​   2 ​  =3 1 ​ 3 ​    ÷ ___ __ ​​ ​    ​  ​​ ​ ​ 3 ​    ÷ 54. Given integral is = fi

)

sec2y dy = 4p ​Ú ​ ​ ​ ​ ​ ____________       ​  ​ sec2y + 2tan2y p/6



sec2y = 4p ​Ú ​ ​ ​ ​ _________ ​       ​  ​ dy 2 p/6 1 + 3tan y



sec2y 4p = ___ ​   ​ ​Ú ​ ​ ​ ​ _____________ ​        ​  ​ dy __ 3 p/6 (​  1/​÷3 ​     )2​ + tan2y

p/3

___ ​    ​ 16

1



p/3

__

​Ú   ​ ​  t2 f (t)dt = 1 – sinx

dy = 4p ​Ú ​ ​ ​ ​ _________ ​   2    ​  ​, p/6 1 + 2sin y p/3

( 

dy cos​÷q    ​  __  ​ ___  ​ = – sinx ​Ú  ​ ​ ​ _________ ​     ​ ​ dq dx 2 1 + sin2​÷q    ​  p

1

dt = 2p ​Ú ​ ​ ​ ​ ____________ ​        ​  ​ p/3 1 + 2sin2 (t/2) p/3



( 

( 

dt = 2p ​Ú ​ ​ ​ ​ ____________ ​        ​  ​ 1 + (1 – cos t) p/3 2p/3



)

dt = 2p  ​Ú ​ ​ ​ ​ _______ ​       ​  ​,  (Let  t = x + p/3) 2 – cos t p/3 2p/3



( 

( 

dx = 2p  ​Ú ​   ​ ​ ​ _____________ ​        ​  ​ p 0 2 – cos ​ x + __ ​   ​   ​ 3 2p/3



)

p = 2 ​Ú ​   ​ ​ ​ _____________ ​       ​  ​ dx p 0 2 – cos ​ |x| + __ ​   ​   ​ 3 p/3



)

p = ​Ú   ​ ​ ​ _____________ ​       ​  ​ dx + 0 p – p/3 2 – cos ​ |x| + __ ​   ​   ​ 3

( 

)

cos​÷q     ​ __  y = cosx ​Ú ​ ​ ​ ​ ​ _________    ​  ​ dq 2 2 1 + sin ​÷q     ​ p ___ ​    ​ 16

p = ​Ú   ​ ​ ​ _____________ ​       ​  ​ dx p – p/3 2 – cos ​ |x| + __ ​   ​   ​ 3

( 

__

2.123

)

)

__

÷  ​ 3 ​ 

(  ) (  )

p

[  (  )

( 

)]

1 1 ​Ú ​  ​ e|cosx| ​ 2sin ​__ ​   ​  cosx ​ + 3cos ​__ ​   ​  cosx ​   ​sin x dx 2 2 0 p

[  (  )] Ú  [  (  )] Ú  [  (  ) ]



4p = ___ ​   ​ ​Ú __ ​ ​  __________ ​  __ 2      ​ 3 1/​÷3 ​   )  + v2     (1/​÷3 ​





__ __ __ 4p    __ = ___ ​   ​ × ÷ ​ 3 ​ ​​    ( tan–1  ​( v​÷3 ​     ))​  ​÷​​ 3 ​   ​  1/​÷3 ​    3

1   + ​  ​ ​ e|cosx| ​ 3cos ​ __ ​   ​  cosx  ​  ​ sinx dx 2 0

51. Given,

x2

( 

__

)

cosx cos ​( ​÷q    ​  )​ __ ​  ​ dq y(x) = Ú​    ​ ​ ​ ___________ ​     2( 2    ​ )​ p /16 1 + sin   ​  ​÷q 

1 = ​Ú ​  ​ e|cosx|  ​ 2sin ​ __ ​   ​  cosx ​  ​ sinx dx 2 0 p

p



1 = 0 + ​  ​ ​ e|cosx| ​ 3cos ​ __ ​   ​  cosx  ​  ​ sinx dx 2 0

2.124  Integral Calculus, 3D Geometry & Vector Booster

(  Ú 

)

2a



​  ​ ​ ​ f (x) dx = 0, f (2a – x) = – f (x)  ​ 0

[  (  ) ] [  (  )] [  (  ) ] [  (  )]

p



1 = ​Ú ​  ​ e|cosx| ​ 3 cos ​ __ ​   ​  cosx  ​  ​ sin x dx 2 0



1 = 2 ​Ú ​   ​ ​ e|cos x| ​ 3 cos ​ __ ​   ​  cos x  ​  ​ sin x dx 2 0

p/2

p/2

​Ú ​  ​  (1 – x50)100 dx 0 5050 × ​ ​ _____________     ​  ​ = 5051 1 ​Ú ​  ​  (1 – x50)101 dx

1 = 2 Ú​  ​   ​ ​ e|cos x| ​ 3 cos ​ __ ​   ​  cos x  ​   ​sin x dx 2 0



1 = 6 Ú​  ​   ​ ​ ecos x ​ cos ​ __ ​   ​  cos x  ​  ​ sin x dx 2 0

0

56. Let

sec2x



[  (  ) ] (Let  t = cos x) t = 6 Ú​ ​  ​  e  ​[ cos ​( __ ​    ​  )​ ]​ dt 2 e t t 1 = 6  ​​ _____ ​       ​​  __ ​   ​  sin ​  __ ​    ​   ​ + cos ​( __ ​    ​  )​ ]​  ​​ ​​  1[ 2 ( 2 ) 2 __ 1 + ​   ​  0



1





p/2

 ( ) (  )

Thus, the value of

t ​    ​   ​  ​, = – 6 Ú​  ​  ​ et ​ cos ​ __ 2 1

​Ú  ​  ​ ​ f (t)dt 2 ________ L=  ​ lim  ​  ​  ​       ​  ​ p x Æ ​ __ ​  p2 4 x2 – ​ ___ ​    ​  ​ 16

(  )

4





(  0





)

t

(  (  ))



0

[  (  )

1



In = ​Ú ​  ​  (1 – x50)n dx

dx (A) ​Ú  ​ ​ _____ ​   2   ​ –1 1 + x 1

0

Integrating by parts, we get 1

In = (1 – x50)n ◊ x​|10​ ​​  + ​Ú ​  ​  x ◊ 50n ◊ (1 – x50)n – 1 ◊ x49 ◊ dx



dx = 2 ​Ú ​  ​ _____ ​  2      ​ 0 x + 1



= 2(tan–1x​)10​ ​​ 



p p = 2 ​ __ ​   ​  – 0  ​ = __ ​   ​  4 4

0

1

= 0 + 50n ​Ú ​  ​ x  ◊ (1 – x ) 50

50 n – 1

 ◊ dx



= – 50n ​Ú ​  ​  ((1 – x50) – 1) ◊ (1 – x50)n – 1 ◊ dx 0

( 

1

0

0

)

= – 50n ​ ​Ú ​  ​  (1 – x50)n ◊ dx – ​Ú ​  ​   (1 – x50)n – 1 ◊ dx  ​ = – 50n (In – In – 1) = – 50n In + 50n In – 1 fi

In = – 50n In + 50n In – 1



(1 + 50n)In = 50n In – 1

In 50n fi ​ ____  ​ = ________ ​      ​ In – 1 (1 + 50n) Putting

( 

)

1

0

1

1

(  )

57.

(  ) ]

24 1 1 1 = ___ ​   ​ ​  e ​ __ ​  sin ​ __ ​   ​   ​ + cos ​ __ ​   ​   ​ – 1  ​ 2 2 5 2 1

55. Let



1

4

)

p p f  ​ sec2 ​ __ ​   ​   ​  ​ . sec2 ​ __ ​   ​   ​ . 1 4 4 ___________________ = ​         p  ​ __ ​   ​  4 8f (2) = _____ ​  p      ​

1

t

( 

2 f (sec x) 2sec2x tanx ________________ =  ​ lim    ​ ​ ​         ​  ​ p 2x x Æ ​ __ ​ 



dx ______ (B) ​Ú ​  ​  ​ ________      ​ _____ 0 ​ ​  1    ​ ​ ÷÷  – x2 

p = (sin–1 x​)10​ ​​  = __ ​   ​  2 3 dx (C) ​Ú  ​ ​ _____ ​   2   ​ 2 1 – x



( 

|  | )



x–1 3 1 = ​​ – ​ __ ​  log ​ ​ _____   ​  ​  ​​ ​​  2 x+1 2



1 1 1 1 = __ ​   ​  log ​ __ ​   ​   ​ – __ ​   ​  log ​ __ ​   ​   ​ 2 3 2 2



n = 101, then we get

(  ) 1 2 = __ ​   ​  log ​( __ ​   ​  )​ 2 3 2

dx (D) ​Ú ​  ​ _______ ​  _____     ​ 1 x​÷x   2 – 1 ​ 

I101 50 ×  101 5050 fi ​ ___ ​ = ​ _____________        ​ = _____ ​   ​  I100 (1 + 50 ×  101) 5051



I100 5051 fi ​ ___ ​ = _____ ​   ​  I101 5050



= (sec–1 x​)21​ ​​ 



= (sec=12 – sec–11)

(  )

( 

Definite Integrals 

58. Given

( 

)

f (x) = f (1 – x)

Putting

x = 1/2, we get



1 1 1 f ¢ ​ __ ​   ​   ​ = – f ¢ ​1 – __ ​   ​   ​ = – f ¢ ​ __ ​   ​   ​ 2 2 2

(  ) (  ) (  ) 1 fi 2f ¢ ​( __ ​   ​  )​ = 0 2 1 fi f ¢ ​( __ ​    ​ )​ = 0 2 1 Also, it is given that f ¢ ​( __ ​   ​  )​ = 0 4



1 __    ​  2 ​ 1 Therefore, ​  ​ ​ f  ​ x + __ ​   ​   ​ sinx dx = 0. 2 1 – ​ __ ​  2 1/2 Again, ​  ​  ​ ​  f (1 – t) esin(p t)dt 1 0 = –  ​  ​ ​  f (y) esin(p(1 – y)) dy, (Let  1/2

60.

sin(p(1 – py))

 dy

0

= ​Ú ​   ​ ​ f (y) e

)

( 

)

p p 2 = ​ ___ ​  __  ​ × __ ​   ​   ​ = ____ ​  __    ​  6 ​ 3 ​    3​÷3 ​    ÷ p__ Tn > ​ ____    ​  3​÷3 ​   

(  )

1

n

sin(p (1 – p y))

 dy

0

Ú  ÷ 

0

k = 1

Ú 

__________ 2 1 – [f ¢(x)]    ​ =

fi ​÷ 

0

f (x)



1 – [f ¢(x)]2 = (  f (x))2



dy 2 1 – ​​ ___ ​    ​  ​​ ​ = y2 dx

(  ) (  ) ÷ 

_____ dy fi ​ ___ ​    ​  ​ = ± ​ 1 – y2   ​ dx  

dy _____ fi ​Ú ​  ​  ​ ______     ​ = ± dx   ​1  ​ ÷  – y2 

1 – t = y)

fi sin–1 y = c ± x fi y = sin(c ± x) When x = 0, y = 0, then c = 0 Thus, the equation of the curve is y = sin(± x) = ± sinx As

f (x) ≥ 0 for 0 £ x £ 1, we get



f (x) = sinx, for 0 £ x £ 1

Since

sin x < x for all x > 0, we get



f (x) < x for 0 < x £ 1

1/2

Thus,

0

and

= ​Ú ​   ​ ​ f (t) esin(p y) dt, by Property I.

k = 0

x _________ 2 Given ​  ​ ​ ​ 1 – [f ¢(t)]  ​   dt = ​  ​ ​ f (t) dt 0

(  )

Ú 

1/2

( 

x

Ú 



p 2 p __ = ___ ​  __  ​ ​  __ ​   ​  – ​   ​   ​ ​ 3 ​    3 6 ÷

( 

(  ) (  ) (  ) 1 Thus, f  ​( x + __ ​   ​  )​ is an even function. 2 1 fi f  ​( x + __ ​   ​  )​ is an odd function. 2





(  )

(  ) )

n – 1 k k ​   h ​S  ​ ​ ​  f  ​ __ ​ n ​  ​ > Ú​  ​  ​ f (x) dx > h ​S  ​ ​ ​  f  ​ __ ​ n ​  ​  ​

1 Replacing x by ​ x + __ ​   ​   ​, we get 2 1 1 fi f  ​ x + ​ __ ​   ​ = f  ​ ​ __ ​  – x  ​ 2 2

= ​Ú ​   ​ ​ f (y) e

))

__ 2 1 = ___ ​  __  ​  (tan–1 ​( ​÷3 ​     )​ – tan–1 ​ ___ ​  __  ​  ​ ​ 3 ​    ​÷3 ​    ÷

Now,

Thus, f ¢(x) = 0 vanishes at least twice. Again, f (x) = f (1 – x)



( 



3 1 f ¢ ​ __ ​   ​   ​ = – f ¢ ​ __ ​   ​   ​ 4 4

1/2

( 

(  ) (  )

2x +__ 1 1 2 = ​​ ___ ​  __  ​  tan–1 ​ ​ ______  ​    ​  ​​ ​​  ​ 3 ​    ​÷3 ​    0 ÷



(  ) (  ) 3 1 f ¢ ​( __ ​   ​  )​ = – f ¢ ​( __ ​   ​  )​ = 0 4 4

dx __  ​ = ​Ú ​  ​ _______________ ​       ​ 3 ​    2 ÷ 0 1 2 __ ___ ​​ x + ​   ​   ​​ ​ + ​​ ​   ​  ​​ ​ 2 2



1 x = __ ​   ​  in f ¢(x) = – f ¢(1 – x), we get 4

Ú 

(  )

1



f ¢(x) = – f ¢(1 – x)



)

1 n ___________ 1 __ 59. We have Sn <   ​ lim ​   S = ​   lim ​ ​    ​  ​S  ​ ​ ​ ​      2 ​  ​ n Æ • n n Æ • n k = 1 k k __ 1 + ​ n ​ + ​​ __ ​ n ​  ​​​ 1 dx = Ú​   ​ ​  ​ ________      ​ 2 0 1 + x + x

p = ​ __ ​   ​  – 0  ​ 3 p = ​ __ ​  3



Putting

2.125

(  ) (  )

1 f  ​ __ ​   ​   ​ < 2 1 f  ​ ​ __ ​   ​ < 3

1 __ ​    ​ 2 1 __ ​    ​. 3

2.126  Integral Calculus, 3D Geometry & Vector Booster

(  Ú  (  p

61. Let

) )

sin n x In = ​Ú  ​ ​  ​ ___________ ​     ​  ​ dx x    –p (1 + p  ) sinx p

sin n x = ​  ​ ​  ​ __________ ​    ​  ​ dx x    –p (1 + p  )sinx



(  Ú  (  Ú  (  p

...(i)

)

sin n (– x) = ​Ú  ​ ​ ​ ______________ ​      ​  ​ dx – x    –p (1 + p )sin(– x)



p

0

) )

sin n (x) = ​  ​ ​   ​ ____________ ​    ​  ​ dx   x    –p (1 + p )sin(x)



p x sin n (x) = ​  ​ ​ ​​ ____________     ​  ​ dx  x    –p (1 + p  )sin(x)

...(ii)

Adding Eqs (i) and (ii), we get p



( 

(  p

p



)

)

( 

)

sin n (x) = 2 Ú​  ​  ​  ​ _______ ​   ​     ​ dx sin(x) 0



( 

)

sin n (x) In = Ú​  ​  ​  ​ _______ ​   ​     ​ dx sin(x) 0

(  Ú  (  p

\



x = 0, y = 0, then A = 0 y = Ae x = 0 f (x) = 0 f (ln 5) = 0

When Thus, fi fi

) )

sin(n  + 2)x – sin n x In + 2 – In = Ú​  ​  ​  ​ ​ _________________        ​  ​ dx sinx 0 p



2cos(n  + 1)x × sin x = ​  ​ ​  ​ __________________ ​         ​  ​ dx sinx 0



= Ú​  ​  ​  2 cos(n + 1)x dx

( 

)

p

sin(n  + 1)x = 2 ​​ __________ ​      ​   ​​ ​ ​ = 0 n+1 0



In + 2 = In

Now,

sinx I0 = 0 and I1 = ​Ú ​  ​ ​ ____ ​     ​  ​ dx = p sinx 0

Since and

In + 2 = In, so I1 = I2 = I5 = ... = I(2n – 1) = p I0 = I2 = I4 = ... = I2n = p

p

(  )

Thus, ​S   ​ ​ ​  I2m + 1 = I3 + I5 + ... + I21 = 10p 10





f ¢(0) – f (0) = ÷ ​ 0  + 1 ​  = 1



f ¢(0) = f (0) + 1



f ¢(0) = 2 + 1 = 3

Let

f –1 = g



y = f (x) ¤ x = g(y)



f ¢(x) = f (x)

_____

when g is the inverse of f, then we shall use 1 g¢(y) = ____ ​     ​   f ¢(x) Putting

y = 2 and x = 0, then



1 1 g¢(2) = ____ ​     ​ = __ ​    ​ f ¢(0) 3

(  Ú  (  Ú  (  Ú  (  Ú  (  Ú  (  Ú  (  1

)

x4 (1 – x)4 64. Let  I = ​Ú ​  ​  ​​ ________  ​     ​ dx 0 1 + x2

) )

1



x4 (x4 –  4x3 + 6x2 – 4x + 1) = ​  ​ ​ ​ ​ _______________________      ​     ​ dx 0 x2  + 1



(x8  – 4x7 + 6x6 – 4x5 + x4 ) = ​  ​ ​  ​​ _______________________      ​     ​ dx 0 x2 + 1



(x8  + 6x6 + x4 ) = ​  ​ ​  ​​ _____________     ​    ​ dx 0 x2 + 1



(x6 (x2 + 1)  + x4 (x2 + 1) + 4x6)  = ​  ​ ​  ​​ __________________________      ​     ​ dx 0 x2 + 1



(x2 (x2  + 1)(x2 + 1) + 4x6 ) = ​  ​ ​  ​ ​ ______________________      ​     ​ dx 0 x2 + 1



4(x6 + 1 – 1) = ​  ​ ​  ​ (x4 + x2 ) + ​  ___________     ​   ​ dx 0 x2 + 1

1

1

)

)

1

1

f (x) = Ú​  ​  ​ f (t) dt 0

f ¢(x) – e  f (x) = Rx4 + 1

x = 0, we get

m = 1

x

–x

Putting

and ​S   ​ ​ ​  I2m = I2 + I4 + ... + I20 = 0 62. Given,

– x

e

10

m = 1

_____



p

0

x

e– x f (x) = 2 + Ú​  ​  ​  ​÷t 4 + 1 ​   dt 0

sin n (x) = ​Ú  ​ ​  ​ _______ ​   ​     ​ dx sin(x) –p



f (0) = Ú​  ​  ​ f (t)dt = 0

63. Given

(1 + p x)sin n (x) 2 In = ​Ú  ​ ​  ​ ​ _____________       ​  ​ dx (1 + p x)sin(x) –p p

But

0



p

dy fi ​ ___  ​ = y dx     dy fi ​Ú  ​ ​   ​ ___ y ​ = Ú​  ​  ​ dx   fi log|y| = x + C fi y = e x + C = Aex

1

) )

Definite Integrals 

(  Ú  (  1

)

2.127

p/2

8 2 2 = ​ __ p ​ ​Ú0 ​   ​ ​  ((3 – 4 sin 3q) × (3 – 4 sin q))dq



4 = ​Ú ​  ​  ​ (x + x  ) – ​ _____     ​+ 4(x4 – x2 + 1)  ​dx 2 0 x +1



4 = ​  ​ ​  ​ 5x4 – 3x2 + 4) – _____ ​  2      ​  ​ dx 0 x +1

8 = __ ​ p ​ ​Ú ​   ​ ​  [{3 – 2(1 – cos 6q) × 3 – 2(1 – cos2q)}] dq 0



= (x5 – x3 + 4x – 4 tan–1 x​)10​ ​​ 



= (4 – 4 tan–1 (1)) = (4 – p)

8 = ​ __ p ​ ​Ú0 ​   ​ ​  [(1 + 2 cos 6q) × (1 + 2 cos 2q)]dq

4

2

1

p/2

)

p/2

p/2

8 = __ ​ p ​ ​Ú ​   ​ ​  (1 + 2 cos 2q + 2 cos 6q + 4 cos 2q cos 2q)dq 0

65. The given limit is

( 

x

)

1 t ln(1 + t) ​ lim    ​ ​ __ ​    ​  ​Ú ​  ​ ​ ________  ​      ​ dt x Æ 0 x3 0 t4 + 4

( 

p/2

x

8 = __ ​ p ​ ​Ú ​   ​ ​  (1 + 2 cos 2q + 2 cos 6q)dq 0

)

p/2

t ln(1 + t) ​Ú ​  ​  ​ ________  ​     dt 0 t4 + 4 =  ​ lim ​ ​ ​  ___________  ​       ​ x Æ 0 x3 x ln(1 + x) ​ _________  ​     x2 + 4 _________ =  ​ lim ​ ​ ​   ​     ​ x Æ 0 3x2



( 



)

(  ( 

8   + ​ __ p ​ ​Ú0 ​   ​ ​  (4 cos 6q cos 2q)dq p/2

8 = ​ __ p ​ ​Ú0 ​   ​ ​  (1 + 2 cos 2q + 2 cos 6q)dq p/2

16   + ​ ___ p ​ ​Ú0 ​   ​ ​  (2 cos 6q cos 2q)dq

)



x ln(1 + x) =  ​ lim ​ ​ ​ __________      ​  ​ x Æ 0 3x2 (x4 + 4)



ln(1 + x) =  ​ lim ​ ​ ​ _________      ​  ​ x Æ 0 3x(x4 + 4)

p/2

8 = __ ​ p ​ ​Ú ​   ​ ​  (1 + 2 cos 2q + 2 cos 6q)dq 0 p/2

)

16   + ​ ___ p ​ ​Ú0 ​   ​ ​  (cos 8q + cos 4q)dq

(  )

(  ( 

( f (x) is an even function)

9x p sin ​ ___ ​   ​   ​ 2 4 = __ ​ p ​ ​Ú ​  ​  ​ _______ ​  ​ dx x  ​   __ 0 sin ​ ​    ​  ​ 2

10

Thus, ​Ú  ​ ​   f (x)cos(p x)dx –10

10

(  ) sin 9q sin 3q 8 = __ ​ p ​ ​Ú​   ​ ​  ​( ​ _____   ​ × ​ _____ ​   ​ sin 3q sinq ) p/2



p/2



2

= 2 ◊ 5 ​Ú ​  ​ f (x)cos(p x)dx 0



2

)

sin 3 ◊ (3q) sin 3q 8 = __ ​ p ​ ​Ú ​   ​ ​  ​ ​ ________       ​ × ​ _____ ​    ​ dq sin 3q sinq 0

( 

= 2 ​Ú ​  ​ ​  f (x)cos(p x)dx 0

0

p/2

)

and f is periodic with period 2. Also, since [– x] = 1 – [x] for non Integral values of x, so, f is an even function.

sin 9q 8 = __ ​ p ​ ​Ú ​   ​ ​  ​ ​ _____ ​    ​ dq sin q 0

( 

)

Ï1 – x : 0 £ x < 1 67. We have, f (x) = Ì Óx – 1 : 1 £ x < 2

p

p/2

p __

= 4

p

 ( ((   )))

)

( 

8 p 16 = __ ​ p ​  ​ __ ​   ​  + 0  ​ + ___ ​ p ​  (0 + 0) 2

2 ​ __ ​Ú  ​ ​ f (x)dx p ​– p 4 = __ ​ p ​ ​Ú ​  ​  f (x)dx, 0

p __

sin6q ​ 2 ​  ___ sin 4q ​ 2 ​  8 16 sin 8q _____ = __ ​ p ​  ​​ q + sin2q + _____ ​   ​    ​​ ​ ​ + ​ p ​   ​​ _____ ​   ​   + ​   ​    ​​ ​ ​ 3 0 8 12 0

ln(1 + x) ​ ________ ​  x    =  ​ lim ​ ​ ​ ________    ​  ​ x Æ 0 3(x4 + 4) 1 = ___ ​    ​  12 66. The given integral is



= 10 ​Ú ​  ​ f (x)cos(p x)dx

where

= 10(I + J ),



I = ​Ú ​  ​ f (x)cos(p x)dx

0

)

(3 sin 3q – 4 sin33q) (3 sinq – 4 sin3q) 8 = __ ​ p ​ ​Ú ​   ​ ​  ​ ​ ________________        ​ × ​ ______________        ​  ​ dq sin 3q sinq 0

1

0

2.128  Integral Calculus, 3D Geometry & Vector Booster 2

ln3

J = ​Ú ​  ​ f (x)cos(p x)dx

and

1

1

ln3

0

= ​Ú ​  ​  (1 – x)cos(p x)dx

1 = __ ​   ​  ​Ú ​ ​ ​  dt 2 ln2 1 = ​ __ ​  (ln3 – ln2) 2



1

= ​Ú ​  ​  [1 – (1 – x))cos(p (1 – x)] dx 0



1

= – ​Ú ​  ​ x cos(p x)dx



2

J = ​Ú ​  ​  (x – 1)cos(p x)dx



1 1

= ​Ú ​  ​ t cos(p (t + 1))dt,



0

(Let  x – 1 = t)

1

6f (x) = 3f (x) + 3x f ¢(x) – 3x2 3f (x) = 3x f ¢(x) – 3x2 f (x) = x f ¢(x) – x2 dy fi y = x ​ ___  ​ – x2 dx y__ ___ dy fi ​ x ​ = ​    ​ – x dx dy y fi ​ ___  ​ – ​ __x ​ = x dx

= – ​Ú ​  ​ xcos(p x)dx 0

Thus,

=I I=J 1

= – ​Ú ​  ​  x cos(p x)dx



( 

0

)

1

1 x 1 __ = ​​ – ​ __ p ​ sin(p x)  ​​0​​  + ​ p ​ ​Ú0 ​  ​  sin(p x)dx 1 = – ​ ___2  ​  (cosp x​)1​0​​  p 2 ___ = ​  2  ​  p 

Therefore,

which is a linear differential equation.   dx ___ 1 So, IF = e​ – ​ ​ Ú   ​ ​ x ​ ​ = e– logx = __ ​ x ​ Hence, the solution is   y__ 1 ​ x ​ = Ú​  ​ ​  ​ __2  ​  dx + c   x y 1 fi ​ __x ​ = – ​ __ x ​ + c when x = 1, y = 2, then c = 3 Thus, the equation of the curve is y 1 ​ __x ​ = – ​ __ x ​ + 3 Now, when x = 2, then y = –1 + 3x = –1 + 6 = 5

10

​Ú  ​ ​   f (x)cos(p x)dx –10



= 10 (I + J) = 20 I 2 = 20 × ___ ​  2  ​  p 10

p2 Now, ​ ___  ​ × Ú​  ​ ​ ​ f (x)cos(p x) 10 10 p 2 40 = ___ ​    ​ × ___ ​   ​  10 p 2 =4 ___

( 

​÷ln3 ​    

5/6

p2 70. Given integral = ___ ​    ​ ​Ú ​ ​ ​  sec(p x)dx ln 3 7/6

)

x sin(x2) 68. Let I = ___ ​          ​  ​ dx Ú​   ​ ​ ​  ​ __________________ 2 2 ​÷ln2 ​     sin x + sin(ln(6 – x )) ln3



( 

x

fi fi fi

0 1



69. Given, 6 ​Ú ​  ​ f (t)dt = 3x f (x) – x3

1

= – ​Ú ​  ​ t cos(p t)dt



(  (  )) 3 1 I = __ ​   ​ ​ (l n ​( __ ​   ​  )​ )​ 4 2

3 1 = __ ​   ​ ​  ln ​ __ ​   ​   ​  ​ 2 2



0

Also,

)

ln3

0



( 

sin(t)  + sin(ln – 6) 1 2 I = ​ __ ​  ​Ú ​ ​ ​  ​ ________________ ​         ​  ​ dt 2 ln2 sin(ln – 6) + sin(t)



1



)

Adding Eqs (i) and (ii), we get

I = ​Ú ​  ​ f (x)cos(p x)dx

Now,

( 

sin(ln – 6) 1 = __ ​   ​  Ú​  ​ ​ ​ ​​ _______________        ​  ​ dt 2 ln2 sin(ln – 6) + sin(t)



5p/6



p2 1 = ___ ​    ​ × __ ​   ​ ​Ú  ​ ​ ​ sec t dt ln 3 p 7p/6



p2 1 = ​ ___  ​ × __ ​   ​ ​Ú  ​ ​ ​ sec x dx ln 3 p 7p/6

Let  x2 = t fi x dx = 1/2 dt

)

sin t 1 = __ ​   ​  ​Ú ​ ​ ​  ​ _______________ ​        ​  ​ dt 2 ln2 sin t + sin(ln6 – t)

...(i)

5p/6

...(ii)

2.129

Definite Integrals  5p/6



1

p = ___ ​    ​ × ​Ú  ​ ​ ​  sec x dx ln3 7p/6



= 0 – 0 – 12[0 – 0] + 12 ​Ú ​  ​  2x(1 – x2)5 dx



(1 – x2)6 1 1 = 12 ​​ – ​ _______  ​    ​​ ​​  = 12 ​ 0 + __ ​   ​   ​ = 2 6 6 0 3x2 I = ​  ​ ​  ​ _____ ​   x   ​  ​ dx – 2 1 + e

(  ) (  ) Ú  (  ) Ú  (  ) Ú  (  ) 0

| ( 



5p/6 p =  ​ ​​___  ​ (log|secx + tanx|)  ​ ​ ​  7p/6 ​ln3



p 2__ ___ 1 2__ ___ 1 = ___ ​    ​ ​ log​ – ​ ___   ​ – ​  __  ​ – ​ – ​ ___   ​ + ​  __  ​  ​  ​  ​ ln3 ​÷3 ​    ÷ ​ 3 ​    ​ 3 ​     ​÷3 ​    ÷

74. Let



p 2 = ___ ​    ​ ​ log ​ ___ ​  __  ​  ​  ​ ln3 ​÷3 ​   



3x2 = ​  ​ ​  ​ ______ ​     ​  ​ dx – x  – 2 1 + e



3ex x2 = ​  ​ ​  ​ _____ ​     ​  ​ dx x  – 2 1 + e

71. Given,

|  |  | )

(  ( 

2

)|)

2

2

b

​Ú ​  ​  ( f (x) – 3x)dx = a2 – b2 a

3 fi ​Ú ​  ​ f (x) dx = __ ​   ​  (b2 – a2) – (b2 – a2) 2 a

2

1 fi ​Ú ​  ​ f (x)dx = __ ​   ​  (b2 – a2) 2 a



p p f  ​ __ ​   ​   ​ = __ ​   ​   6 6

2

–2

2

2

[ 

( 

)]

p+x =  Ú​    ​ ​  ​ x2 + ln ​ ​ _____ ​  ​  ​ cos x dx p – x  –p/2



p  __ ​  ​2 = ​  ​ ​ ​ x2 p – ​ __ ​  2

[ 

( 



)]

p+x + log ​ ​ _____ ​   ​  ​ cos x dx p – x 

= Ú​   ​ ​ (x2)cos x dx p – ​ __ ​  2

=2

p  __ ​  ​2 ​  ​ ​ ​  (x2)cos x 0

Ú 

Ú 

[  ( 



p2 = ​ ___ ​   ​ – 4  ​ sq.u. 2

0

(  Ú  ( 

)

2

x[x2] 77. I = ​Ú  ​ ​  ​ _________ ​      ​  ​ dx –1 2 + [x + 1]

d2 73. ​Ú ​  ​  4x ___ ​  2  ​ (1 – x2)5 dx 0 dx 3

)

)

2

1

1 d d = ​​ 4x3 ​ ___  ​ (1 – x2)5   ​​ ​​ –  ​Ú ​  ​ 12x2 ___ ​    ​  (1 – x2)5 dx dx dx 0 0

= (4x3 × 5(1 – x2)4 × (– 2x)​)10​ ​​ 

[ 

f (x) = ax2 + bx

fi 2a + 3b = 6 fi (a, b) = (3, 0) and (0, 2) Thus, the number of polynomials is 2.

1



(   Nr = Odd × Even = Odd function)

1

)

( 

= 0,

​Ú ​  ​ f (x)dx = 1

2sin x​)p/2 ​ ​  ​ 0

)

p = 2 ​ ___ ​   ​ – 2  ​ 4





Now, it is given that,

dx + 0



( 

)]



+x    ​  ​ dx Ú​    ​ ​   cos2x ◊ log ​ ​ 1_____ 1 –x –1/2 = _____________________ ​ 1/2         ​ 1+x ​Ú ​   ​ ​  cos2x ◊ log ​ ​ _____   ​  ​ dx 1–x 0

76. Let

= 2 (x sinx + 2x cos x – 2

(  ) (  )

1/2

p __    ​  ​2 p+x + ​  ​ ​  ​ log ​​ p_____  ​  ​  ​ cos x dx – x  p – ​ __ ​  2

2

( 

0

= (x3​)2​0​​  = 8



75. The given integral

p __ ​   ​  2



0

I = ​Ú ​  ​  (3x2)dx







= 2 ​Ú ​  ​  (3x2)dx



72. The given integral

Ú 

)

= ​Ú  ​ ​  (3x2)dx



(  ) p/2

( 

3(ex + 1)x2 2I = ​Ú  ​ ​  ​ ​ _________  ​     ​ dx (1 + ex) – 2



b

f (x) = x

...(ii)

Adding Eqs (i) and (ii), we get

b



...(i)

1

]

  – 12 ​ (x2 (1 – x2)5​)10​ ​​  – ​Ú ​  ​  2x(1 – x2)5 dx  ​ 0

x[x2] = ​  ​ ​ ​ _________ ​      ​  ​ dx – 1 2 + [x + 1] 0

( 

)

1

( 

)

__

( 

​÷2 ​   

)

x ◊ 0 x ◊ 0 x ◊ 1 = ​Ú  ​ ​ ​ ______ ​      ​  ​ dx + Ú​  ​  ​  ​ ______ ​      ​  ​ dx + Ú​  ​   ​ ​ ​ ______ ​      ​  ​ dx + 0 –1 2 + (0) 0 2 + (1) 1 2 + (0) __

​÷2 ​   

(  )

x = ​Ú ​   ​ ​  ​ __ ​    ​  ​ dx 2 1

2.130  Integral Calculus, 3D Geometry & Vector Booster

(  )

__

   x2 ​÷2 ​ 1 1 = ​​ __ ​   ​   ​​ ​  ​ = 2 – __ ​    ​ = __ ​    ​ 4 1 4 4



Thus, 4I – 1 = 0 78. We have

( 

1

)

–1 12 + 9x2 a = ​Ú ​  ​  ​( ​e9x ​ + 3tan  x​ )​ ​ ​ _______  ​     ​ dx 0 1 + x2 Let  9x + 3tan–1 x = t



( 

)

)

a = ​Ú ​   ​ ​ et dt = (​  ​e​

3p 9 + ​ ___ ​  4 ​–



3p 9 + ​ ___ ​  4​

3p log(a + 1) = 9 + ___ ​   ​  4 3p fi ​ log|(a + 1)| – ___ ​   ​   ​ = 9 4 79. We have f (x) = 7 tan8x + 7 tan6x – 3 tan2x fi

( 

)



= 7 tan6x(tan2x + 1) – 3 tan2x(tan2x + 1)



= (7 tan6x – 3 tan2x)(tan2x + 1) 6

2

2

= (7 tan x – 3 tan x)sec x p/4



(i) ​Ú ​   ​ ​  f (x)dx 0

Ú 

= ​Ú ​  ​  (7t6 – 3t2)dt



6 1 1 2 1 = 0 – ​ __ ​   ​  – __ ​   ​   ​ = – 4 – ___ ​    ​ = ___ ​    ​ = ___ ​    ​  24 24 12 6 4

0

7

7t = ​​ ___ ​   ​ – 7



2 £ 2 + sin4(p x) £ 3

1 1 1 fi ​ __ ​  £ __________ ​       ​ £ __ ​   ​  3 2 + sin4(p x) 2 192x3 __________ 192x3 192x3 _____ fi ​ _____  ​   £ ​        ​ £ ​   ​    3 2 2 + sin4(p x) 192x3 192x3 fi ​ _____  ​   < f ¢ (x) < _____ ​   ​    3 2 x

)

3 1

3t ___ ​   ​  ​​ ​​  = 0 3 0

0





=

x

x

x

x

1/2

1/2

192x3 192x3 fi ​Ú  ​ _____ ​  ​   dx £ ​Ú  ​ ​ f ¢ (x)dx £ ​Ú  ​ ​ ​ _____  ​  dx     2 1/2 3 1/2 1/2

)

(  ( 

x

x4 x4 64 ​​ __ ​   ​   ​​   ​ £ ​Ú  ​ ​ f ¢ (x)dx £ 96 ​​ __ ​   ​   ​​   ​  4 1/2 1/2 4 1/2



1 1 16 ​ x – ___ ​    ​  ​ £ ​Ú  ​ ​ f ¢ (x)dx £ 24 ​ x4 – ___ ​    ​  ​ 16 16 1/2

( 

( 

x

)

4

)

( 

1

1

)

1 fi ​Ú  ​ ​  16 ​ x4 – ___ ​    ​  ​ dx £ ​Ú  ​ ​ f (x)dx 16 1/2 1/2

p __ ​   ​  4

Ú  {Ú   

))

Ú 

(  )



Integrating, we get

  p ​ __ ​  4 ​​ x ​ ​ ​  f (x)  ​​0​ ​ – ​  ​ ​ ​ ​ ​ ​ ​  f (x)dx  ​ dx     0 p __    ​  4 p __ ​ ​   ​  7 3 4 ​​ x ​tan x – tan x  ​  ​​0​ ​ – ​  ​ ​ ​  (tan7x 0 p  __    ​  ​4 0 – ​  ​ ​ ​  (tan7x – tan3x)dx 0

(  Ú 

(  )

x

x

– 3 tan x)sec x dx

(ii) ​Ú ​   ​ ​  x f (x)dx

=

)

0 £ sin4(p x) £ 1

2

p/4



( 



1

=

)

t 4 1 __ ​   ​   ​​ ​​  4 0

t 6 = 0 – ​​ __ ​   ​  – 6

1/2

2





( 



fi ​Ú  ​ ​  (64x )dx £ ​Ú  ​ ​ f ¢ (x)dx £ ​Ú  ​ ​  (96x3)dx

=



= 0 – ​Ú ​  ​  (t2 – 1)t3dt

3

p __    ​  ​4 ​  ​ ​ ​ (7 tan6x 0

( 

– 1)tan3x sec2x dx Let  tan x = t

x





Ú 

=0–

81. We have

1 )​

a + 1 = e​ ​



p   __ ​  ​4 ​  ​ ​ ​ (tan4x 0

0

3p 9 + ​ ___ ​  4 0

– 1)tan3x dx



12 + 9x2 fi ​​ _______  ​     ​ dx = dt 1 + x2

Thus,

Ú 

=0–

1

3 fi ​ 9 + _____ ​    2   ​  ​ dx = dt 1+x

( 



p   __ ​  ​4 ​  ​ ​ ​ (tan4x 0

1

}

Ú 

( 

)

1   £ ​Ú  ​ ​ 24 ​ x4 – ___ ​    ​  ​ dx 16 1/2 fi – tan3x)dx

( 

)

1

x5 x 1 16 ​​ __ ​   ​  – ___ ​    ​  ​​   ​ £ ​Ú  ​ ​ f (x)dx 5 16 1/2 1/2

( 

)

x5 x1   £ 24 ​​ __ ​   ​  – ___ ​    ​   ​​ ​  ​ 5 16 1/2 1



2.6 < ​Ú  ​ ​ f (x)dx < 3 × 9 1/2

Definite Integrals  p  __ ​   ​  2

81. Ans. (a, c) 4p 

Ú​   ​  ​ ​ e  (sin  at +  cos  at)dt 0 L = ____________________ ​ p          ​ 6

t

Given

4

83. Let



k p 

Let

I(k) = Ú​  ​   ​ ​  e  (sin  at + cos  at)dt 6

t

4

I ¢(k) = e k p (sin6 (ak p ) + cos6 (ak p )) ◊ p k p 

= p e 



for a = 2 as well as a = 4

Integrating, we get I (k) = e k p  + c

Since

I(0) = 0 , we get c = – 1



I (k) = e 





x

t2 ​Ú ​  ​ _____ ​  4      ​ dt = 2x – 1 0 t + 1

Let

t2 f (x) = Ú​  ​  ​  ​ __4 ​  + 1dt – 2x + 1 0 t



x2 f ¢(x) = __ ​  4 ​  – 2 < 0 " x Œ [0, 1] x



( 

)

ex x2 cos x = ​Ú  ​ ​   ​ ________ ​    ​     ​ dx 1 + e x p  – ​ __ ​ 

...(ii)

1 2 t ​  ​ ​  ​ __4 ​  + 0 t

Ú 

t2 1 fi ​Ú ​  ​ __ ​  4 ​  + 1dt < __ ​   ​  2 0 t fi f (1) < 0 f (x) = 0 exactly one root in [0, 1]

p  – ​ __ ​  2

p  __    ​  ​2 = ​  ​ ​   (x2 cos x)dx p  – ​ __ ​  2

Ú 

= 2 ​Ú ​  ​ ​ (x2 cos x)dx 0

p  __ ​   ​  2

1dt

1 __ ​   ​  " t Œ [0, 1] 2

1

2I = ​Ú  ​ ​  ((ex + 1)x2 cos x/(1 + ex))dx

p  __ ​   ​  2

x

t2 0 £ _____ ​  4      ​ < t +1

p   __ ​  ​2

2



I(4) fi ​ ____ ​ = e 4 p  – 1/e p  – 1 I(1) 82. Given,

f (0) = 1 and f (t) =

)

x2 cos x = ​Ú  ​ ​  ​ ______ ​  ​   ​ dx – x  p  1 + e – ​ __ ​ 

p  __ ​   ​  2

–1



p  __    ​  ​2

Adding Eqs (i) and (ii), we get



k p 

( 

...(i)

2

0



)

2

​Ú ​  ​ ​  e t(sin6 at + cos4 at)dt 0

( 

x2 cos x I = ​Ú  ​ ​  ​ ______ ​   ​   ​ dx 1 + ex p  – ​ __ ​ 

2.131



I = Ú​  ​  ​ ​ (x2 cos x)dx 0

p  p /2 __ ​ 2 ​   sin x​)​ ​ ​ – ​  ​  ​ ​  (2 x sin x)dx 0 0

Ú 

2



= (x 



__ ​   ​  p 2 = ___ ​   ​ – 2​ [x( – cos x)]​​2​ ​ – Ú​  ​   ​ ​ ( – cos x)dx  ​ 0 4 0



__  ​  ​  p 2 = ___ ​   ​ – 2[ – (0 – 0) + (sin x)​]​2​ ​ 0 4



p 2 = ​ ___ ​   ​ – 2  ​ 4

[ 

p 

]

p /2

p 

( 

)

Chapter

3

Area Bounded by the Curves

Concept Booster 3.1  Rules

to

Draw Different Types

of

y = x2



Curves

To find the area of the plane curves, first we need to draw the given curves. So my dear friends, you should remember the basic rules to trace the given curve. Find the domain and range of the given function y = f (x). II: Find the point of intersection on the co-ordinate axes. III: Find the intervals of the monotonocity of the function y = f (x). IV: Find the local maximum and the local minimum values of the function y = f (x). V: Find the concavity and the points of inflection of the function y = f (x). VI: Find out whether the function is periodic or not. VII: Find the symmetry as follows:

Rule I: Rule Rule Rule Rule Rule Rule







1 y = __ ​ x ​

(a) A curve is symmetrical about x-axis, if the powers of y, which occur in its equation, are all even. y2 = x



(c) A curve is symmetrical about the line y = x, if the curve remains unchanged by interchanging x and y in the equation.

(b) A curve is symmetrical about y-axis, if the powers of x, which occur in its equation, are all even.

(d) A curve is symmetrical about the line y = – x if the curve remains unchanged when x and y are replaced by – x and – y, respectively.

3.2  Integral Calculus, 3D Geometry & Vector Booster

(e) A curve is symmetrical in opposite quadrants, if the equation of the curve remains unchanged when x and y are replaced by – x and – y, respectively.

The vertical asymptote to the given curve is x = 1 The oblique asymptote to the given curve is y = 2x + 3.

(  ) (  ) 3 =  ​ lim ​ ​( _____ ​       ​ + 2 )​ = 2 x–1

f (x) y where as m =   ​ lim ​ ​ ____ ​  x    ​  ​ =   ​ lim ​  ​ __ ​   ​  ​ x Æ • x Æ • x

x Æ •

and

c=  ​ lim ​  (y – m x) x Æ •

3.2 Area

( 

)

3x =  ​ lim ​ ​ _____ ​      ​ + 2x – 2x  ​ = 3 x Æ • x – 1

of the

Cartesian Curve

Rule VIII: Find the asymptotes if any. Asymptote It is a straight line which touches the curve at infinity. There are three kinds of asymptotes.

(i) Vertical Asymptote:  The straight line x = a is a vertical asymptote to the curve y = f (x) if at least one of the values of   ​ lim ​ [ f (x)] or ​   lim ​   [ f (x)] tends x Æ a– x Æ a+ to + • or – •.

(ii) Horizontal Asymptote:  The straight line y = b is a horizontal asymptote to the curve y = f (x), where    ​  lim   ​ [ f (x)] = b. ​  lim ​ [ f (x)] = b or    x Æ + • x Æ – • (iii) Oblique Asymptote:  The staright line y = m x + c is an oblique asymptote to the curve y = f (x), where

(  )

If f (x) is a single valued and continuous function of x in the interval [a, b]. Let

f (x) ≥ 0

for every x in [a, b], then the area bounded by the curve t = f (x), the x-axis and the ordinates x = a and x = b, (a < b) is represented by



f (x) m=  ​ lim ​ ​ ____ ​  x    ​  ​

and

c=  ​ lim ​ (f (x) – m x)

​Ú ​  ​ y dx = ​Ú ​  ​ f(x) dx

x y = _____ ​       ​. x–1

3.3 area of the region bounded by a single curve and the co-ordinate axes

x Æ •

x Æ •

For examples,

1. Let

The vertical asymptote to the given curve is x = 1. The horizontal asymptote to the curve is

( 

)



x y=  ​ lim ​ ​ _____ ​       ​  ​ = 1 x Æ • x – 1



1 y = _____ ​      . ​ x2 – 1

2. Let

The vertical asymptotes to the given curve are

x = ± 1

The horizontal asymptote to the curve is 1 y=  ​ lim ​ ​ _____ ​  2      ​  ​ = 0 x Æ • x –1

3. Let

( 

(  ) )

3x y = ​ _____ ​      ​ + 2x  ​. x–1



b

b

a

a

(i) The area bounded by the curve y = f (x), x-axis and the straight lines x = a and x = b (a < b) is given by



b

b

a

a

A = ​Ú ​  ​ y dx = Ú​  ​  ​ f (x) dx

Area Bounded by the Curves 

(ii) If f (x) £ 0 for all x in [a, b], the area bounded by the curve y = f (x), x-axis and the straight lines x = a and x = b, (a < b) is

b

b

a

a



d

d

c

c

A = ​Ú ​  ​  x dy = Ú​  ​  ​ f (y) dy

(v) When the curve x = f (y) crosses y-axis, i.e. changes its sign at y = c between y = a and y = b, its area is given by

A = ​Ú ​  ​ (– y) dx = |​Ú ​  ​ f (x) dx|

(iii) If the graph of y = f (x) crosses x-axis between x = a and x = b at x = c, d, e, f respectively, its area (which lie below the x-axis is negative but the area is taken positive, so we take their modulus) is

c

b

a

c



A = ​Ú ​  ​  x dy + ​Ú ​  ​  (– x) dy



= ​Ú ​  ​  x dy + ​ ​Ú ​  ​  (x) dy  ​

|  | |  |

c

b

a

c

c

3.4 Area b

A = ​Ú ​  ​ y dx a

c



d

a

c

b

b

e

f

  + Ú​  ​  ​ f (x) dx + ​ ​Ú ​  ​ f (x) dx  ​ + Ú​ ​  ​ f (x) dx d

c



|  | |  |

= ​Ú ​  ​ f (x) dx + ​ ​Ú ​  ​ f (x) dx  ​ e





d

= ​Ú ​  ​ f (x) dx – ​Ú ​  ​ f (x) dx a

b

= ​Ú ​  ​   f (y) dy + ​ ​Ú ​  ​ f (y) dy  ​





3.3

a

between

c

two curves

(i) Suppose we are given two curves reprsented by y = f (x) and y = g (x), where f (x) ≥ g (x) in [a, b]. Here the points of intersection of these two curves are given by x = a and x = b is obtained by taking common values of y from the given equation of two curves. Hence the required area is b



A = ​Ú ​  ​ (f (x) – g (x)) dx a

c

e

b

b

d

e

f

  + Ú​  ​  ​ f (x) dx – ​Ú ​  ​ f (x) dx + ​Ú ​  ​ f (x) dx

(iv) The area enclosed by the curve x = f (y), y-axis and the abscissae y = c and y = d, (c < d) is given by

(ii) If the curves y = f (x) and y = g (x) intersect at x = c in [a, b], the required area is c



b

A = Ú​  ​  ​  ( f(x) – g (x)) dx + Ú​  ​  ​  (g (x) – f (x)) dx  

a

c

3.4  Integral Calculus, 3D Geometry & Vector Booster

(iii) The area bounded by the curves x = f (y) and x = g (y) and the straight lines y = c and y = d where f (y) ≥ g (y) is given by d

A = Ú​  ​  ​ (f (y) – g (y)).



3.6 Least value

of a

variable area

Example 1.  If the area is bounded by the curve x3 f (x) = __ ​   ​  – x2 + b 3

c

and the straight lines x = 0 and x = 2 and x-axis is minimum, find the value of b. Solution: Given fi

x3 f (x) = __ ​   ​  – x2 + b. 3 f ¢ (x) = x (x – 2)

Clearly f (x) is monotonic in (0, 2). Hence for minimum area, f (x) must cross the x-axis at

3.5 Area

of the

region bounded

by the

several curves

If y = f (x) is a strictly monotonic function in (a, b) such that f ¢ (x) = 0, the area bounded by the ordinates x = a and x = b, y = f (x) and y = f (c), where c Œ (a, b), is minimum a+b when c = ​ _____  ​  .  2



0+2 x = ​ _____  ​   = 1. 2

Thus,

1 f (1) = __ ​   ​  – 1 + b = 0. 3



2 b = __ ​   ​ . 3

Exercises   Area bounded by a function which changes sign



(Problems based on Fundamentals)

  Area of a linear curve

1. Find the area of the region bounded by the curves y = x2 – 2x + 2, x = – 1 and x = 2. 2. Find the area bounded by the curves y = ln x + tan–1 x and the ordinates = 1 and x = 2. 3. Find the area bounded by y = x |sin x|, x-axis and the ordinates x = 0 and x = 2p. 4. Find the area bounded by y = 1 lo​g​__1 ​ x and the x-axis between x = 1 and x = 2.



 ​   ​  2

5. Find the area of the region bounded by the curve y = e2x – 3ex + 2 and the x-axis.



6. Find the area bounded by y = x3 and x-axis between the ordinates x = – 1 and x = 1.



7. Find the area bounded by the curve y = sin x and the x-axis, for 0 £ x £ 2p.



8. Find the area bounded by the curve y = cos x and the x-axis, for 0 £ x £ 2p.

9. Find the area bounded by the curve y = x (x – 1)  (x – 2) and the x-axis. 10. Find the area bounded by the curve y = (x – 1)(x – 2) (x – 3) and the x-axis.   Area of a region between two non-intersecting curves 11. Find the area of the region enclosed by the curves y = x2 and y = 2x – x2.

Area Bounded by the Curves 

12. Find the area of the region bounded by the parabolas y2 = x and x2 = y. 13. Find the area of the region bounded by the parabolas 4y2 = 9x and 3x2 = 16y. 14. Find the area of the region bounded by the curves

15. 16. 17. 18. 19. 20. 21. 22.

23.

3x2 y = ​ ___ ​  and the line 3x – 2y + 12 = 0. 4 Find the area bounded by the curve x2 = 4y and the straight line x = 4y – 2. Find the area of the region included between the parabolas y2 = 4ax and x2 = 4ay. Find the area of the region enclosed by the parabola y2 = 4ax and the chord y = mx. Find the area of the region bounded by the curve y = x2 + 2, y = x, x = 0 and x = 3. Find the area bounded by the curve y = 2x – x2 and the straight line y = – x. Find the area bounded by the straight lines x = 0, x = 2 and the curves y = 2x – x2, y = 2x. Find the area bounded by the curves y = 6x – x2 and y = x2 – 2x. In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x – x2 and y = x2 – x? Find the area of the region between the circles x2 + y2 = 4 and (x – 2)2 + y2 = 4.

24. Find the area of the region enclosed between the two circles x2 + y2 = 1 and (x – 1)2 + y2 = 1. 25. Find the area of the smaller region bounded by the 2 x2 y x y ellipse __ ​  2  ​ + ​ __2  ​ = 1 and the straight line __ ​ a ​ + __ ​   ​ =1. b a b 26. 27. 28.

Find the area of the region {(x, y): x2 + y2 < 1 < x + y}. Find the area of the region {(x, y): y2 < 4x, 4x2 + 4y2 < 9}. Find the area of the region {(x, y): x2 + y2 < 2ax, y2 > ax, x > 0, y > 0}

29. Find the area of the region

{ 

}

2 x2 y x y ​ (x, y): __ ​  2 ​ + __ ​  2 ​ £ 1 £ __ ​ a ​ + __ ​   ​ ​. b a b 30. Find the area of the region bounded by y = 1 + |x + 1|, x = – 2, x = 3, y = 0. 31. Find the area of the region bounded by y = 1 + |x + 1|, x = – 3, x = 3, y = 0. 32. Find the area enclosed by the curves y = |x – 1| and y = – |x – 1| + 1. 33. Find the area of the region bounded by the curves

3.5

f (x) = log x and g (x) = (log x)2. 34. Find the area enclosed by y2 = x2 – x4. 1 35. Find the area bounded by the curve |y| + __ ​   ​  £ e–|x|. 2 36. Find the area of the region f (x, y) = [(x, y): 0 £ y £ x2 + 1, 0 £ y £ x + 1, 0 £ x £ 2]. 37. Find the area bounded by the curves y = x and y = x3. 38. Find the area bounded by the curves y = x (x – 1)2 the y-axis and the line y = 2. 39. Find the area of the region bounded by y = x2 + 1, y = x, x = 0 and y = 2. 40. Find the area of the region bounded by the curves y = loge x and y = 2x, x = 1/2 and x = 2. 41. Find ther area enclosed by the parabola (y – 2)2 = (x – 1), the tangent to the parabola at (2, 3) and x-axis. 42. Find the area enclosed by the loop of the curve y2 = (x – 1) (x – 2)2. 43. Find the area bounded by the curves y = (x – 1)2, y = (x + 1)2 and y = 1/4. 44. Find the area bounded by the curves y = ex, y = e–x and the straight line x = 1. 45. Find the area bounded by the curve y = log x, y = log |x|, y = |log x| and y = |log |x||. 46. Find the area bounded by the curve |x – 2| + |y + 1| = 1. 47. Find the area of the region bounded by the curve [x] + [y] = 3 in first quadrant, where [,] = GIF. 48. Find the area of the region bounded by the curve |x| + |y| = 1 and |x – 1| + |y| = 1. 49. Find the area bounded by the curve

|  |

p y = cos–1 (cos x) and |x – p | + ​ y – __ ​   ​   ​ = 2

p __ ​   ​ . 2

50. Find the area bounded by the curve |y| = – (1 – |x|)2 + 5.

__

51. Find the area bounded by the curves y = ÷ ​ |x| ​     and y = |x|. 52. Find the area of the region bounded by the curves |x + y| + |x – y| £ 2. 53. Find the area bounded by the curve y = x and y = x + sin x, where 0 £ x £ p. 54. Let f (x) be a non-negative continuous function such that the area bounded by the curve y = f (x), p p x-axis and the ordinates x = __ ​   ​  and x = b > __ ​   ​  is​ 4 4 __ p p b sin b + __ ​   ​  cos b + ÷ ​ 2 ​    b  ​, find f ​ __ ​   ​ ​. 4 2

( 

)

(  )

3.6  Integral Calculus, 3D Geometry & Vector Booster Area of a region between two intersecting curves

Least value of a variable area

55. Find the area bounded by the curves y = sin x and p y = cos x, x = 0 and x = __ ​   ​ . 2 56. Find the area enclosed by the curves y = 2 – |2 – x| 3 and y = __ ​    ​.  |x| 57. The line y = m x bisects the area enclosed by the lines 3 x = 0, y = 0, x = __ ​   ​  and the curve y = 1 + 4x – x2. 2 Find m. 1 58. Find the area bounded by the curve |y| + __ ​   ​  £ e–|x|. 2   Area of a region by a horizontal strip 59. Find the area bounded between y = sin–1 x and y-axis between y = 0 and y = p/2. 60. Find the area enclosed by the line y = x – 1 and the parabola y2 = 2x + 6. 61. Find the area enclosed by x = – 2y 2 and x = 1 – 3y2. 62. Find the area enclosed by the curves y = tan–1 x and y = cot–1 x and the y-axis. 63. Find the area bounded by the curve x = – y2 + y + 2 and the y-axis. Area of a region between several graphs

x3 71. If the area bounded by y = __ ​   ​ – x2 + a and the straight 3 lines x = 0 and x = 2 and the x-axis is minimum, find the value of a. 72. Find the value of a, for which the area bounded by the curve y = a2 x2 + ax + 1 and the straight lines y = 0, x = 0 and x = 1 the least. 73. For what value of k, the area enclosed by the curves y = x2 – 3 and y = kx + 2 is the least. Find also the least area. 74. If the area bounded by the curve y = x2 + 2x – 3 and the line y = mx + 1 is least, find the value of m. 75. Find the value of a for which the area bounded by x 1 the curve y = ​ __  ​ + ​ __2  ​,  and the lines y = 0, x = a and 6 x x = 2a is least.



(Mixed Problems) 1. The area bounded by the curve y = 4x – x2 and the x-axis is



30 31 (a) ​ ___ ​ sq.u. (b) ​ ___ ​ sq.u. 7 7

64. Find the area of the plane figure bounded by __ 2 y = ​÷x    ​,  x Œ [0, 1], y = x , x Œ [1, 2]



32 (c) ​ ___ ​ sq.u. 3

and y = – x2 + 2x + 4, x Œ [0, 2].



65. Find the area of the region bounded by the curves 4|y| = |4 – x2 | and |y| (x2 + 4) = 12. 2

2

66. Find the area bounded by the ellipse x + 2y = 2 and the outside of the parabola y = 1 – x2. 67. Find the area common to the circle x2 + y2 = 4 and the ellipse x2 + 4y2 = 9. 68. Find the area enclosed by the curves y = ln (x + e) 1 and x = ln ​ __ ​ y ​  ​, and x-axis.

(  )

69. Find the area enclosed by the curves x2 + y2 = 4, parabola y = x 2 + x + 1 and the curve x x y = ​ sin2 ​ __ ​    ​  ​ + cos ​ __ ​    ​  ​  ​ and x-axis. 4 4 x2 70. Find the area enclosed by the curves ​ __ ​  + y2 = 1 4 x__2 and ​   ​  – y2 = 1. 2

[  (  )

(  ) ]

34 (d) ​ ___ ​ sq.u. 3 ______

2. The area under the curve y = ​÷3x   + 4 ​  between x = 0 and x = 4, is



56 (a) ​ ___ ​ sq.u. 9

64 (b) ​ ___ ​ sq.u. 9



(c) 8 sq.u.

(d) none of these



3. The area bounded by the curve y = x3, x-axis and two ordinates x = 1 to x = 2 equal to



15 (a) ​ ___ ​ sq.u. 2

15 (b) ​ ___ ​ sq.u. 4



17 (c) ​ ___ ​ sq.u. 2

17 (d) ​ ___ ​ sq.u. 4



4. The measurement of the area bounded by the coordinate axes and the curve y = loge x is (a) 1 (b) 2 (c) 3 (d) • 5. If the area bounded by the curves y2 = 4ax and a2 y = mx is __ ​   ​ , the value of m is 3

Area Bounded by the Curves 







(a) 2 (c) 1/2

(b) – 2 (d) none of these

6. The area bounded by the parabola y = 4x2, y-axis and the lines y = 1, y = 4 is (a) 3 sq.u.

7 (b) ​ __ ​  sq.u. 5

7 (c) __ ​   ​  sq.u. (d) none of these 3 7. The area enclosed by the curves y = sin x, y = 0, p x = 0 and __ ​   ​  is 2 (a) p (b) 2p (c) 1 (d) 2 8. The area of the region bounded by the x-axis and the p p curve defined by y = tan x ​ – ​ __ ​  £ x £ __ ​   ​   ​ is 3 3

( 

__

(a) log ​÷2 ​    (c) 2 log 2

)

__

(b) – log ​÷2 ​    (d) 0

9. The ratio of the areas bounded by the curves p y = cos x and y = cos 2 x between x = 0, ​ __  ​ and 3 x-axis is __

(a) ​÷2 ​     : 1 (b) 1 : 1 (c) 1 : 2 (d) 2 : 1 10. The area bounded by y = [x] and the lines x = 1 and x = 1.7 is

17 (a) ​ ___ ​   10

(b) 1



17 (c) ​ ___ ​   5

7 (d) ​ ___  ​  10

11. The area bounded by the x-axis and the curve y = sin x and x = 0, x = p is (a) 1 (b) 2 (c) 3 (d) 4 12. The area bounded by the parabola y2 = 2x and the ordinates x = 1, x = 4 is __

__



4​÷2 ​    (a) ​ ____  ​   sq.u. 3

28​÷2 ​    (b) ​ _____  ​   sq.u. 3



56 (c) ​ ___ ​ sq.u. 3

(d) none of these 2

x2 y 13. The area of the ellipse __ ​  2  ​ + __ ​  2  ​ = 1 is a b 1 (a) p ab sq.u. (b) ​ __ ​  p ab sq.u. 2 1 (c) ​ __ ​  p ab sq.u. (d) none of these 4 14. The area of the smaller segment cut off from the circle x2 + y2 = 9 by x = 1 is



__ 1 (a) ​ __ ​  (9 sec–1 3 – ÷ ​ 8 ​   )  2

(b) 9sec–1 (3) – ÷ ​ 8 ​   



(c) ​÷8 ​     – 9 sec–1 3

(d) none of these

__

3.7

__

15. The area of the upper half of the circle whose equation is (x – 1)2 + y2 = 1 is given by 2



______

(a) ​Ú ​  ​ ​÷2x   – x2   ​ dx 0

2



______

(c) ​Ú ​  ​ ​÷2x   – x2   ​ dx 1

1

______

(b) ​Ú ​  ​ ​÷2x   – x2   ​ dx 0

p (d) ​ __ ​  4 __

16. The area bounded by the curves y = ÷ ​ x    ​,  2y + 3 = x and x-axis in the first quadrant is

(a) 9

27 (b) ​ ___ ​  4



(c) 36

(d) 18

17. The area of the region {(x, y): x2 + y2 £ 1 £ x + y} is

p 2 (a) ​ ___ ​   5

p 2 (b) ​ ___ ​  2



p 2 (c) ​ ___ ​   3

p 1 (d) ​ __ ​   ​  – __ ​   ​   ​ 4 2

( 

)

18. The area bounded by the curves y = |x| – 1 and y = – |x| + 1 is (a) 1 __ (b) 2 (c) 2​÷2 ​    (d) 4 19. The area of the figure bounded by y = ex, y = e–x and the straight line x = 1 is

1 (a) e + __ ​ e ​

1 (b) e – __ ​ e ​

1 1 (c) e + __ ​ e ​ – 2 (d) e + __ ​ e ​ + 2 20. The area bounded by the curves y = loge x and y = (loge x)2 is



(a) 3 – e

(b) e – 3

1 1 (c) ​ __ ​  (3 – e) (d) ​ __ ​  (e – 3) 2 2 21. The area enclosed by the parabolas y = x2 – 1 and y = 1 – x2 is 1 2 (a) ​ __ ​   (b) ​ __ ​  3 3 8 4 __ __ (c) ​   ​   (d) ​   ​  3 3 22. The area bounded by the circle x2 + y2 = 4, line ___ x=÷ ​ 3y     ​ and x-axis lying in the first quadrant, is



p (a) ​ __ ​   2

p (b) ​ __ ​  4

3.8  Integral Calculus, 3D Geometry & Vector Booster p (c) ​ __ ​   (d) p 3 23. The area formed by triangular-shaped region bounded by the curves y = sin x, y = cos x and x = 0 is

__



(a) ​÷2 ​     – 1



(c) ​÷2 ​   

(b) 1

__

__

(d) 1 + ​÷2 ​   

24. The area between the curve y = cos x and x-axis when 0 £ x £ 2p is (a) 2 (b) 4 (c) 3 (d) 0 25. The area of the greatest rectangle that can be inscribed 2 x2 y in the ellipse __ ​  2  ​ + __ ​  2  ​ = 1 is a b ___ (a) ​÷ab     ​ (b) a/b (c) 2ab (d) ab 26. The area bounded by the curves y = |x – 2|, x = 1, x = 3 and the x-axis is (a) 4 (b) 2 (c) 3 (d) 1 27. The area bounded by lines y = 2 + x, y = 2 – x and x = 2 is (a) 3 (b) 4 (c) 8 (d) 16 28. The area enclosed by the parabola y2 = 4ax and the straight line y = 2ax, is

a2 (a) ​ __ ​  sq.u. 3

1 (b) ​ ___ 2 ​ sq.u. 3a



1 (c) ​ ___  ​ sq.u. 3a

2 (d) ​ ___  ​ sq.u. 3a

(a) 26a2

(b) 8a2

2

2

26a 104a (c) ​ ____  ​     (d) ​ _____  ​    3 3 30. The area bounded by the curves y = In x, y = In |x|, y = |In x| and y = |log |x|| is (a) 4 sq.u. (b) 6 sq.u. (c) 10 sq.u. (d) none of these 31. The area bounded by the curves y = |x – 1| and y = 3 – |x|, is (a) 2 sq.u. (b) 3 sq.u. (c) 4 sq.u. (d) 1 sq.u. 32. The area of the region lying inside x2 + (y__ – 1)2 = 1 and outside c2 x2 + y2 = c2, where c = (​÷2     ​ – 1) is



__

p (a) (4 – ÷ ​ 2 ​   )  __ ​   ​  + 4

1 ___ ​  __  ​   ​ 2 ​    ÷

__

p (b) (4 + ​÷2 ​   )  __ ​   ​  – 4

(  )



(a) 2

(b) 1



(c) 4

(d) none of these

34. The area of the region formed by x2 + y2 – 6x – 4y 5 + 12 £ 0, y £ x and x £ __ ​   ​ is 2 __ __ ​______ 3 ​    + 1 3 ​    – 1 p ÷ p ​÷______ __ __ (a) ​   ​  – ​   ​     (b) ​   ​  + ​   ​    8 4 8 6 __

   – 1 p ​÷3 ​ (c) ​ __ ​  – ​ ______  ​     (d) none of these 8 6 35. Let f (x) = maximum [x2, (1 – x)2, 2x (1 – x)] where 0 < x < 1. The area of the region bounded by the curves y = f (x), x-axis, x = 0 and x = 1 is

17 14 (a) ​ ___ ​   (b) ​ ___ ​  27 27 19 (c) ​ ___ ​   (d) none of these 27 36. The area enclosed by the parabola ay = 3(a2 – x2) and x-axis is (a) 4a2 sq.u. (b) 12a2 sq.u. 3 (c) 4a sq.u. (d) none of these 37. The area bounded by the curve y = k sin x between x = p and x = 2p, is (a) 2k sq.u. (b) 0



29. The area bounded by the curves x = at2, y = 2at and the x-axis in 1 £ t £ 3, is

__ p 1 (c) (4 + ÷ ​ 2 ​   )  __ ​   ​  + ___ ​  __  ​   (d) none of these 4 ÷ ​ 2 ​    33. The area enclosed between the curves y = loge (x + e), 1 x = loge ​ __ ​ y ​ ​ and the x-axis, is



1 ___ ​  __  ​  ​ 2 ​    ÷

k 2 (c) ​ ___ ​   2

(d) k sq.u.

38. Let f (x) be a non-negative continuous function such that the area bounded by the curve y = f (x), p p x-axis and the ordinates x = __ ​   ​  and x = b > __ ​   ​  is​ 4 4 __ p p b sin b + __ ​   ​  cos b + ​÷2 ​     b  ​, then f ​ ​ __ ​   ​ is 4 2

(  )

( 

)

(  ) p (c) ​( __ ​   ​  + ÷ ​ 2 ​   – 1 )​ 4

(  ) p (d) ​( __ ​   ​  – ÷ ​ 2 ​   + 1 )​ 4

__ p (a) ​ 1 – ​ __ ​  – ÷ ​ 2 ​      ​ 4 __



__ p (b) ​ 1 – ​ __ ​  + ÷ ​ 2 ​     ​ 4 __



39. The area in the first quadrant between x2 + y2 = p 2 and y = sin x is

(p 3 – 8) (a) ​ _______  ​     4 (p3 – 16) (c) ​ ________  ​     4

p 3 (b) ​ ___ ​  3 (p 3 – 8) (d) ​ _______  ​    2

40. For 0 £ x £ p, the area bounded by y = x and y = x + sin x, is

Area Bounded by the Curves 

(a) 2 (b) 4 (c) 2p (d) 4p 41. The area bounded by y = x sin x and x-axis between x = 0 and x = 2p, is (a) 0 (b) 2p sq.u. (c) p sq.u. (d) 4p sq.u. 42. The area bounded by the lines y = |x – 2|, |x| = 3 and y = 0 is (a) 13 unit2 (b) 5 unit 2 2 (c) 9 unit (d) 7 unit2 43. The area bounded by the curve x2 = ky, k > 0 and the line y = 3 is 12 unit2. Then k is

__

3 (c) ​ __ ​   (d) none of these 4 44. The area of the portion enclosed by the curve __ __ __ ​ x     ​ + ÷ ​ y     ​ = ​÷a    ​  and the axes of reference is ÷



a2 (a) ​ __ ​   6

e 2 (a) ​ ___ ​   (b) e2 2 (c) 2e2 (d) 1. 50. The area bounded by eln (x + 1), |x| £ 1, is (a) 1 (b) 2 (c) 4 (d) none __ 51. The area common to the region determined by y ≥ ​÷x    ​  and x2 + y2 < 2 has the value

52.

(b) 3​÷3 ​   

(a) 3

(b) a2

a2 a2 (c) ​ __ ​   (d) ​ __ ​  2 4 45. The area bounded by the curve x = cos–1y and the lines |x| = 1 is

53. 54.





(a) sin 1

(b) cos 1

(c) 2 sin 1 (d) 2cos 1 46. The area enclosed between the curves |y| = 1– x2 and x2 + y2 = 1 is

3p  – 8 (a) ​ ______  ​     3 2p – 8 (c) ​ ______  ​     3

)



1 (c) 2 ​ e + __ ​ e ​  ​

(d) none

3 56. The area bounded by the curve y = ​ __   ​ and |x| y = 2 – |x – 2| is

( 

y = |x – p|, is (a) p 2 (b) 2p 2 (c) p 2/2 (d) none 49. The area bounded by the curves ÏÔ x1/ln x y = Ì ÔÓe

)

p 1 (c) ​ __ ​   ​  – ​ __ ​   ​ (d) none 4 6 The area of the region bounded by ||x| – |y|| £ 1 and x2 + y2 in the xy-plane is (a) p (b) 2p (c) 3p (d) 1. The area bounded by 1 £ |x – 2| + |y + 1| £ 2 is (a) 2 (b) 4 (c) 6 (d) none The area bounded by the curve y = tan x + cot x| – |tan x – cot x| and between the lines x = 0 and p x = __ ​   ​  and the x-axis is 2 __ (a) ln 4 (b) ln__ ÷ ​ 2 ​    (c) 2 ln 2 (d) ​÷ 2 ​  ln 2 The area is enclosed by the graph of the curve y = ln2 x – 1 lying in the fourth quadrant is

p  – 8 (b) ​ _____  ​    3

(  ) ( 

( 

(b) (2p – 1)

2 (a) ​ __ e ​

1__ B ​ 1, ​ ___   ​  ​, C (2, 0) such that min {PA, PB, PC} = 1, ​ 3 ​    ÷ the area bounded by the curve traced by the point P is __ __ 3p p (a) ​ 3÷ ​ 3 ​     – ___ ​   ​   ​ (b) ​÷ 3 ​  + __ ​   ​  2 2 __ __ p 3p __ (c) ​ ÷ ​ 3 ​     – ​   ​   ​ (d) ​ 3÷ ​ 3 ​     + ___ ​   ​   ​. 2 2 48. The area bounded by the curves y = cos–1 (cos x) and

)

55.

(a) p



47. A point P moves inside a triangle formed by A(0, 0),

( 

3.9

: x π1 and y = |x – e| is : x =1

)

( 

4 (b) ​ __ e ​

)

( 

)

1 (d) 4 ​ e – __ ​ e ​  ​.

4  – ln 27 (a) ​ ________  ​     (b) 2 – ln 3 3 (c) 2 + ln 3 (d) none 57. The area enclosed by the curve |x + y – 1| + |2x + y + 1| = 1 is (a) 2 (b) 1 (c) 4 (d) 3/2

58. The area of the region {f ( x, y) : x2 + y2 £ 1 |x| + |y|} is (a) p (b) p – 1 (c) p – 2 (d) p – 3 59. The area of the region of the xy-plane is bounded by |x| + |y| + |x + y| £ 1 is (a) 1/2 (b) 3/4 (c) 1 (d) 4 60. The area of the region bounded by the curves y = [x] and y = {x}, where [,] = GIF and {,} = LIF, is

3.10  Integral Calculus, 3D Geometry & Vector Booster (a) 2 (b) 1 (c) 1/2 (d) 4 61. The smaller area is bounded by the curves |x| + |y| = 1 __ __ and ÷ ​ |x| ​    + ÷ ​ |y| ​    = 1, is (a) 1/3 (b) 2/3 (c) 4/3 (d) 5/3. 62. The area bounded by the curves |x| + |y| = 1 and |x – 1| + |y| = 1 is (a) 1/2 (b) 1/4 (c) 3/2 (d) 3/4 63. The area of the region bounded by the curves x = – 2y2 and x = 1 – 3y2 is (a) 4/3 (b) 3/4 (c) 5/3 (d) 3/5 64. The area enclosed by the parabola (y – 2)2 = x – 1 and the tangent to it at (2, 3) and x-axis is (a) 10 (b) 7 (c) 9 (d) 5 65. The area enclosed by the curves (y – x)2 = x3 and the straight line x = 1 is (a) 5/4 (b) 4/5 (c) 2/3 (d) 3/2

(c) 2 (d) 4 70. A normal to the curve x2 + kx – y + 2 = 0 at the point, whose abscissa ‘1’ is paral let to the line y = x. Then (a) the value of k is – 3 (b) Equation of the normal is x – y = 1 (c) The area bounded by the curve the normal and the x-axis is 7/6 sq u. (d) Equation of tangent is x + y + 1 = 0 71. If the area bounded by the curve y = 3x3 + 2x and the lines x = a and y = 0 is unity, then the value of a is/are __ – 1 2 ___ (a) ​  __ ​   (b) ​ __ ​    ​ ​  3 ​ 3 ​    ÷

(More than one options are correct)



1__ (d) ​ ___   ​  ​ 3 ​    ÷ 72. Let the parabola by y2 = 4x and the solpe of the normal by – 1. Then (a) Equation of the normal is x + y = 3 (b) The points of intersections are (1, 2) and (9, – 6) (c) The area bounded by the curve and its normal is 64/3 sq. units (d) None of these



(Problems for JEE-Advanced)



1. Find the area bounded by the curve a2y2 = x2(a2 – x2) in xy-plane by the method of integration. [Roorkee, 1985]



2. Find the area bounded by the curve y = (x – 1)(x – 3) and x-axis lying between the ordinates x = 0 and x = 3. [Roorkee, 1986] 3. Find the area of the region bounded by the curves y = logex and y = sin 4(px) and x = 0. [Roorkee, 1987]

|x|



)

(b) n = 1 (d) m + n + p = 0 x 2 67. Let the curves y = 4ax, y = ax and y = ​ __ a ​ where 1 £ a £ 2. Then

(a) m = 1 (c) m + n + p = 3

( 

)

8 1 (a) Area = __ ​   ​ ​  a5 – __ ​ a ​  ​ 5 (b) Max area = 84 (c) Max area = 75 a (d) Points of intersections are ​ ​ __   ​,   4  ​ and 4 (4a3, 4a3)

( 

{ 

}



)





[  ]

p 1__ 68. Let f(x) = min​ tan x, cot x, ​ ___   ​   ​ " x Œ ​ 0, ​ __ ​   ​. Then 2 ​ 3 ​    ÷ the are bounded by the curve y = f (x) and the x-axis is​ p__ m ____ log ​ ​ __  ​    ​ + ​     ​    ​ sq units, where m, n, p Œ N then n p​÷3 ​   

( 

(  )

÷ 

__



2 (c) – ​ __ ​   ​ ​    3

– x

66. The area bounded by the curve y = |e – e |, the 1 x-axis and x = 1 is ​ em + ​ __n  ​  + p  ​ sq unit, then e

( 

÷ 

)

(a) m = 4 (b) n = 4 (c) p = 6 (d) m + n + p = 14 69. The area bounded by the curve y = x – x2 and the line y = m x is a/2 then the value of m is/are (a) 1 (b) – 2



4. Find the area between the curve y = 2x4 – x2, the x-axis and the ordinates of the two minima of the curve. [Roorkee, 1988] 5. Find the area of the portion of the circle x2 + y2 which is exterrior to the parabola y2 = 12x. [Roorkee, 1989] 6. Find the area enclosed between the curves 1 y = loge(x + e), x = loge ​ __ ​ y ​  ​ and the x-axis. [Roorkee, 1990] 7. The line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = 3/2 and the curve y = 1 + 4x – x2. Find the value of m. [Roorkee, 1991]

(  )

Area Bounded by the Curves 























8. Find the area bounded by the curve y = 2x – x2 and the line y = – x. [Roorkee, 1992] 9. Find the area bounded by the curve y = (x – 1)(x – 2) and the axis of x. [Roorkee, 1993] 10. Find the ratio in which the area bounded by the curves y2 = 12x and x2 = 12y is divided by the line x = 3. [Roorkee, 1994] 11. Find the area given by the curves x + y £ 6. x2 + y2 £ 6y and y2 £ 8x. [Roorkee, 1995] 12. Find the area of the region bounded by the curves x2 + y2 – 6x – 4y + 12 £ 0, y £ x, x £ 5/2. [Roorkee, 1996] 13. Indicate the region bounded by the curves x2 = y, y = x + 2 and x-axis and obtain the area enclosed by them. [Roorkee, 1997] 14. Indicate the region bounded by the curves y = x log x and y = 2x – x2 and obtain the area enclosed by them. [Roorkee, 1998] 15. Find the area of the region lying inside x__2 + (y + 1)2 and outside c2x2 + y2 = c2, where c = ÷ ​ 2 ​     – 1. [Roorkee, 1999] 16. Find the area enclosed by the parabola (y – 2)3 = x – 1, the tangent to the parabola at (2, 3) and the x-axis. [Roorkee, 2000] 17. A point P moves inside a triangle formed by A(0, 0), 1 B ​ 1, ___ ​  __  ​  ​, C(2, 0) such that {PA, PB, PC} = 1, find ​ 3 ​    ÷ the area bounded by the curve traced by P. 18. Find the area bounded by the curve f(x) = cos–1(cos x), 0 £ x £ 2p with the tangent to the curve f(x) = |cos x| at x = p. 19. Find the area enclosed between the curves |y| = 1 – x2, x2 + y2 = 1. 1 20. Find the area bounded by the curves |y| = e–|x| – ​ __  ​ 2 and |x| + |y| = ln2. 21. Find the area enclosed between the parabolas y2 – 2y + 4x + 5 = 0 and x2 + 2x – y + 2 = 0. 22. Find the area enclosed between the smaller arc of the circle x2 + y2 – 2x + 4y – 11 = 0 and the parabola __ 2 y = – x + 2x + 1 – 2​÷3 ​    . 23. Find the smaller of the two areas enclosed between the ellipse 9x2 + 4y2 – 36x + 8y + 4 = 0 and the line 3x + 2y = 10. 24. Let f (x) = x2 + 3x + 2 and g(x) be its inverse. Find the area bounded by g(x), the x-axis and the ordinates x = 1 and x = 4. 25. Find the area bounded by the curve g (x), the x-axis, the ordinates x = – 1 and x = 4, where g (x) is the

(  )

13 x3 x2 inverse of the function f(x) = ___ ​    ​ + __ ​   ​  + ____ ​    ​ + 1. 24 8 12x

3.11

26. Find the area bounded by the curves y = xex, y = xe–x and the line x = 1. 27. Find the area of the region bounded by |x + 2y| + |x + 2y| ≥ 8 and xy ≥ 2. 28. Find the area enclosed by |x| + |y| £ 3 and xy ≥ 2. 29. Find the area of the region bounded by |x – y| + |x + y| £ 8 and xy ≥ 2. 30. Find the area of the curve enclosed by |x + y| £ 2 2 + y2 ≥ 2.

(Tougher Problems for JEE-Advanced)

1. Find the area enclosed by 2x2 + 6xy + 5y2 = 1.



2. Find the area enclosed by the curve x2/3 + y2/3 = a2/3.



3. A polynomial function f(x) satisfies the condition f(x + 1) = f(x) + 2x + 1. Find f(x), if f(0) = 1. Find also the equations of the pair of tangents from the origin on the curve y = f(x) and compute the area enclosed by the curve and the pair of tangents. 2 4. Find the area bounded by the curve y = x​e–x ​ ​, the x-axis and the line x = c, where y(x) is maximum. 5. For what value of a, the area bounded by the curve y = a2x2 + ax + 1 and the straight lines x = 0, y = 0 and x = 1 is the least? 6. Find the possible value of a for which the parabola y = x2 + 1 bisects the area of the rectangle with vertices (0, 0), (a, 0), (0, a2 + 1), (a, a2 + 1). 7. Find the area bounded by the curve y = xe–x, xy = 0 and x = c where c is the x-coordinate of the curves inflection point. 8. Find the area of the region bounded by |x| + |y| ≥ 1 and x2 – 2x + 1 £ 1 – y2. 9. Find the area bounded by the curves |x + y| £ 1, |y – x| £ 1 and 3x2 + 3y2 ≥ 1. 10. Find the area bounded by the curves |x – 2| + |y – 2| £ 3, x2 – 4x + y + 3 £ 0 and x2 + y2 + 2x – 9 £ 0. 11. Find the area enclosed by the curves (x2 + y2) £ 4 £ 2(|x| + |y|) 4 – x2 12. Find the area bounded by the curves y = ​ _____  ​   and 4 y = 7 – |x|. 13. Find the area bounded by the curves y = x2 + x – 2, y = 2x for which |x2 + x – 2| + |2x| = |x2 + 3x – 2| is satisfied. 14. Find the area bounded by the curves y2 = 4a (x + a) and y2 = 4b (b – x). 15. Find the area bounded by the parabola y = x2 – 2x + 3, the line tangent to it at the point P(2, – 5) and the y-axis.











3.12  Integral Calculus, 3D Geometry & Vector Booster 16. Find the area enclosed between the circle x2 + y2 – 2x + 4y__– 11 = 0 and the parabola y = – x2 + 2x + (1 – 2​÷3 ​   )  . 17. Find the area enclosed by the curves a2x2 + b2y2 = 1 and b2x2 + a2 y2 = 1. 1 18. Find the area bounded by the curves |y| + ​ __ ​  £ e–|x| 2 and max {|x|, |y|} £ 2. 19. Find the area enclosed by the curves y = min {x3, |x – 2|, e3–x}, x-axis, y-axis and x = 4. 20. Find the area of the region bounded by the set S = S3 – S1 – S2, where

S1:{(x, y) : x2 + 2y2 £ 2}



S2:{(x, y) : 2x2 + y2 £ 2} 2

__

4​÷2 ​    (a) ​ ____    ​   3  2 7 3



2

4​÷2 ​    (b) ​ ____    ​  2  2 7 3

__



1. Find the area bounded by the curves x y = ​ sin2x + cos ​ __ ​    ​  ​  ​, x = – 2 and x = 2 and x-axis. 4 2. Find the area bounded by the curves |x| + |y| = 1. 3. Find the area bounded by the curves |x – 2| + |y – 2| = 1. 4. Find the area bounded by the curve eln(x + 1) ≥ |y|, |x| £ 1. 5. Find the area bounded by the curves y = ln |x| and y = 1 – |x|. 6. Find the area bounded by the curves y = 3 – |x| and y = |x – 1|. 7. Find the area bounded by the curves |x| y = __ ​ x ​ , x π 0 and y = x (x – 1) (x – 3). 8. Find the area bounded by the curves y = ex, x = 0, y = e. 9. Find the area bounded by 1 £ |x – 2| + |y + 1| £ 2. 10. Find the area bounded by the curve |y| = sin (2x), where 0 < x < 2p. 11. Find the area enclosed by the curves

(  ) ]

__________

|x + y| + |x – y|, £ 4, |x| £ 1 and y £ ​÷x  2 – 2x +    1 ​. 12. Find the area bounded by the curves 4 £ x2 + y2 £ 2 (|x| + |y|). 13. If the area bounded by the curves 1 1 4 y = __ ​ x ​, y = ______ ​       ​, x = 2, x = a is ___ ​  __  ​,  find a. 2x – 1 ​÷5 ​   

__

4​÷2 ​    4​÷2 ​    (c) ​ ____  ​   (d) ​ ____  ​  723 733 2. The area of the region bounded by the curves y = f(x), the x-axis and the lines x = a and x = b, where – • < a < b < – 2, is



Integer type questions

[ 

assage I P Consider the functions defined implicity y3 – 3y + x = 0 on various interval in the real line. If x Œ (– •, 2) » (2, •), the equation implicity defines a unique real valued differentiable function y = f (x). If x Œ (– 2, 2), the equation implicity define a unique real valued differentiable function y = g (x) satisfying g(0) = 0. On the basis of the above information, answer the following questions. __ __ __ 1. If f (– 10​÷2 ​    ) = 2​÷2 ​    , then f ¢¢(–10​÷2 ​    ) is __

and S3:{(x, y) : x + y £ 2



Comprehensive Link Passages (For JEE-Advanced Examinations)

b



x (a) ​Ú ​    ___________ ​​       ​ dx + bf (b) – af (a) a 3((f (x))2 – 1)



x (b) – ​Ú ​    ___________ ​​       ​ dx + bf (b) – af (a) a 3((f (x))2 – 1)



x (c) ​Ú ​  ​ ___________ ​       ​ dx – bf (b) + af (a) a 3((f (x))2 – 1)

b

b

b

x (d) – ​Ú ​    ___________ ​​       ​ dx – bf (b) + af (a). a 3((f (x))2 – 1)



1

3. The value of Ú​   ​ ​ g¢(x) is



(a) 2g (–1) (c) – 2g (1)

–1

(b) 0 (d) 2g (1).

Passage II If x = f (y) and x = g (y) be two functional curves, the area bounded by the curves x = f (y), x = g(y), y = c and y = is given by d

​Ú ​    ​|f(y) – g(y)| dy, c

where d > c. d In case of g(y) always left of f(y), required area = ​Ú  ​  ​ c [ f(y) – g(y)]. On the basis of the above information, answer the following questions. 1. The area bounded by y2 = 2x + 1 and x – y – 1 = 0, will be (a) 16/9 (b) 16/3 (c) 8/3 (d) none.

3.13

Area Bounded by the Curves 



2. The area bounded by y = loge x, x-axis and y-axis is given by •

(a) ​Ú ​  ​   ​loge y dy



1

0

(b) ​Ú  ​   ​e–y dy –•

0

(c) ​Ú  ​   ​e y dy



– •

(d) none

3. The area bounded by y = tan–1 x, y = cot–1 x and y-axis is equal to __



(a) log ​÷2 ​   

(b) log 4



(c) log 2

(d) none

Passage III Conseider the function 1 Ï : x œI Ô x - [ x] f (x) = Ì , 2 ÔÓ0 : x ŒI where [,] = GIF

and if g(x) = max {x2, f(x), [x]}, where – 2 £ x £ 2 On the basis of the above information, answer the following questions. 1. The area bounded by the curves y = f(x), x-axis and the ordinates x = 1/2 and x = 1 is (a) 1/4 (b) 1/8 (c) 1/2 (d) none. 2. The area bounded by y = g(x), x-axis and the straight line x = 1 is (a) 1/4 (b) 1/2 (c) 1/8 (d) none 3. The area bounded by y = g(x), where – 2 £ x £ 2, is (a) 175/48 (b) 275/48 (c) 175/24 (d) 275/24. Passage IV A normal to the curve x2 + kx – y + 2 = 0 at the point whose abscissa 1 is parallel to the line y = x. On the basis of the above information, answer the following questions. 1. The value of k is (a) –3 (b) 1 (c) 0 (d) 2 2. The equation of the normal is given by (a) y = x + 1 (b) y = x – 1 (c) y = – x + 1 (d) y = – x – 1. 3. The area in the first quadrant bounded by the curves, the normal and the x-axis is (a) 13/6 (b) 7/6 (c) 10/3 (d) 43/6.

Passage V

_____

Consider ​ x  2 –  4, ​  g(x) = |x – 2| and h(x) _____ the functions f (x) = ÷ = ​÷x  – 2 ​ for x Œ R, a function is defined as F(x) = max or min {f (x), g(x), h(x)}. On the basis of the above information, answer the following questions. 1. The area of F (x) = min {f(x), g(x), h(x)} between the co-odinates axes for x < 0 is (a) 2p (b) p (c) 4p (d) none 2. The area enclosed by F(x) = min{ f(x), g(x), h(x)} and F(x) = max{ f(x), g(x), h(x)} for x Œ [0, 2] is (a) p (b) p + 2 (c) p – 2 (d) p – 1. 3. The area bounded by the curves F(x) = min{f (x), g(x), h(x)}, x = 2, y = 0 and x = 3, is (a) 3/2 (b) 1/2 (c) 1 (d) none

Matrix Match (For JEE-Advanced Examination Only)

1. Match the following Columns: Column I



Column II

(A) The area bounded by y = 3x and (P) y = x2 is

2/3

(B) The area bounded by x = 4 – y2 (Q) and the y-axis is

17/12

(C) The area in squares units of the2 (R) region bounded by the curve x = 4y and the line x = 2 and the x-axis is

32/3

(D) The area bounded by y = x3, (S) y = x2 and x = 1, x = 2 is (T)

32/9 9/2

2. Match the following Columns: Column I

Column II

(A) The area enclosed by the curve (y (P) – sin–1 x)2 = x – x2 is

0

(B) The area of the region represented (Q) by __ ​ 2 ​     £ |x + y| + |x – y| £ 2 is ÷

1

(C) If the area bounded by (R) y = x2 – 3 and the line y = ax + 2 attains its maximum value, the value of a is

p

(D) If k is a positive number and the area (S) of the region bounded by the curves y = x – kx2 and k y = x2 attains its (T) maximum value, the value of k is

6 p/4

3.14  Integral Calculus, 3D Geometry & Vector Booster

3. Match the following Columns: Column I



Column II

(A) The area of the figure (P) bounded by y = tan x, p p y = tan2 x, –  ​ __ ​  £ x £ __ ​   ​  2 2 is

4p

(B) The area bounded by (Q) the curve y = x sin x and the x-axis, x = 0 and x = 2p is

p 1 – __ ​   ​  4

(C) The area bounded by (R) the curves x = tan–1 ​ __    ​, x = 0, x = p/4 and ÷y  y = 0 is

__

2(p + 1) + ÷ ​ 2 ​   

( 

)

( 

Column II

(A) The area bounded by the (P) curves y = |sin x|, x-axis and the lines |x| = p.

2 s.u.

(B) The area bounded by the (Q) curves y = sin –1 x, y-axis, |y| = p/2

1 s.u.

(C) The area bounded by the (R) x2 curves y = ​ ___ ​    ​ + 2  ​, 64 [,] = GIF, y = x – 1, x = 0 is

8 s.u.

(D) The area bounded by the (S) curves y = |x – 1| and y = 3 – |x|, is

4 s.u.

[ 

)

)

)

Questions asked in past IIT-JEE Examinations

4. Match the following Columns: Column I

( 

( 

p (D) The area bounded by (S) ​ log 2 – 2 + ​ __  ​   ​ e  2 the curves f(x) = max {1 + sin x, 1, 1 – cos x}, between the co-ordinates x = – p and x = p is

2. Assertion (A): The area bounded by the curve y = [x] n(n – 1) and the lines x = 0 and x = n is ​ ​ _______  ​    ​ s.u. 2 Reason (R): The area bounded by the curve y = [x] and the lines x = 0 and x = 10 is 45 s.u. 3. Assertion (A): The area bounded by the curves f(x, y) p 1 = {(x, y) : x2 + y2 £ a2, x + y ≥ a} is ​ __ ​   ​  – __ ​    ​  ​ s.u. 4 2 Reason (R): The area bounded by the curves f(x, y) = {(x, y) : x2 + y2 £ 1, x + y ≥ 1,} p 1 is ​ __ ​   ​  – __ ​   ​   ​ s.u. 4 2 4. Assertion (A): The area bouned by the curves y = min {|x + 2|, |x|, |x – 2|} is 2 s.u. Reason (R): The area bounded by the curves y = 1 – |x| and y = |x| – 1 is 2 s.u. 5. Assertion (A): The area of the region bounded by the curves y = |x – 1| and y = 3 – |x| is 4 s.u. Reason (R): The area of the region bounded by the curves y = ln x, y = ln |x|, y = |ln x| and y = ​| ln|x| |​ is 4 s.u.

]

Assertion and Reason (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true but R is not the correct explanation of A (C) A is true and R is false (D) A is false and R is true. 1. Assertion (A): The area bounded by the curve |x| + |y| = 1 is 1 s.u. Reason (R): The area bounded by the curve |x – 2| + |y – 2| = 1 is also 1 s.u.









1. Find the area bounded by the curve x2 = 4 and the straight line x = 4y – 2. [IIT-JEE, 1981] 2. Find the area enclosed by |x| + |y| = 1. [IIT-JEE, 1981] 3. Find the area bounded by the curve y = f(x), x-axis and the co-ordinates x = 1 and x = b is (b – 1) sin (3b + 4). Then f (x) is (a) (x – 1) cos (3x + 4) (b) sin (3x + 4) (c) sin (3x + 4) (x – 1) cos (3x + 4) (d) none. [IIT-JEE, 1982] 4. Find the area bounded by the x-axis, part of the curve 8 y = ​ 1 + __ ​  2  ​   ​ and the ordinates at x = 2 and x = 4. x If the co-ordinates at x = a divides the area into two equal parts, find a. [IIT-JEE, 1983]

( 

)

5. Find the area of the region bounded by the x-axis and the curves defned by

p p Ï ÔÔ y = tan x : - 3 £ x £ 3 Ì Ô y = cot x : p £ x £ p ÔÓ 6 2

[IIT-JEE, 1984] _____



6. Find the area bounded by the curves y = ÷ ​ 5  – x2   ​ and y = |x – 1| [IIT-JEE, 1985] 7. Find the area bounded by the curves x2 + y2 = 4, __

x2 = – ​÷2  ​   y  and y = x.

[IIT-JEE, 1986]

Area Bounded by the Curves 



8. Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the x-axis. [IIT-JEE, 1987]



9. Find the area of the region bounded by the curve p y = tan x, tangent drawn to the curve at x = __ ​   ​  and 4 the x-axis. [IIT-JEE, 1988]

10. Find all maxima and minima of the function y = x (x – 1)2 : 0 £ x £ 2. Also, determine the area bounded by the curve y = x (x – 1)2, the y-axis and the line y = 2. [IIT-JEE, 1989] 11. Find the area of the region bounded by the curves ln x y = e x ln x, y = ___ ​ e x ​ and x = 1. [IIT-JEE, 1990] 12. Sketch the curves and identify the region bounded 1 by y = ln x, y = 2x, x = __ ​   ​  and x = 2. Find the area 2 of the region. [IIT-JEE, 1991] 13. Find the area bounded by the curves y = x2 and 2 y = _____ ​   2 ​  . [IIT-JEE, 1992] 1+x 14. The area of the region bounded by the curves y = |x – 1| and y = 1 is (a) 1 (b) 2 (c) 1/2 (d) none [IIT-JEE, 1993] 15. In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x – x2 and y = x2 – x? [IIT-JEE, 1994] 16. Consider a square with vertices at (1, 1), (–1, 1) (–1, –1) and (1, –1). Let S be the region consisting of all points inside the square which are near to the origin than to any edge. Sketch the region S and find its area. [IIT-JEE, 1995] 17. The slope of the tangent to the curve y = f(x) at a point (x, y) is (2x + 1) and the curve passes through (1, 2). The area of the region bounded by the curve, the x-axis and the line x = 1 is (a) 5/3 (b) 5/6 (c) 6/5 (d) 6 [IIT-JEE, 1996] 18. Let An be the area bounded by the curve y = tann x, p y = 0, x = 0, x = __ ​   ​ . If n ≥ 2, then (An + An+2) is 4 1 1 (a) ​ ______      ​ (b) ​ __ n ​ (n + 1) 1 (c) ​ ____     ​ (d) none n–1 [IIT-JEE, 1997] 19. Find all possible values of b > 0 so that the area of the region bounded between the parabolas y = x – bx2 x2 and y = __ ​   ​  is maximum. [IIT-JEE, 1997] b

3.15

(  )

1__ 20. Let O (0, 0), A (2, 0), B ​ 1, ​ ___   ​  ​ be the vertices of a ​ 3 ​    ÷ triangle. Let R be the region consisting of all those points P inside D OAB, which satisfy d (P, OA) ≥ min {(P, OB), d (P, AB)} where d denotes the distance from the point to the corresponding line. Sketech the region R and find its area. [IIT-JEE, 1997] 2 2 21. Let f (x) = max {x , (1 – x) , 2x (1 – x)} where 0 £ x £ 1. Determine the area of the region bounded by the curves y = f (x), x-axis, x = 0, x = 1. [IIT-JEE, 1997] 22. Let C1 and 2 be the graphs of the functions y = x2, y = 2x, 0 £ x £ 1 respectively. Let C3 be the graph of a function y = f (x), 0 £ x £ 1, f (0) = 0.

For a point P on C1, let the lines through P parallel to the axes meet C2 and C3 at Q and R, respectively. If for every position of P on C1, the area of the shaded regions OPQ and ORP are equal, determine the function f (x). [IIT-JEE, 1998] 23. For what values of m, the area of the region bounded by the curves y = x – x2 and the line y = m x equals 9/2? (a) – 4 (b) – 2 (c) 2 (d) 4 [IIT-JEE, 1999] 24. Let f(x) be a continuous function given by : | x| £ 1 ÏÔ2 x f (x) = Ì 2 . ÔÓ x + ax + b : | x | > 1 Find the area of the region in the third quadrant bounded by the curves x = – 2y2 and y = f (x) lying in the left of the line 8x + 1 = 0. [IIT-JEE, 1999] No questions asked in 2000. 25. Let b π 0 and for j = 0, 1, 2, ..., n, let S1 be the area of the region bounded by the y-axis and the curve ( j + 1)p jp x exy = sin by, __ ​   ​  £ y £ ​ _______       ​. Show that S0, S1, b b ..., Sn are in GP. Also, find their sum for a = – 1 and b = – 1 and b = p. [IIT-JEE, 2001]

3.16  Integral Calculus, 3D Geometry & Vector Booster 26. The area bounded by the curves y = |x| –1 and y = 1 – |x| is (a) 1 __ (b) 2 (c) 2​÷2 ​    (d) 4 [IIT-JEE, 2002] __ 27. The area bounded by the curves y = ÷ ​ x    ​,  2y + 3 = x and x-axis in the first quadrant is (a) 9 (b) 27/4 (c) 36 (d) 18 [IIT-JEE, 2003] 28. Find the curve passing through (2, 0) and having slope

( 

)

(x + 1)2 + (y – 3) of tangent at any point P (x, y) as ​ ​ ______________     ​     ​. (x + 1) Find also the area enclosed by the curve and x-axis in the fourth quadrant [IIT-JEE, 2004] 29. The area enclosed between the curves y = ax2 and x = ay2__ (a > 0) is 1 sq.u., the value of a is (a) 1/​÷3 ​    (b) 1/2 (c) 1 (d) 1/3 [IIT-JEE, 2004] 30. The area bounded by the curves y = (x + 1)2 and y = (x – 1)2 and the line y = 1/4 is (a) 4 s.u. (b) 1/6 s.u. (c) 4/3 s.u. (d) 1/3 s.u. [IIT-JEE, 2005] 31. Find the area bounded by the curves x2 = y, x2 = – y, and y2 = 4x – 3 [IIT-JEE, 2005] 32.

33.

È 4 a 2 4 a 1˘ È f (-1) ˘ È3a 2 + 3a ˘ Í ˙ Í ˙ If Í 4b2 4b 1˙ ÍÍ f (1) ˙˙ = Í3b2 + 3b ˙ Í 2 ˙ Í ˙ 4c 1˙˚ ÍÎ f (2) ˙˚ ÍÎ3c 2 + 3c ˙˚ ÍÎ 4c and f(x) is a quadratic function and its maximum value occurs at a point V. A is a point of intersection of y = f (x) with x-axis and point B is such that the chord AB subtends a right angle at V. Find the area enclosed by f (x) and chord AB. [IIT-JEE, 2005] No questions asked in between 2006 to 2007. The area of the region between the curves _______

÷ 

_______

÷ 

1 + sin x 1 – sin x y = ​ ​  _______     ​ ​ and y = ​ ​  _______   ​ ​ bounded by the cos x    cos x    p lines x = 0 and x = __ ​   ​  is __ 4 ​÷2 ​     – 1 t _____ (a) ​Ú ​   ​ ​ ​ _____________       ​  ​ dt 0 (1 + t2) ​÷1  – t2   ​

( 

(  Ú    (

__

​÷2 ​     –1



) )

dt _____ (b) ​Ú ​   ​ ​ _____________ ​       ​  ​ 2 0 (1 + t )​÷1  – t2   ​ __

   + 1 ​÷2 ​ 



)

4t dt______ (c) ​  ​  ​ ​ _____________ ​       ​   ​ 0 (1 + t2)​÷1  – t2 ​ 

__

​÷2 ​     + 1



( 

)

t dt______ (d) ​Ú ​   ​ ​ _____________ ​       ​   ​ 2 0 (1 + t )​÷1  – t2 ​ 

[IIT-JEE, 2008]

Comprehension Consider the functions defined implicitly by the equation y2 – 3y + x = 0 on varoius intervals in the real line. If x Œ (– •, – 2) » (2, •), the equation implicitly defines a unique real-valued differentiable function y = f(x). If x Œ (– 2, 2), the equation uniquely implicity defines a unique real-valued differentiable function y = g(x) satisfying g(0) = 0 __ __ __ 34. If f (– 10​÷2 ​    ) = 2​÷2 ​    , then f ¢¢(– 10​÷2 ​    ) = __



__

4​÷2 ​    (a) ​ ____    ​   73 32

4​÷2 ​    (b) – ____ ​  3  2   ​  7 3

__

__

4​÷2 ​    4​÷2 ​    (c) ​ ____  ​   (d) – ____ ​  3  ​  3 73 73 35. The area of the region bounded by the curve y = f (x), the x-axis and the lines x = a and x = b, where – < • < a < b < – 2, is

(  Ú  (  Ú  (  Ú  (  b

)



x (a) ​Ú ​    ​​ _________ ​       ​  ​ dx + bf (b) – af (a) a 3(f (x)2 – 1



x (b) – ​  ​ ​  ​ __________ ​       ​  ​ dx + bf (b) – af (a) a 3(f (x)2 – 1)

b

) ) )

b



x (c) ​  ​   ​ ​ __________ ​       ​  ​ dx – bf (b) + af (a) a 3(f (x)2 – 1)



x (d) – ​  ​   ​​ __________ ​       ​  ​ dx – bf (b) + af (a) a 3(f (x)2 – 1)

b

1

36. ​Ú  ​   ​ g¢(x) dx = –1



(a) 2 g (–1)

(b) 0



(c) – 2 g(1)

(d) 2 g (1) [IIT-JEE, 2008]

37. Area of the region bounded by y = ex and x = 0 and x = e is e

(b) ​Ú ​  ​  log (1 + e – y) dy

(a) e – 1 1



(c) e – ​Ú ​    ​ex dx 0



1 e

(d) ​Ú ​    ​ln y dy 1

[IIT-JEE, 2009]

Consider the polynomial f (x) = 1 + 2x + 3x2 + 4x3. Let s be the sum of all distinct real roots of f (x) and let t = |s|. 38. The real number s lies in the interval 3 1 (a) ​ – __ ​   ​ , 0  ​ (b) ​ –1, __ ​   ​   ​ 4 4

( 

)

(  )

Area Bounded by the Curves 



( 

(  )

)

3 1 (c) ​ – __ ​   ​ , – __ ​    ​  ​ 4 2

1 (d) ​ 0, __ ​   ​   ​ 4

39. The area bounded by the curve y = f (x) and the lines x = 0, y = 0 and x = , lies in the interval

(  ) 21 (d) ​( 0, ___ ​   ​  )​ 64

(  )



3 (a) ​ __ ​   ​ , 3  ​ 4



(c) (9, 10)

21 11 (b) ​ ___ ​   ​ , ___ ​   ​   ​ 64 16

40. The function f ¢(x) is

(  ( 

)

(  ) (  )

1 1 (a) inc in ​ – t, – __ ​   ​   ​ and dec. in ​ – __ ​   ​ , t  ​ 4 4 1 1 (b) dec. in ​ – t, – __ ​   ​   ​ and inc. in ​ – __ ​   ​ , t  ​ 4 4 (c) inc in (– t, t) (d) dec in (– t, t) [IIT-JEE, 2010] 41. Let f : [– 1, 2] Æ [0, •) be a continuous function such that f (x) = (1 – x) for all x Œ [– 1, 2]. Let

)

2

R1 = Ú​   ​   ​ x f (x) dx and R2 be the area of the region –1



bounded by y = f (x), x = – 1 and x = 2 and the x-axis, Then (a) R1 = 2R2 (b) R1 = 3R2

(c) 2R1 = R2

(d) 3R1 = R2 [IIT-JEE, 2011]

42. Let the straight line x = b divide the area enclosed by y = (1 – x)2, y = 0 and x = 0 into two parts R1 (0 £ x £ b) and R2 (b £ x £ 1) such that R1 – R2 1 = __ ​   ​ , Then b is 4 (a) 3/4 (b) 1/2 (c) 1/3 (d) 1/4 [IIT-JEE, 2011] 2 43. Let S be the area of the region enclosed by y = e​ –x ​ ​, y = 0, x = 0 and x = 1. Then 1 1 (a) S ≥ __ ​ e ​ (b) S ≥ 1 – __ ​ e ​ 1 1 (c) S ≥ ​ __ ​  ​ 1 + ___ ​  __  ​  ​ ​ e     ​ ÷ 4 1 1 1__ __  ​ + ___ (d) S ≥ ​ ___ ​  __  ​ ​ 1 – ​ ___   ​  ​ [IIT-JEE, 2012] ​ e    ​   ÷ ​ 2 ​    ​ 2 ​    ÷ ÷ 44. The area of the region enclosed by the curves y = sin x + cos x and y = |cos x – sin x| over the p interval ​ 0, __ ​   ​   ​ is 2

( 

)

( 

)

[  ]

__

__

__

(a) 4(​÷__ 2 ​     – 1) (b) 2​÷__ 2 ​   (  ÷ ​ __ 2 ​     – 1) (c) 2(​÷2 ​     + 1) (d) 2​÷2 ​   (  ÷ ​ 2 ​     + 1) [IIT-JEE, 2013] No questions asked in 2014, 2015. 45. Area of the region ______ {(x, y) : y £ ​÷|x   + 3|, ​ 5y £ x + 9 £ 15} is (a) 1/6 (b) 4/3 (c) 3/2 (d) 5/3 [IIT-JEE, 2016]

Answers Level-II

1. (c) 2. (d) 3. (b) 6. (c) 7. (c) 8. (c) 11. (b) 12. (b) 13. (a) 16. (a) 17. (d) 18. (b) 21. (d) 22. (c) 23. (a) 26. (d) 27. (b) 28. (c) 31. (c) 32. (a) 33. (a) 36. (a) 37. (a) 38. (b) 41. (d) 42. (a) 43. (a) 46. (a) 47. (c) 48. (c) 51. (c) 52. (a) 53. (c) 56. (a) 57. (a) 58. (c) 61. (b) 62. (a) 63. (a) 66. (a, b, d) 67. (a, b, d) 69. (b, d) 70. (a, b, c, d)

4. (d) 5. (a) 9. (d) 10. (d) 14. (b) 15. (a) 19. (c) 20. (a) 24. (b) 25. (c) 29. (d) 30. (a) 34. (c) 35. (a) 39. (a) 40. (a) 44. (a) 45. (c) 49. (b) 50. (c) 54. (a) 55. (b) 59. (b) 60. (b) 64. (c) 65. (d) 68. (a, b, c, d) 72. (b, c) 72. (a, b, c)

6. 4 11. 2

1. 4

2. 2

3. 2

7. 2 12. 8

8. 1 13. a = 8

9. 6

10. 4

Comprehensive Link Passages Passage Passage Passage Passage Passage

I : II : III : IV : V :

1. (b) 1. (b) 1. (b) 1. (a) 1. (b)

2. (a) 2. (c) 2. (a) 2. (b) 2. (c)

3. (d) 3. (c) 3. (b) 3. (b) 3. (b)

Matrix Match

1. 2. 3. 4.

(A)Æ(T), (A)Æ(T), (A)Æ(S), (A)Æ(S),

(B)Æ(R), (B)Æ(S), (B)Æ(P), (B)Æ(P),

(C)Æ(P), (C)Æ(P), (C)Æ(Q), (C)Æ(S),

(D)Æ(Q) (D)Æ(Q) (D)Æ(R) (D)Æ(S)

Assertion and Reason

INTEGER TYPE QUESTIONS

4. 4

5. 3

3.17



1. B

2. A

3. A

4. C

5. B

3.18  Integral Calculus, 3D Geometry & Vector Booster

Hints

and

2

= ​Ú  ​ ​  y dx – 1

– 1

( 

)|

=0 7. Hence, the required area

2

( 



–1

x3 =  ​​​ __ ​   ​  – x2 + 2x  ​  ​​   ​  ​ 3 –1 8 1 = ​ __ ​   ​  – 4 + 4 + __ ​   ​  + 1 – 2  ​ 3 3



2p

)

2. Hence, the required area 2

= Ú​  ​    ​ (ln x + tan x) dx

(  ( 

)|

2 1 = (x log x –  ​​​ x tan x – __ ​    ​ log |1 + x2|  ​  ​​ ​​  2 ​ 1 p 1 = (2 log 2 – 1) + ​ 2tan–12 – __ ​   ​    log 5 – ​ __ ​   ​ 2 4 p 1 = ​ 2 (log 2 + tan–1 2) – __ ​   ​  log 5 – ​ ​ __ ​  + 1  ​  ​ s.u. 2 4

x)​|21​ ​​  +

( 

–1

)

( 

))

3. Hence, the required area



0 p

2p

0

p

= ​Ú ​  ​   ​ (x sin x)dx – ​Ú ​  ​   ​ (x sin x)dx

= (– x cos x + sin x)​|p0​ ​ ​ – (– x cos x + sin x)​|2p ​ ​  ​ p = p – (– 2p – p) = 4p. sq.u. 4. Hence, the required area 2



= ​Ú ​    ​ (log1/2x) dx

1 = – ____ ​     ​  (x log x – x)​|21​ ​​  log2 1 = – ____ ​     ​  (2log 2 – 3) log2 1 = ____ ​     ​  (3 – 2 log2) sq.u. log2 5. Hence, the required area

log2

= ​Ú ​   ​ ​ (e2x – 3ex + 2)dx 0



( 

p

(– cos x)​|p0​ ​ ​ –

(– cos x)​|2p ​ ​  ​ p



= – (cos x)​|p0​ ​ ​ + (cos x)​|2p ​ ​  ​ p

= – (–1 – 1) + (1– (–1)) = 4 sq.u. 8. Hence, the required area 2p

= ​Ú ​   ​ ​ cos x dx



0

p/2

3p/2

2p

0

p/2

3p/2

= ​Ú ​   ​ ​  cos x dx – ​Ú  ​ ​ ​ cos x dx + Ú​   ​ ​  cos x dx (sin x)​|p/2 ​ ​  ​ – 0

(sin x)​|3p/2 ​ ​ ​ + p/2

)|

log2

e2x = ​​ ​ ___ ​   ​ – 3ex + 2x  ​  ​​ ​  ​ 0 ​ 2

(sin x)​|2p ​   ​  3p/2



=



= (1 – 0) – (–1 – 1) + (0 – (–1)) = 4 sq.u.



9. Hence, the required area 2

= ​Ú ​    ​   {x (x – 1) (x – 2)}dx 0 1

2

= ​Ú ​    ​   {x(x – 1) (x – 2)}dx – ​Ú ​    ​ {x (x – 1) (x – 2)}dx 0 1

1



0

=



= ​Ú ​   ​   ​ (x|sin x|) dx

2p



2p



0 p

= ​Ú ​  ​ ​ sin x dx – ​Ú ​  ​ ​ sin x dx



–1



= ​Ú ​   ​ ​  sin x dx



= 3 + 1 – 2 = 2 sq.u.

1

)

= ​Ú  ​ ​  x3dx



= ​Ú  ​   ​ (x2 – 2x + 2) dx



)

1

2



(  ( 

1 = ​ 4 – 6 + 2 log 2 + 3 – __ ​   ​   ​ 2 1 = ​ __ ​   ​  + 2 log 2  ​ sq.u. 2 6. Hence, the required area

1. Hence, the required area



solutions

1

2

= ​Ú ​    ​  (x3 – 3x2 + 2x)dx – ​Ú ​    ​ (x3 – 3x2 + 2x)dx 0

( 

) | (  1

4

1

)|

2

4

x x =  ​​​ __ ​   ​  – x3 + x2   ​  ​​ ​​  –  ​​​ __ ​   ​  – x3 + x2  ​  ​​ ​​  0 ​ 4 ​ 4 1 1 1 __ __ = ​ ​   ​  – 1 + 1  ​ – ​ (4 – 8 + 4) – ​ ​    ​ – 1 + 1  ​  ​ 4 4 1 = 2 ​ __ ​   ​  – 1 + 1  ​ 4 1 = ​ __ ​  sq.u. 2 10. Hence, the required area

( 

) (  )

( 

3



( 

= ​Ú ​    ​ {(x – 1) (x – 2) (x – 3)}dx 0

))

Area Bounded by the Curves 

3.19

1



= – ​Ú ​    ​ {(x – 1) (x – 2) (x – 3)}dx 0

2

  + ​Ú ​    ​ {(x – 1) (x – 2) (x – 3)}dx 1 3

  –  ​Ú ​    ​ {(x – 1) (x – 2) (x – 3)}dx

( 

2

)|

1

x4 11 = –  ​​​ __ ​   ​  – 2x3 + ___ ​   ​ x2 – 6x  ​  ​​ ​​  2 0 ​ 4

(  ( 

) )

2 x4 11 + ​​ __ ​   ​  – 2x3 + ___ ​   ​ x2 – 6x  ​​ ​​  4 2 1 3 x__4 11 – ​​ ​   ​  – 2x3 + ___ ​   ​ x2 – 6x  ​​ ​​  4 2 2 1 11 = – ​ __ ​   ​  – 2 + ​ ___ ​ – 6  ​ + (4 – 8 + 22 – 12) 4 2 1 11   – ​ __ ​   ​  – 2 + ___ ​   ​ – 6  ​ 4 2 99 81 ___   – ​ ​   ​ – 54 + ​ ___ ​ – 18  ​+ (4 – 8 + 22 – 12) 4 2 279 23 = – 2 ​ ​ ___ ​ – 8  ​ + 12 – ​ ​ ____  ​   – 72  ​ 4 4 46 279 = ___ ​   ​ – ____ ​   ​   + 100 4 4 233 400 – 233 ____ 167 = 100 – ____ ​   ​   = ​ _________  ​    = ​   ​   sq.u. 4 4 4 11. Given curves are y = x2 and y = 2x – x2



(  (  (  ( 

)

)

)

) ( 

)

Hence, the required area 1



= ​Ú ​  ​  (y2 – y1) dx 0 1



__

2 = ​Ú ​  ​ (​÷x    ​  – x ) dx 0



( 

)|

1

x3 2 =  ​​​ __ ​   ​  x3/2 – __ ​   ​   ​  ​​ ​​  3 0 ​3 2 1 1 = ​ __ ​   ​  – __ ​   ​   ​ = __ ​   ​  sq.u. 3 3 3

( 

)

13. Do yourself. 3x2 14. Given curves are y = ___ ​   ​  and 3x – 2y + 12 = 0 4

Hence, the required area 4



= ​Ú  ​   ​ (y2 – y1) dx – 2

Hence, the required area 1



= Ú​  ​    ​ (y2 – y1)dx 0

1



= Ú​  ​    ​  (2x – x2 – x2)dx 0

4

= Ú​  ​    ​  (2x – 2x2)dx 0



(  )| 1 2 = (​  1 – __ ​    ​ )​ = __ ​   ​  sq.u. 3 3 1 2 =  ​​​ x2 – __ ​   ​  x3  ​  ​​ ​​  3 0 ​

12. Given curves are y2 = x and x2 = y.

)

3x + 12 ___ 3x3 = ​Ú  ​   ​ ​ ​ _______  ​   – ​   ​    ​ dx 2 4 – 2



3 = __ ​   ​   ​Ú  ​   ​ (2x + 8 – x2) dx 4 – 2



3 x3 4 = __ ​   ​  ​​ x2 + 8x – __ ​   ​   ​​   ​  4 3 – 2

4

1



( 





( 

)

54 8 ___ ​   ​  )​ – ​( 4 – 16 + __ ​   ​  )​ )​ ( (  3 3 (  ) 3 108 – 62 = __ ​   ​  ​( ​ ________  ​     )​ = ___​ 464 ​ = ___​ 232 ​ sq.u. 4 3

3 = __ ​   ​  ​ ​ 16 + 32 – 4 3 62 = __ ​   ​  ​ 36 – ___ ​   ​   ​ 4 3

15. Given curves are x2 = 4y and x = 4y – 2

3.20  Integral Calculus, 3D Geometry & Vector Booster

Hence, the required area

Hence, the required area

2



4a

= ​Ú  ​   ​ (y2 – y1) dx



–1 2

0

( 

)

x2 __ ​   ​   ​ dx 4

4a



x+2 = ​Ú  ​   ​ ​ ​ _____  ​   – 4 –1



1 = __ ​   ​  ​Ú  ​   ​ (x + 2 – x2) dx 4 –1





( 

__ __

= ​Ú ​  ​   ​ (2​÷a    ​  ​÷x    ​  – mx) dx 0

2



= ​Ú ​  ​   ​  (y2 – y1) dx

4a

)

x3 2 1 x2 = __ ​   ​   ​​ __ ​   ​  + 2x – __ ​   ​   ​​   ​  4 2 3 –1 8 1 1 1 = __ ​    ​ ​ ​ 2 + 4 – __ ​   ​   ​ – ​ __ ​    ​ – 2 + __ ​   ​   ​  ​ 4 3 2 3

) (  )) ( (  9 7 1 10 __ 1 27 = __ ​    ​ ​( ___ ​   ​ + ​   ​  )​ = __ ​   ​  ​( ___ ​   ​   ​ = __ ​   ​  sq.u. 4 3 4 6) 8 6 2

(  (  ) (  ) ) (  (  ) (  ) )

2



__ __ x2 2 3/2 __ = ​​ 2​÷a    ​  ​ ​    ​ x   ​ – m ​ ​   ​   ​  ​​ ​  ​ 3 2 0



__ __ 16a2 2 3/2 ____ = ​ 2​÷a    ​  ​ ​    ​ (4a)   ​  –  m ​ ​   ​    ​  ​ 3 2



32 = ​ ___ ​   ​ – 8m  ​ a2 sq.u. 3

( 

)

18. Given curves are y = x2 + 2, y = x, x = 0 and x = 3.

16. Given curves are y = 4 ax and x = 4 ay.



Hence, the required area

Hence, the required area

4a



3

= Ú​  ​  ​   ​  (y2 – y1) dx 0

4a



= ​Ú ​    ​ (y2 – y1) dx 0

( 

) (  ) (  ) (  ) (  )



__ __ x2 ___ = Ú​  ​  ​   ​  ​ 2​÷a    ​  ​÷x    ​  – ​    ​  ​ dx 4a 0





x3 4a 2 3/2 4a __ ____ = 2​÷a    ​  ​​ ​    ​ x   ​​ ​  ​ – ​​ ​      ​  ​​ ​  ​ 3 12a 0 0



3 x3 = ​​ __ ​   ​  + 2x – x2  ​​ ​​  3 0



27 = ​ ___ ​   ​ + 6 – 9  ​ = 6 sq.u. 3



__

3

0

3

__ __ 64a 2 3/2 ____ = 2​÷a    ​  ​ ​    ​ (4a)   ​ – ​ ​   ​  ​ 3 12a 2

2

2

32a 16a 16a = ____ ​   ​   – ____ ​   ​   = ____ ​   ​   sq.u. 3 3 3

17. Given curves are y2 = 4ax and y = mx.

= ​Ú ​    ​  (x2 + 2 – 2x) dx

(  ( 

)

)

19. Given curves are

y = 2x – x2 and y = – x.

Area Bounded by the Curves 



Hence, the required area 3



= ​Ú ​  ​ (y2 – y1) dx 0

We have 6x – x2 = x2 – 2x. 2x2 = 8x x = 0, 4 Hence, the required area 4

3





= ​Ú ​  ​ (2x – x + x) dx 2

4

3



= ​Ú ​  ​ (3x – x2) dx



( 

)



3x2 x3 3 = ​​ ___ ​   ​  – __ ​   ​   ​​ ​​  2 3 0

( 

)

27 = ​ ___ ​   ​ – 9  ​ = 2

= ​Ú ​    ​  (6x – x2 – x2 + 2x) dx 0 4

0



= ​Ú ​    ​  (y2 – y1) dx 0

0



= ​Ú ​    ​ (8x – 2x2) dx 0



9 __ ​    ​ sq.u. 2

20. Given curves are y = 2x – x2, y = 2x and x = 0, x = 2



(  ) 128 64 = ​( 64 – ____ ​   ​    ​ = ___ ​   ​ sq.u. 3 ) 3 4 2 = ​​ 4x2 – __ ​   ​  x3  ​​ ​​  3 0

22. Let A1 be the area of the curve y = 4x – x2 with x-axis and A2 be the area of the curve y = x2 – x with x-axis 4



A1 = ​Ú ​    ​  y dx 0

4



= Ú​  ​    ​  (4x – x2) dx 0



Hence, the required area = ​Ú ​  ​ (y2 – y1) dx



64 32 = ​ 32 – ___ ​   ​   ​ = ___ ​   ​  3 3

and

= ​Ú ​  ​ (2x – x – 2 ) dx 2

x

)

1

)

2x 2 ____ ​    ​  ​​ ​​  log 2 0



x3 = ​​ x – __ ​   ​  – 3



8 4 1 = ​ 4 – __ ​   ​  – ____ ​     ​ + ____ ​     ​  ​ 3 log 2 log 2





3 4 = ​ __ ​   ​  – ____ ​     ​  ​ sq.u. 3 log 2

)



2

(  ( 



= Ú​  ​    ​ (x – x2) dx 0

)

( 

x2 = ​​ __ ​   ​  – 2

( 

)

x3 1 __ ​   ​   ​​ ​​  3 0

)

1 1 = ​ __ ​    ​ – __ ​   ​   ​ = 2 3 Hence, the required ratio,

21. Given curves are 2

A2 = ​Ú ​    ​ y dx 0

0



(  1

2

( 

)

x3 4 = ​​ 2x2 – __ ​   ​   ​​ ​​  3 0

0



( 



2



3.21

2

y = 6x – x and y = x – 2x.



A1 ___ ​   ​ = A2

32 ___ ​   ​ : 3

1 __ ​   ​  = 6

1 __ ​   ​  6 32 ___ ​   ​ × 3

6 __ ​    ​ = 64 : 1 1

3.22  Integral Calculus, 3D Geometry & Vector Booster 26. Given curves are {(x, y) : x2 + y2 £ 1 £ x + y}.

23. Given curves are

x2 + y2 = 4 and (x – 2)2 + y2 = 4.

Hence, the required area 1

Hence, the required area

( 

1



2

__________



1

( 



(  ) )

(x – 2) __________2 __ x–2 1 4 = 2 ​​ ​ _____  ​   ​÷4  – (x  –   2)  ​+ ​   ​  sin–1 ​ ​ ____  ​    ​  ​​ ​​  2 2 2 0

( 

_____

x   + 2 ​​ __ ​    ​ ​÷ 4 – x2   ​ + 2



)

( 

__

(  ) )

x 2 4 __ ​   ​  sin–1 ​ __ ​    ​  ​  ​​ ​​  2 2 1

(  )

)

​ 3 ​    ÷ 1 = 2 ​ – ​ ___ ​ + 2sin–1 ​ – ​ __  ​  ​ – 2sin–1(–1)  ​ 2 2

( 

__

(  ) )

​ 3 ​    ÷ 1   + 2 ​ sin (1) – ​ ___ ​ – 2sin–1 ​ __ ​   ​   ​  ​ 2 2

( 

–1

__

__

_____

= Ú​  ​  ​  (​÷1  – x2   ​ – (1 – x)) dx 0

( 

_____

(  )

​ 3 ​    p ​ 3 ​    p ÷ p ÷ = 2 ​ – ​ ___ ​ – ​ __ ​  + p + __ ​   ​  – ___ ​   ​ – ​ __ ​   ​ 2 3 2 2 3



__ 3p 2p = 2 ​ ___ ​   ​ – ___ ​   ​ – ÷ ​ 3 ​     ​ 2 3



__ 5p = ​ ___ ​   ​ – 2​÷3 ​      ​ sq.u. 3

(  ( 

(  ) ) (  ) )

( 

)

)

( 

)

24. Do yourself. x2 25. Given curves are __ ​  2  ​ + a

y2 x __ ​  2  ​ = 1 and __ ​ a ​ + b

y __ ​   ​ = 1. b

Solving y2 = 4x and 4x2 + 4y2 = 9 we get. 4x2 + 16x – 9 = 0 fi 4x2 – 2x + 18x – 9 = 0 fi 2x (2x – 1) + 9 (2x – 1) = 0 fi (2x + 9) (2x – 1) = 0 1 9 fi x = ​ __ ​ , – ​ __ ​  2 2 Hence, the required area

Hence, the required area

pab = ____ ​   ​   – 4

( 

1 ​ __ ​  ab 2

1 p = __ ​   ​ ​  __ ​   ​  – 1  ​ sq.u. 2 2

)

)

1

x​÷1  – x2   ​ __ x x2 1  ​   + ​   ​  sin–1 ​ __ ​    ​  ​ – x + __ ​   ​   ​​ ​​  = ​​ ​ _______ 2 2 2 2 0 1 –1 __ 1 1 __ __ = ​ ​   ​  sin  ​ ​   ​   ​ – 1 + ​    ​  ​ 2 2 2 1 1 1 = ​ __ ​   ​  sin–1 ​ __ ​   ​   ​ – __ ​   ​   ​ 2 2 2 1 p = __ ​   ​ ​  __ ​   ​  – 1  ​ sq.u. 2 6 27. Given curves are {x : y2 £ 4x, 4x2 + 4y2 £ 9}.

)



( 

= Ú​  ​  ​ (C – L) dx 0 1

= 2 ​ ​Ú ​  ​  ​÷4  – (x  –   2)2 ​ + ​Ú ​  ​  ​÷4  – x2   ​  ​ dx 0



_____



1/2

3/2

0

1/2

= ​Ú ​   ​ ​ P dx + ​Ú ​ ​ ​ E dx 1/2



1/2



3/2

______

__ 1 __ = ​Ú ​   ​ ​ 2​÷x    ​  dx + ​   ​   ​Ú ​ ​ ​  ​÷9   – 4x2   ​dx 2 1/2 0 3/2

÷(   )

________

3 2 1 2 __ __ = ​Ú ​   ​ ​ 2​÷x    ​  dx + ​   ​   ​Ú ​ ​ ​  ​ ​​ ​   ​   ​​ ​ – x    ​dx 2 1/2 2 0 __

Area Bounded by the Curves 

( 

(  ÷(   ) ) ________

)

1/2 3 2 2 1 x __ = ​​ 2 × __ ​   ​  × x2/3   ​​ ​  ​ + __ ​   ​  ​ __ ​    ​ ​ ​​ ​   ​   ​​ ​ – x2   ​  ​ 3 2 2 2 0



(  )

9 2x 3/2 + __ ​    ​ sin–1 ​​ ___ ​   ​   ​​ ​  8 3 1/2



3.23

27 1 = __ ​   ​  (3 + 2 + 21) = ___ ​   ​ sq.u. 2 2 31. Given curves are y = 1 + |x + 1|, x = – 3, x = 3, y = 0.

9 1 4 1 = __ ​   ​  × ____ ​  __     ​ + __ ​   ​  × __ ​   ​  sin–1(1) 3 2​÷2 ​ 8 2    __    9 1 ​÷2 ​ 1   – __ ​   ​ ​  ___ ​   ​ + ​ __  ​ sin–1 ​ __ ​   ​   ​  ​ 2 4 8 3 9p 9 2 1 1 = ____ ​  __    ​ + ___ ​   ​ – ____ ​  __    ​ – ___ ​    ​ sin–1 ​ __ ​   ​   ​ 3 3​÷2 ​     32 4​÷2 ​     16

( 

( 

(  ) )

(  )

(  ) )

9p 9 5 1 = ​ _____ ​   __ ​ + ___ ​   ​ – ___ ​    ​ sin–1 ​ __ ​    ​  ​  ​ sq.u. 3 16 12​÷2 ​     32 28. Given curves are {x : x2 + y2 £ 2ax, y2 ≥ ax, x ≥ 0, y ≥ 0}

Hence, the required area 1 1 1 = ​ __ ​  × (3 + 1) × 2 + ​ __ ​  × (1 + 2) × 1 + ​ __  ​ × (2 + 5) × 3 2 2 2 28 1 = __ ​   ​  (4 + 3 + 21) = ___ ​   ​ = 14 2 2 32. Given curves are y = |x – 1| and y = – |x – 1| + 1.

Hence, the required area a

= ​Ú ​    (y2 – y1) dx 0 a

( 

__________

__

)

= ​Ú ​  ​  ​ ​÷a  2 – (x –   a)2 ​ – a​÷x     ​  ​ dx

Hence, the required area 1 1 1 __ __ __ a 2a –  a  = ​ __ ​ sin–1​ ​ x_____ ​  ​  – ​ ___ ​  x3/2  ​​ ​ ​ = 2 ​ ​ 2 ​  × 1 × ​ 2 ​   ​ = ​ 2 ​  sq.u. ÷  a 2 2 3 0 33. Given curves are 2a __ __ a2 –1 = ___ ​   ​  a​÷a    ​  – ​   ​  sin (–1) f (x) = log x and g (x) = (log x)2 3 2 0

( 

__________ x–a 2 ​​ ​ _____  ​   ​ a – (x –   a)2 ​ +

( 

2

( 

)

( 

)

a

)

)

pa2 2a5/2 ____ = ​ ____ ​   ​   + ​   ​    ​ sq.u. 3 4 29. Do yourself.

Y

30. Given curves are y = 1 + |x + 1|, x = – 2, x = 3, y = 0.



O

X



Hence, the required area e

= ​Ú ​    ​ (log x – (log x)2)dx 1

Hence, the required area 1 1 1 = ​ __ ​  × (2 + 1) × 1 + ​ __ ​  × (1 + 2) × 1 + ​ __ ​  × (2 + 5) × 3 2 2 2

34.

= (x log x – x – (x (log x)2 – 2 (x log x – x))​)e1​  ​​  = ((3 (x log x – x) – x (log x)2)​)e1​  ​​  = (3 – e) sq.u. Given curve is y2 = x2 – x4.

3.24  Integral Calculus, 3D Geometry & Vector Booster Hence, the required area 1



2

= ​Ú ​  ​  (x2 + 1)dx + Ú​  ​  ​ (x + 1) dx 0

Hence, the required area 1



= 4 ​Ú ​    ​ (x – x ) dx 2

4

0

( 

)

x5 1 __ ​   ​   ​​ ​​  5 0



x3 = 4 ​​ __ ​   ​  – 3



8 1 1 = 4 ​ __ ​   ​  – __ ​   ​   ​ = ___ ​    ​ sq.u. 3 5 15

( 

1

(  ) (  ) 3

1

2 x ​​ __ ​   ​  + x  ​​ ​​  2 1 2



x = ​​ __ ​   ​  + x  ​​ ​​  + 3 0



3 1 = ​ __ ​   ​  + 1  ​ + ​ 4 – __ ​    ​  ​ 3 2

( 

) (  )

4 5 = __ ​   ​  + __ ​   ​  = 3 sq.u. 3 3 37. Given curves are

y = x and y = x3.

)

35. Given curve is

1 |y| + __ ​   ​  £ e– |x| 2

Hence, the required area 1



= 2 ​Ú ​    ​ (x – x3) dx 0



( 

)

= 4 ​ ​Ú ​   ​ ​ e dx  ​ – x

0



log 2 = 4 ​​( – e– x )​​0​  ​



= 4 ​( 1 – e– log 2 )​

)

x2 x4 1 = 2 ​​ __ ​   ​  – __ ​   ​   ​​ ​​  2 4 0



1 1 2 = 2 ​ __ ​   ​  – __ ​   ​   ​ = 2 × __ ​    ​ = 1 sq.u. 2 4 4

Hence, the required area log 2

( 



( 

)

38. Given curve is y = x (x – 1)

(  )

1 1 = 4 ​ 1 – __ ​    ​  ​ = 4 × __ ​   ​  = 2 sq.u. 2 2 36. Given curve is



f (x, y) = [(x, y) : 0 £ y £ x2 + 1,



0 £ y £ x + 1, 0 £ x £ 2] Hence, the required area 2



= ​Ú ​    ​  (2 – x (x – 1)2) dx 0

2



= ​Ú ​    ​ (2 – x (x2 – 2x + 1)) dx 0

Area Bounded by the Curves  2

Hence, the required area

0



= ​Ú ​    ​ (2 – (x3 – 2x2 + x)) dx



( 

3

)

x4 2 3 __ x2 2 = ​​ 2x – ​ __ ​  + __ ​   ​  x – ​   ​   ​​ ​​  4 3 2 0 16 = ​ 4 – 4 + ___ ​   ​ – 2  ​ 3 10 ___ = ​   ​ sq.u. 3 39. Given curves are y = x2 + 1, y = x, x = 0 and y = 2.

( 

)

= ​Ú ​  ​ (x2 – x1) dy 0

3



= ​Ú ​  ​ ((y – 2)2 + 1 – (2y – 4)) dy 0

3



= ​Ú ​  ​ (y2 – 4y + 4 + 1 – 2y + 4) dy 0

3



= ​Ú ​  ​ (y2 – 6y + 9)dy 0

( 

)



3 y3 = ​​ __ ​   ​  – 3y2 + 9y  ​​ ​​  3 0



= 9 – 27 + 27

= 9 sq.u. 42. Given curve is y2 = (x – 1) (x – 2)2 40. Given curves are y = loge x and y = 2x, x = 1/2 and x = 2.

Hence, the required area 2



_____

= 2 ​Ú ​    ​  (x – 2)​÷x  – 1 ​   dx 1

1



Hence, the required area 2

= ​Ú  ​ ​ (2x – log x) dx



1/2

( 

)

x

2

2 = ​​ ____ ​    ​ – (x log x – x)  ​​   ​  log 2 1/2

(  ( 

__

(  )

)

​ 2 ​    ÷ 4 1 1 1 = ​ ____ ​     ​ – 21 log 2 + 2 – ____ ​    ​ + __ ​   ​  log ​ __ ​   ​   ​ – __ ​   ​   ​ 2 2 log 2 log 2 2 __

)

4  – ÷ ​ 2 ​     __ 5 3 = ​ ​ ______ ​    – ​   ​  log 2 + __ ​   ​   ​ sq.u. 2 2 log 2 41. Given curve is (y – 2)2 = (x – 1) and the equation of the tangent to the curve at (2, 3) is x – 2y + 4 = 0.

= 4 ​Ú ​  ​  ​(t2 – 1)t2dt

| 

0

1

|

= ​ 4 ​Ú ​    ​ (t4 – t2)dt  ​ 0

|  ( 

)|



t5 t3 1 = ​ 4 ​​ __ ​   ​  – __ ​   ​   ​​ ​  ​ 5 3 0



1 1 = ​ 4 ​ __ ​   ​  – __ ​   ​   ​  ​ 5 3

|  (  ) |

8 = ​ ___  ​ sq.u. 15 43. Given curves are

y = (x – 1)2, y = (x + 1)2 and y = 1/4.

3.25

3.26  Integral Calculus, 3D Geometry & Vector Booster Hence, the required shaded area 0

( 

1/2

)

( 

)

1 1 = ​Ú   ​ ​   ​ ​ (x + 1)2 – __ ​   ​   ​ dx + ​Ú ​   ​   ​ ​ (x – 1)2 – __ ​   ​   ​ dx 4 4 –1/2 0

( 

) ( 

46. Given curve is |x – 2| + |y + 1| = 1

)

0 1/2 (x + 1)3 __ (x – 1)3 __ 1 1 = ​​ ​ _______  ​   – ​   ​ x  ​​   ​ + ​​ ​ _______  ​   – ​   ​ x  ​​ ​  ​ 3 4 –1/2 3 4 0

( 

)

1 1 1 1 1 1 = __ ​   ​  – ​ ___ ​    ​ + __ ​   ​   ​ – ___ ​    ​ – __ ​   ​  + __ ​   ​  3 24 8 24 8 3

( 

)

1 1 1 1 = __ ​   ​  – 2 ​ ___ ​    ​ + __ ​   ​   ​ + __ ​    ​ 3 24 8 3 2 2 __ 2 1 __ 1 = ​ __ ​  – __ ​    ​ = ​    ​ – __ ​    ​ = ​    ​ sq.u. 3 6 3 3 3

Thus, the length of each side

44. Given curves are



y = ex, y = e– x and the straight line x = 1

________________

__

= ​÷(2   – 1)2  + (0   + 1)2 ​ = ÷ ​ 2 ​   

Hence, the required area

__

= ​( ​÷2 ​     )2​ sq.u.

47. Given curve is [x] + [y] = 3

Hence, the required area 1



= ​Ú ​    ​ (ex – e– x ) 0



= (ex + e– x​)10​ ​​ 



1 = ​ e + __ ​ e ​ – 2  ​ sq.u.

( 

)

45. Given curves are y = log x, y = log |x|, y = |log x| and y = |log|x||

If [x] = 0, 1, 2, 3 then [y] = 3, 2, 1, 0. Hence, the required area

= 4 (1 × 1 + 1 × 1 + 1 × 1 + 1 × 1)



=4×4

= 16 sq.u. 48. Given curves are |x| + |y| = 1 and |x + 1| + |y| = 1.

Hence, the required area 0



= 4 ​Ú  ​   ​ x dy



= 4 ​Ú  ​   ​ e ydy



= 4 (e y​)0– •  ​   ​ 



= 4 (e0 – 0) = 4 (1 – 0) = 4 sq.u.

– • 0

– •

Hence, the required area

1 1 = 2 × __ ​   ​  × 1 × __ ​   ​  2 2 1 = ​ __ ​  sq.u. 2

Area Bounded by the Curves 

49. Given curves are

|  |

p p y = cos–1 (cos x) and |x – p| + ​ y – __ ​   ​   ​ = __ ​   ​  2 2

Hence, the required area 1



__

= 2 ​Ú ​  ​ (​÷x    ​  – x) dx 0

( 

)



x2 1 2 = 2 ​​ __ ​   ​  x2/3 – __ ​   ​   ​​ ​​  3 2 0



2 1 = 2 ​ __ ​   ​  – __ ​   ​   ​ 3 2



(  ) 4  – 3 1 1 = 2 ​( ​ _____  ​    ​ = 2 × __ ​   ​  = __ ​    ​ sq.u. 6 ) 6 3

52. Given curve is |x + y| + |x – y| £ 2

Hence, the required area

3.27

p 1 = 2 × __ ​   ​  × p × __ ​   ​  = 2 2

p2 ​ __ ​  sq.u. 2



Ï x £ 1, x ≥ –1 = Ì Ó y £ 1, y ≥ –1

50. Since the given curve is symmetrical about x-axis as well as y-axis.

Hence, the required area = (2)2 = 4 sq.u. 53. Given curves are y = x, y = x + sin x, 0 £ x £ p Hence, the required area

Hence, the required area __

​÷5 ​     + 1



= 4 ​Ú ​   ​   ​ y dx 0

p

__

​÷5 ​     + 1



= 4 ​Ú ​   ​   ​ (5 – (x – 1)2)dx





( 

)

__

8 = __ ​   ​ ​ ( 7 + 5​÷5 ​     )​ sq.u. 3

51. Given curves are

__

   + 1 (x – 1)3 ​÷5 ​  = 4 ​​ 5x  – ​ _______  ​    ​​ ​  ​ 3 0

__

= ​Ú ​    ​ (x sin x – x) dx 0 p

0



= ​Ú ​    ​ (sin x) dx 0



= – (cos x​)p0​ ​ ​ = – (–1 – 1) = 2 sq.u.

54. Hence, the required area b



y=÷ ​ |x| ​    and y = |x|

( 

__ p = ​Ú ​ ​   f (x)dx = ​ b sinb + __ ​   ​  cosb + ÷ ​ 2 ​  b    ​ 4 p __ ​   ​ 

)

4

Applying, Newton and Leibnitz rule, we get __ p f (b) = b  cos b + sin b – __ ​   ​  sin b + ÷ ​ 2 ​    4 __ p p f  ​ __ ​   ​   ​ = 0 + 1 – __ ​   ​  + ÷ ​ 2 ​    2 4 __ p p f  ​ ​ __ ​   ​ = ​ 1 – ​ __ ​   ​ + ​÷2 ​    2 4 55. Given curves are y = sin x and y = cos x p x = 0 and x = __ ​   ​ . 2



(  ) (  ) ( 

)

3.28  Integral Calculus, 3D Geometry & Vector Booster

(  ) (  ) (  3 2 = (​  2​ 7 ​ + __ ​   ​  log 2 – 5 )​ + 3log ​( ______ ​       ​  ​ 2 2 + ​ 7 ​)

)

__ 1 3 2 11 = ​ __ ​   ​  + __ ​    ​  log 2  ​ + 3log ​ ______ ​    __   ​  ​ + ​ 2​÷7 ​     – ___ ​   ​   ​ 2 2 2 2+÷ ​ 7 ​    __

÷   

__

÷   

( 

)

__ __ 2 = (2​÷7 ​     – 5) + 3log ​ ______ ​    __   ​  ​ + 3log ​( ​÷2 ​     )​ 2+÷ ​ 7 ​   

( 

__

Hence, the required area p __ ​    4 ​ ​  ​ ​ ​ (cos x 0

Ú 

– sin x) dx + ​Ú ​ ​  (sin x – cos x) dx



p __ ​   ​  4

p __ ​   ​  cos x​)0​4​ ​ –

= (sin x +

( 

) (  (  )

)

57. Given curve is y = 4x – x2

p __ ​    2 ​



__

2​÷2 ​    __  = ​( 2​÷7 ​     – 5 )​ + 3log ​ ______ ​     ​  ​ 2+÷ ​ 7 ​   

(cos x +

y = 5 – (x – 2)2

p __ ​    2 ​ sin x​)__​p ​​  ​   ​  4

)

2 2__ = ​ ___ ​  __  ​ – 1  ​ – ​ 1  – ​ ___   ​  ​ ​ 2 ​    ​÷2 ​    ÷ 2 = 2 ​ ___ ​  __  ​ – 1  ​ ​ 2 ​    ÷ __

= 2 ​( ​÷2 ​     – 1 )​ sq.u. 56. Given curves are

Now, the area OABO

3 y = 2 – |2 – x| and y = __ ​    ​.  |x|

3/2



= ​Ú ​   ​ ​ (mx) dx 0



(  ) (  )

9m mx2 3/2 = ​​ ____ ​   ​    ​​ ​  ​ = ​ ___ ​   ​  ​ 2 0 8

Hence, the area OABCDO 3/2



= ​Ú ​   ​   ​ (1 + 4x – x2) dx 0

Hence, the required area 2

( 

__

2 + ​÷7 ​   

)

( 



)

3 3 = ​Ú__  ​   ​ ​ x – __ ​ x ​  ​ dx + Ú​  ​   ​   ​ ​ 4 – x – __ ​ x ​  ​ dx 2 ​÷3 ​   

( 

2

) (  2

2

)

x x = ​​ __ ​   ​  – 3log x  ​​ __  ​  + ​​ 4x – __ ​   ​  – 3log x  ​​ ​  2 2 ​÷3 ​    2

( 

3 = ​ 2 – 3log 2 – __ ​   ​  + 2

( 

__





39 9m 1 ___ According to the question, ___ ​   ​ = __ ​   ​  ◊ ​   ​  8 2 8 13 fi m = ___ ​   ​  6

)

3 __ ​   ​  log 2  ​ 2 __

(​________  2 + ​÷7 ​     )2​

  + ​ 4 ​( 2 + ​÷7 ​     )​ – ​ 



__

2 + ​÷7 ​   

(  ) 9 27 3 = ​( __ ​   ​  + 2 ◊ ​ __ ​  – ___ ​   ​   ​ 4 24 ) 2 9 39 = ​( 6 – __ ​   ​  )​ = ___ ​   ​ sq.u 8 8 x3 3/2 = ​​ x + 2x2 – ​ __ x ​   ​​0​  ​

__

 ​    – 3 log ​( 2 + ​÷7 ​     )​

2

)

– 8 + 2 + 3 log 2  ​

13 Hence, the value of m is ___ ​   ​ . 6 58. Do yourself. 59. Given curve is y = sin–1x and y-axis between y = 0 and y = p/2.

Area Bounded by the Curves 

|  ( 

)|



8 1 64 = ​ __ ​   ​ ​  ___ ​   ​ – 48 + __ ​   ​  + 4 – 16  ​  ​ 2 3 3



1 = ​ __ ​   ​  (24 – 48 + 4 – 16)  ​ 2



1 = ​ __ ​   ​  (28 – 64)  ​ 2



36 1 = __ ​   ​  |(28 – 64)| = ___ ​   ​ = 18 sq.u. 2 2

|  | 

|

|

3.29

61. Given curves are Hence, the required area

p __ ​    2 ​ ​  ​ ​ ​ (1 0

Ú 

=

x = – 2y2 and x = 1 – 3y2.

– sin x) dx p ​ __  2 ​ cos y​)0​ ​ ​



= (y +



p = ​ __ ​   ​  – 1  ​ sq.u. 2

( 



)

60. Given curves are y2 = 2x + 6 and y = x – 1 On solving, we get,

– 2y2 = 1 – 3y2



y2 = 1



y = ± 1

Hence, the required area 1



= ​Ú  ​   ​ (x2 – x1) dy –1

On solving, we get, (x – 1)2 = 2x + 6

y2 = 2 (y + 1) + 6

1

y – 2y – 8 = 0



(y – 4) (y + 2) = 0



1



= 2  ​Ú ​    ​ (y2 – 1) dy 0

4



= ​Ú  ​ ​  (x2 – x1) dy 4

= ​Ú  ​   ​ (y2 – 1) dy –1

y = – 2, 4 Hence, the required area

– 2

= ​Ú  ​   ​ ((– 2y2) – (1 – 3y2)) dy –1

2





1



( 

)



y2   – 6 = ​Ú  ​ ​  ​ ​ _____  ​    –  (y + 1)  ​ dy 2 – 2



1 = __ ​   ​    ​Ú  ​ ​  (y2 – 6 – 2y – 2) dy 2 – 2

4

(  )

1 y3 = 2 ​​ __ ​   ​  – y  ​​ ​​  3 0

| (  ) |

1 4 = 2 ​ ​ __ ​   ​  – 1  ​  ​ = __ ​   ​  sq.u. 3 3 –1 62. Given curves are y = tan x and y = cot–1x and the y-axis. Hence, the required area

4



1 = __ ​   ​    ​Ú  ​   ​ (y2 – 2y – 8) dy 2 –2



4 3 1 y = ​ __ ​ ​​  __ ​   ​  – y2 – 8y  ​​   ​  2 3 – 2

( 

)

p ​ __  4 ​ ​  ​ ​ ​  tan y dy 0

Ú 

p ​ __  2 ​

+ ​Ú ​ ​  cot y dy



=



= (log (sec y)​)0​4​ ​ + (log (sin y)​)__​p  ​​ 

p __ ​   ​  4

p __ ​   ​ 

p ​ __  2​

​   ​  4

3.30  Integral Calculus, 3D Geometry & Vector Booster

( 

(  ) )



__ 1 = log ​( ​÷2 ​     )​ + ​ 0 – log ​ ___ ​  __  ​  ​  ​ ​ 2 ​    ÷



28 2 __ 7 = ___ ​   ​ – __ ​   ​  – ​   ​  3 3 3



= 2log ​( ​÷2 ​     )​





= log (2) sq.u.

28  – 9 = ​ ______  ​    3



19 = ___ ​   ​ sq.u. 3

__

63. Given curve is x = y2 + y + 2 and the y-axis.

65. Find the area of the region bounded by the curves 4|y| = |4 – x2| and |y| (x2 + 4) = 12. 65. Given curves are 4|y| = |4 – x2| and |y| (x2 + 4) = 12.

Hence, the required area 2

= ​Ú  ​   ​ xdy



–1 2

= ​Ú  ​  ​ (– y2 + y + 2)dy​



Hence, the required area

–1

( 

)

2 y2 __ ​   ​  + 2y  ​​   ​  2 –1



y3 = ​​ – ​ __ ​  + 3



8 1 1 = ​ – ​ __ ​  + 2 + 4 + __ ​    ​ – __ ​   ​  – 2  ​ 3 3 2

(  ) 7 1 7 = ​( 4 – __ ​   ​  – __ ​   ​   ​ = __ ​   ​  sq.u. 3 2) 6



[ 

__

2​÷2   ​ 

__

2 64. Given curves are y = ÷ ​ x    ​,  y = x

y = – (x2 – 2x – 4) = 5 – (x – 1)2

(  (  ) ( Ú  (  ) )

(  )

2

4 – x2 12 = 4 ​ ​Ú ​   ​ ​  ​ _____ ​  2      ​  ​ dx  – ​ ​Ú ​  ​ ​  ​ ​ _____  ​ dx      ​ ​ 4 0 0​ x +4 ​ __

2​÷2 ​   

x2 – 4 + ​ ​  ​  ​ ​ ​ ​ _____  ​    ​dx  ​ 4 2



[ ( 

(  ) )

( 

) (  ]

) ] __

2​÷2 ​    x ÷2 ​ x3 2 x3 = 4 ​ ​​ 6 tan  ​ __ ​    ​  ​  2​ ​​ ​     ​ – ​​ x – ___ ​    ​  ​​ ​​  – ​​ ___ ​    ​ – x  ​​ ​  ​  ​ 2 0 12 0 12 2 –1

__

[ 

__

__    4 4 – 2​÷2 ​ = 4 ​ 6 tan–1 ​( ​÷2 ​     )​ – __ ​   ​  + ​ _______  ​    ​ 3 3

__ __ 4 = __ ​   ​ ​ ( 18 tan–1 ​( ​÷2 ​     )​ – 2​÷2 ​     )​ sq.u. 3 66. Given curves are x2 + 2y2 = 2 and y = 1 – x2

Hence, the required area 2

1

0

0

2

__

= ​Ú ​    ​ (– x2 + 2x + 4)dx – ​Ú ​    ​ ​÷  x ​  dx – ​Ú ​    ​ x2dx

( 

1

) (  ) (  )

 2 1 x3 x3 2 2 = ​​ – ​ __ ​  + x2 + 4x  ​​ ​ ​ – ​​ __ ​   ​ x3/2   ​​ ​​  – ​​ __ ​   ​   ​​ ​​  3 3 3 1 0 0

( 

) (  ) ( 

)

18 8 1 2 = ​ – ​ ___ ​ + 12  ​ – ​ __ ​    ​  ​ – ​ __ ​   ​  – __ ​    ​  ​ 3 3 3 3

Hence, the required area 1



( 

______

_____

)

= 2   ​Ú   ​ ​  ​ ​÷2  – 2y2   ​ – ​÷1  – y   ​  ​ dy – 1/2

Area Bounded by the Curves 



__ 1

1

_____

( 

– 1/2

_____



)

__ y 1 1 = 2​÷2 ​ ​​     __ ​    ​ ​÷1  – y2   ​ + __ ​   ​  sin–1(y)  ​​   ​  2 2 – 1/2

( 

(  (  (  (  ( 

)

1 2 – 2 ​​ ___ ​    ​  (1 – y)3/2   ​​   ​  – 3 – 1/2



_____

= 2​÷2 ​      ​Ú   ​ ​    ​÷1   – y2   ​dy – 2  ​Ú   ​ ​  ​÷1  – y   ​ dy – 1/2



3.31

__

(  ) ) (  )

__ p    1 1 ​÷3 ​ 1 4 3 3/2 = 2​÷2 ​ ​     __ ​   ​  + __ ​   ​  ◊ ​ ___ ​ + ​ __  ​ sin–1 ​ __ ​   ​   ​  ​ – __ ​   ​ ​​  __ ​   ​   ​​ ​ 4 4 2 2 2 3 2 __

) (  )

__

__

​ 3 ​    p 3 ​    p ÷ 4 3​÷__ = 2​÷2 ​ ​     __ ​   ​  + ___ ​   ​ + ​ ___  ​  ​ – __ ​   ​ ​  ____ ​   ​  ​ 4 8 12 3 2​÷2 ​    __

__

Hence, the required area

) (  ) ) ) __

0



1 – e

0

= ​Ú   ​ ​  log (x + e) dx + ​Ú ​  ​ ​ e– xdx



​ 3 ​    ​÷3 ​    p ÷ = 2​÷2 ​ ​     __ ​   ​  + ___ ​   ​  ​ – 2 ​ ___ ​  __ ​  ​ 3 8 ​ 2 ​    ÷



= ((x + e) log (x + e) – (x + e)​)01 – e ​   ​ – (e– x​)•0​ ​ ​



__ __ p ​ 3 ​    ÷ = ​ 2​÷2 ​ ​     __ ​   ​  + ___ ​   ​  ​ – ​÷6 ​      ​ sq.u. 3 8



= (eloge – e) – (1log1 – (1)) – (e– x​)•​0​ ​



= (1 – (0 – 0))

__

67. Given curves are x2 + y2 = 4 and x2 + 4y2 = 9

= 2 sq.u. 69. Given curves are x2 + y2 = 4, y = x2 + x + 1 and

[  (  )

(  ) ]

x x y = ​ sin2 ​ __ ​    ​  ​ + cos ​ __ ​    ​  ​  ​ and y = 0. 4 4

Solving the above equations, we get,

x2 + 4 (4 – x2) = 9



3x2 = 7



7 x = ​ __ ​   ​ ​   3

÷ 

Hence, the required area

__



( 

___



2

_____

_____

)

1 = 4 ​ ​Ú ​   ​ ​ ​ __ ​  ​÷9  – x2   ​dx + ___ ​Ú   ​ ​ ​​ ÷ 4 – x2   ​dx  ​ 0 2 ​÷7/3 ​    

[  ( 

_____

(  )

___ ​÷7/3 ​    

9 x 1 x = 4 ​ __ ​   ​  ​ ​ __ ​    ​ ​ ​÷9  – x2   ​ + __ ​   ​  sin–1 ​​ __ ​    ​  ​​ ​  ​ 2​ 2​ 2 3 0 _____

(  ÷  ) }





{ 

68. Given curves are fi

(  ÷  )





1 7 1 7 = ​ 4p + 9 sin  ​ __ ​    ​ ​ __ ​   ​ ​    ​ – 8 sin–1 ​ __ ​   ​  ​ __ ​   ​ ​    ​  ​ 3 3 2 3

__

(  )

1 y = ln (x + e) and x = ln ​ ​ __ y ​  ​ y = ln (x + e), y = e– x, y = 0

2



_____

+ ​Ú  ​ ​ (x2 + x + 1) dx + 2  ​Ú__  ​ ​ ​÷4  – x2   ​dx –1

(  ) ) ]

x x 2 + __ ​    ​ ​÷4  – x2   ​ + 2 sin–1 ​​ ​ ​ __ ​    ​  ​  ​  ​​ ___   ​  2     ​​ 4 ​÷7/3 ​ __







–1

__

0

Hence, the required area ​÷7/3    ​ 

__

= (​  ÷ ​ 3 ​     × 1 )​ + (​  ÷ ​ 3 ​     – 1 )​

( 

​÷3 ​   

)

0 x x = (​  2​÷3 ​     – 1 )​ + ​​ __ ​   ​  + __ ​   ​  + x  ​​   ​  3 2 –1 _____ x x 2 2 –1 + 2 ​​ __ ​    ​ ​÷ 4 – x    ​ + 2sin  ​ __ ​    ​  ​  ​​ __  ​  2 2 ​÷3 ​   

__

( 

3

2

(  ) )

(  ( 

__ 1 = (​  2​÷3 ​     – 1 )​ + ​ 0 – ​ – ​ __ ​  + 3

{ 

( 

__

))

1 __ ​   ​  – 1  ​  ​ 2

)}

​ 3 ​     2p ÷ + 2​ (0 + p) – ​ ___ ​   ​ + ​ ___ ​   ​  ​ 2 3 2p ___ ​   ​ – ÷ ​ 3 ​    }​ {  3 2p 1 = ​( ___ ​   ​ + ÷ ​ 3 ​   – __ ​   ​  )​ sq.u. 3 6 __ 5 = ​ (​  2​÷3 ​     – 1 )​ + __ ​    ​ + 6 __



__



3.32  Integral Calculus, 3D Geometry & Vector Booster

( 

2

)]

__ 1 1 1 1   + 2​ ​ ___ ​  __  ​ + __ ​   ​ log ​( ​÷2 ​    + 1 )​– __ ​   ​  – __ ​   ​  log 3  ​  ​ sq.u. 2 3 4 ​ 2 ​     ÷ ​

70. Given curves are 2

x x ​ __ ​  + y2 = 1 and __ ​   ​  – y2 = 1 4 2

71. Let the area be A. 2

Then

2

x ​ __ ​  + 4

) )

( 



2 x4 x3 = ​​ ___ ​    ​ – __ ​   ​  + ax  ​​ ​​  12 3 0



4 8 = ​ __ ​   ​  – __ ​   ​  + 2a  ​ 3 3

Solving the above equations, we get

( 

x3 A = ​Ú ​    ​ ​ __ ​   ​  – x2 + a  ​ dx 3 0

) (  4 = ​( 2a – __ ​   ​  )​ 3

dA ​ ___ ​ = 2 > 0 da

2

x __ ​   ​  = 2 2

So, the area is minimum. It will be minimum when A = 0.



3x2 ___ ​   ​  = 2 4



8 x2 = __ ​   ​  3



Now,

x2 y2 = 1 – __ ​   ​  4



8 2 1 y2 = 1 – _____ ​       ​ = 1 – __ ​   ​  = __ ​   ​  4×3 3 3

2 Hence, the value of a is __ ​    ​. 3 72. Hence, the required area

Thus,

1



1__ y = ​ ___   ​  ​ 3 ​    ÷ Hence, the required area __

1

1/​÷3 ​   

) )

= 4 ​ ​Ú ​   ​ ​ (Hyperbola) dy +  Ú​   __​ ​  (Ellipse) dy  ​

=

0

1/​÷3 ​   

__

1

1/​÷3 ​     __ _____ 4 ​ ​  ​  ​ ​ ​÷ 2 ​ ​  ​ 1 + y2   ​  ​ dy 0

Ú 

( ÷ 

)

_____

+ ​Ú  __​ ​ ​ 2​÷1  + y2   ​dy  ​ 1/​÷3 ​   

[  ( 

_____ __ y _____ 1/​÷3 ​    1 = 4 ​ ​÷2 ​ ​​     __ ​    ​ ​÷1  + y2   ​ + __ ​   ​  log ​ y + ÷ ​ y  2 + 1 ​    ​  ​​ ​  ​ ​ 2 2 0 ​

| 

( 

|)

[  ( 

1 = 4 ​ ​÷2 ​ ​     ____ ​  __    ​ × 2​÷3 ​   

| 

2 ___ ​  __  ​ + ​ 3 ​    ÷

| 

1 1 __ ​   ​  log ​ ___ ​  __  ​ + 2 ​÷3 ​   

( 

|)

[  ( 



a2 a = ​ __ ​   ​  + __ ​   ​  + 1  ​ 3 2



dA 2a __ 1 ___ ​   ​ = ___ ​   ​ + ​   ​  da 3 2



d 2A 2 ​ ____2 ​ = ​ __ ​  > 0 3 da

)

2a 1 For maximum or minimum, ___ ​   ​ + __ ​    ​ = 0 3 2

]



|)

2 ___ ​  __  ​  ​  ​ ​ ​ 3 ​    ​ ÷

2a 1 ___ ​   ​ = – ​ __ ​  3 2

3 a = – ​ __ ​  4 Hence, the value of a is – 3/4 fi

)]

)

)

1 a2x3 ___ ax2 = ​​ ____ ​   ​   + ​   ​  + x  ​​ ​​  3 2 0

So, the area is minimum.

__ 1 1 1__ ___ 2 __ 1   + 2 ​ ​ ___ ​  __  ​ +    ​ __ ​  log ​( ​÷2 ​     + 1 )​ –  ​ ____    ​  ×  ​  __  ​ –    ​   ​  log3  ​  ​    2 2​÷3 ​     ​÷3 ​    4 ​ ​÷2 ​ __ 1 1 = 4 ​ ​÷2 ​ ​     __ ​   ​  + __ ​   ​  log (3)  ​ ​ 3 4 ​

(  ( 



__

_____ 1 y _____ __ 1   + 2 ​ ​​ __ ​    ​ ​÷1  + y2   ​+ ​   ​  log ​ y + ÷ ​ y  2 + 1 ​    ​  ​​   __​ ​ ​ 2 1/​÷3 ​    ​2 __

= A = Ú​  ​  ​ (a2x2 + ax + 1) dx 0



(  ( 

4 2a – __ ​   ​  = 0 3 2 a = __ ​   ​  3

73. Do yourself. 74. Given curves are y = x2 + 2x – 3 and y = mx + 1

Area Bounded by the Curves 

3.33

75. Hence, the required area

(  ) (  ) (  ) (  ) 2a



x = A = Ú​  ​  ​   ​​ __ ​    ​ + 6 a



x2 1 2a = ​​ ___ ​    ​ – __ ​   ​  ​​ ​  ​ 12 x a



Solving, we get x2 + (2 – m) x – 4 = 0 Let a, b be the roots such that a + b = m – 2, ab = – 4



Hence, the required area b

A = ​Ú ​   ​ (Line – Parabola) dx a

b

= ​Ú ​   ​ ((mx + 1) – (x2 + 2x – 3)) dx a

( 

) ) ( 

b mx2 x3 = ​​ ____ ​   ​   + x – __ ​   ​  – x2 + 3x  ​​  ​​  2 3 a

( (  ( (  ( ( ( 

a2 1 1 ___ ​    ​ – ___ ​    ​ + __ ​   ​  ​ 2a 12 a 1 ___ ​    ​  ​ 2a

dA a ___ 1 ​ ___ ​ = __ ​   ​  – ​     ​  da 2 2a2 d 2A 1 1 ____ fi ​  2 ​ = ​ __ ​  + __ ​    ​  2 a3 da Now for maximum or minimum, dA ​ ___ ​ = 0 da a 1 __ fi ​   ​  – ___ ​     ​ = 0 2 2a2 a 1 __ fi ​   ​  = ___ ​     ​  2 2a2 fi a3 = 1 fi a=1 Hence, the value of a is 1, when the area is least.

x2 + 2x – 3 = mx + 1



a2 = ​ __ ​   ​  – 3 a2 = ​ __ ​   ​  + 4

1 __ ​  2  ​    ​ dx x

))

mb 2 b3 ma2 a3 = ​ ​ ____ ​   ​   + 4b – __ ​   ​ – b 2   ​– ​ ____ ​   ​   + 4a – ​ ___ ​  – a2   ​  ​ 2 3 2 3   (Problems for Jee-Advanced)

)) )) )

(b3 – a3) m = ​ ​ __ ​   ​ (b2 – a2) + 4 (b – a) – ________ ​   ​    – (b2 – a2)  ​  ​ 2 3

1. Given curve is a2 y2 = x2 (a2 – x2).

(b3 – a3) m = ​ ​ ​ __ ​   ​  – 1  ​ (b2 – a2) + 4 (b – a) – ​ ________  ​    ​  ​ 2 3

)

( (  (  ( 

(b2 + ab + a2) m = (b – a) ​ ​ __ ​   ​  – 1  ​ (b + a) + 4 – ​  ____________  ​       ​ 2 3

)

)

(m – 2)2 (m – 2)2 + 4 = (b – a) ​ ​ _______  ​   + 4 – ​  __________  ​       ​ 2 3

a

)

(m – 2)2 ___ 16 = (b – a) ​ ​ _______  ​   + ​   ​   ​ 3 6

( 



)

_____________ (m – 2)2 ___ 16 (a  + b)2 –   4ab ​  ​ ​ _______  ​   + ​   ​   ​

= ÷ ​ 

( 

3

6

)

____________ (m – 2)2 ___ 16 (m  – 2)2    + 16 ​  ​ ​ _______  ​   + ​   ​   ​

= ÷ ​ 

6

Hence, the required area

3

The area is minimum, if m = 2 and the least area is 64 = ___ ​   ​ . 3

= 4 ​Ú ​    ​ y dx 0 a



0 p/2



( 

______

)

x = 4 ​Ú ​    ​ ​ __ ​ a ​ ​÷ a2 – x2   ​  ​ dx = 4 ​Ú ​   ​ ​ a2 sin2q cosq dq, (Let x = a sinq) 0

1



= 4a2 ​Ú ​  ​ t2 dt, 0



4a2 = ___ ​   ​   sq.u. 3

(Let t = sinq)

3.34  Integral Calculus, 3D Geometry & Vector Booster

|  |

Hence, the required area

2. Given curve is y = (x – 1)(x – 2)(x – 3).

1

1

0

0

= ​ ​Ú ​    ​ logx dx  ​ + ​Ú ​    ​ sin4 x dx

(  1 – cos2p x = 1 + Ú​ ​    ​ ​​(​  __________  ​       )​​ ​ dx 2 1

)

1 – cos2p x 2 = |x(logx – 1)​|10​ ​​  + ​Ú ​    ​ ​​ __________ ​   ​       ​​ ​ dx 2 0 1

2



0

1

Hence, the required area

1 = 1 + __ ​   ​  ​Ú ​    ​ (1 – 2cos(2p x) + cos2 (2p x)) dx 4 0

3

= ​Ú ​    ​ {(x – 1)(x – 2)(x – 3)}dx

1

1

= – ​Ú ​    ​ {(x –1)(x – 2)(x – 3)}dx 0

2

+ ​Ú ​    ​ {(x – 1)(x – 2)(x – 3)}dx



1 3

– ​Ú ​    ​ {(x – 1)(x – 2)(x – 3)}dx



( 

2

)|

x 11 = – ​​ ​ __ ​   ​  – 2x3 + ___ ​   ​  x2  – 6x  ​  ​​ ​​  4 2 0 ​

(  ( 

))

( 

)

(  )

3 11 1 3 = 1 + __ ​   ​ ​  __ ​   ​  – 0  ​ = 1 + __ ​   ​  = ___ ​   ​  4 2 8 8 4. Given curve is y = 2x4 – x2.

) )



2 x4 11 + ​​ __ ​   ​  – 2x3 + ___ ​   ​  x2 – 6x  ​​ ​​  4 2 1



3 x4 11 – ​​ __ ​   ​  – 2x3 + ___ ​   ​  x2 – 6x  ​​ ​​  4 2 2

( 

( 

2sin(2p x) ________ sin(4p x) 1 1 3x _________ = 1 + __ ​   ​ ​​  ___ ​   ​ – ​        ​ + ​        ​  ​ ​​  4 2 2p 8p 0



1

4

( 

1 + cos(4p x) 1 = 1 + __ ​   ​  ​Ú ​    ​ ​ 1 – 2cos(2p x) + ​​ ___________  ​       ​  ​ dx 4 0 2

0

) 1 11 – ​( __ ​   ​  – 2 + ___ ​   ​ – 6 )​ 4 2 99 81 – ​( ___ ​   ​ – 54 + ___ ​   ​ – 18 )​ + (4 – 8 + 22 – 12) 4 2 279 23 = – 2​( ___ ​   ​ – 8 )​ + 12 – ​( ____ ​   ​   – 72 )​ 4 4 1 11 = – ​ __ ​   ​  – 2 + ___ ​   ​ – 6  ​ + (4 – 8 + 22 – 12) 4 2

46 279 = ___ ​   ​ – ____ ​   ​   + 100 4 4 233 _________ 400 – 233 ____ 167 = 100 – ____ ​   ​   = ​   ​      = ​   ​     sq.u. 4 4 4

3. Given curves are y = loge x, y = sin4 (p x) and x = 0

Hence, the required area

| 

1/2

|

= ​ 2 ​Ú ​   ​   ​ (2x4 – x2) dx  ​ 0

|  ( 

)

|

2x5 x3 1/2 = ​ 2 ​​ ___ ​   ​  – __ ​   ​   ​​ ​  ​  ​ 3 0 5

|  ( 

1 = ​ 2 ​ ___ ​    ​ – 80

)|

1 ___ ​    ​  ​  ​ = 24

7 ____ ​     ​ sq.u. 120

5. Given curves are x2 + y2 = 64 and y2 = 12x.

Area Bounded by the Curves 

Hence, the required area

( 

4

8

)

= area of a semi-circle – 2 ​ ​Ú ​    ​ P dx + Ú​  ​    ​ C dx  ​ 0

( 

4

8

___ __

4

)

______

= 64p – 2 ​ ​Ú ​    ​ ​÷12 ​ ​    ÷ x ​  dx + Ú​  ​    ​ ​÷64   – x2   ​ dx  ​ 0

4

( 

( 



6.



( 

__

(  ) )

(  ) )

__ 32p 1 = 64p – 24​÷3 ​     – 2 ​ ____ ​   ​   – 8​÷3 ​     – 32sin–1 ​ __ ​   ​   ​  ​ 2 2 __ 64p = 32p – 8​÷3 ​     + ____ ​   ​    3 __ 16p = ​ ____ ​   ​   – 8​÷3 ​      ​ sq.u. 3 Given curves are 1 y = ln(x + e) and x = ln​ __ ​ y ​  ​

( 

= ​Ú ​   ​   ​ (mx) dx 0



(  ) (  )

9m mx2 3/2 = ​​ ____ ​   ​    ​​ ​  ​ = ​ ___ ​   ​  ​ 2 0 8

3/2

x x 8 – 2​​  ​ __  ​ ​÷64   – x2   ​ + 32sin–1 ​ __ ​    ​  ​  ​​ ​​  2 2 4



3/2



Hence, the area OABCDO

)

__ 4 3 = 64p – 2​​ 2​÷3 ​     × __ ​    ​ x3/2   ​​ ​​  2 0 ______

Now, the area OABO

)

(  )

fi y = ln(x + e), y = e– x, y = 0



= ​Ú ​   ​   ​ (1 + 4x – x2) dx 0

( 

)



x3 3/2 = ​​ x + 2x2 – ​ __ ​   ​​ ​  ​ 3 0



9 27 3 = ​ __ ​   ​  + 2 ◊ ​ __  ​ – ___ ​   ​   ​ 2 4 24



(  ) 9 39 = ​( 6 – __ ​   ​  )​ = ___ ​   ​ sq.u. 8 8

According to the question, 9m ​ ___ ​ = 8 fi

1 39 __ ​   ​  ◊ ​ ___ ​  2 8

13 m = ___ ​   ​  6

13 Hence, the value of m is ___ ​   ​ . 6 8. Given curve is

Hence, the required area 0



1 – e

0

= ​Ú   ​ ​   ​ log(x + e)dx + ​Ú ​  ​   ​ e– x dx = ((x + e) log (x + e) – (x + e)​)01 – e ​   ​ – (e–x​)•0​ ​ ​ = (eloge – e) – (1log1 – (1)) – (e–x​)•0​ ​ ​ 7.

= (1 – (0 – 1)) = 2 sq.u. Given curve is y = 1 + 4x – x2 fi y = 5 – (x – 2)2

Hence, the required area 3



= ​Ú ​    ​ (y2 – y1) dx 0

3



= ​Ú ​    ​ (2x – x2 + x) dx 0

3



= ​Ú ​    ​ (3x – x2) dx 0

( 

)



3x2 x3 3 = ​​ ___ ​   ​  – __ ​   ​   ​​ ​​  2 3 0



27 27 = ​ ___ ​   ​ – ___ ​   ​   ​ 2 3



(  ) 9 27 – 18 = ​( ​ _______  ​    ​ = __ ​    ​  sq.u. 2 ) 2

3.35

3.36  Integral Calculus, 3D Geometry & Vector Booster

9. Given curve is

12

( 

)

__ __ x2 Also, A2 = Ú​  ​  ​   ​ ​ 2​÷3 ​​   ÷    x ​  – ___ ​    ​  ​ dx 12 3

(  (  ) )

__ 2 x3 12 = ​​ 2​÷3 ​ ​     __ ​    ​ x3/2   ​ – ___ ​    ​  ​​ ​  ​ 3 36 3

( 

) ( 

)

__ ___ 12 __ __ 27 2 2 = ​ 2​÷3 ​     × ​ __ ​  × 12 ​÷12 ​ ​     ___ ​   ​ – ​ __ ​   ​  × 2​÷3 ​     × 3​÷3 ​ ​     ___ ​   ​ 3 3 36 36

( 

)

3 = (96 – 48) – ​ 12 – __ ​   ​   ​ 4

|  | 

3 3 147 = 48 – 12 + __ ​   ​  = 36 + __ ​   ​  = ____ ​   ​    4 4 4

Hence, the required area 2

|

= ​ ​Ú ​    ​ {(x – 1)(x – 2)}dx  ​ 1

2

|

Thus, A1 : A2 = 45 : 147 = 15 : 49

= ​ ​Ú ​    ​ (x2 – 3x + 2) dx  ​ 1

| ( 

)|

11. Given curves are x + y £ 6. x2 + y2 £ 6y and y2 £ 8x

2 x3 3x2 = ​ ​​ __ ​   ​  – ___ ​   ​  + 2x  ​​ ​  ​ 3 2 1

| (  | (  | ( 

8 1 = ​ ​ __ ​   ​  – 6 + 4 – __ ​   ​  + 3 3

)|

3 __ ​   ​  – 2  ​  ​ 2

)| 14 + 9 = ​ ​ ​ ______  ​   – 4 )​  ​ 6 | 23 1 = (​  ___ ​   ​ – 4 )​ = __ ​   ​  sq.u. 6 6 7 3 = ​ ​ __ ​   ​  + __ ​   ​  – 4  ​  ​ 3 2

Hence, the required area

2

2

10. Given curves are y = 12x and x = 12y and x = 3.

2

______

___

= Ú​  ​    ​ ​{​(  2​÷2x    ​  )​ – ​( 3 – ​÷9    – x2   ​  )​ }​ dx 0

3

______

{ 

}

  + Ú​  ​    ​ ​ (6 – x) – (​  3 – ​÷9    – x2   ​ )​  ​ dx 2

( 

3

)

__ 2 __ x2 3 2 = 2​÷2 ​     ◊ ​ __ ​ ​​ ( x3/2  )​​0​​  – ​Ú ​  ​ ​ ​( 3 – ÷ ​ 9 ​     – x2  )​dx + ​​ 6x – ​ __ ​   ​​ ​​  3 2 2 0

( 

3

)

9 16 = ​ ___ ​ + ​ 18 – __ ​    ​ – 12 + 2  ​ 3 2

( 

)

__ __ x2 Here, A1 = ​Ú ​    ​ ​ 2​÷3 ​ ​    ÷ x ​  – ​ ___  ​  ​ dx 12 0

(  (  ) )



__ 2 x3 3 = ​​ 2​÷3 ​ ​     __ ​   ​  x3/2   ​ – ___ ​    ​  ​​ ​​  3 36 0



__ 2 __ = 2​÷3 ​ ​     __ ​   ​  × 3​÷3 ​      ​– 3



3 45 = 12 – __ ​   ​  = ___ ​   ​ sq.u. 4 4

( 

)

27 ___ ​   ​  36

( 

_____

(  ))

3

x​÷9  – x2   ​ __ 9 x   – ​​ 3x – ​ ________  ​   – ​   ​  sin–1 ​ __ ​    ​  ​ ​​ ​​  2 2 3 0 9p 27 16 = ​ ___ ​ – 9 + ___ ​   ​ + ___ ​   ​ – 10 3 4 2

( 

)

9p 16 27 = ​ ___ ​ + ​ ___ ​   ​ + ___ ​   ​ – 19  ​ 4 3 2

( 

)

9p 1 = ​ ___ ​   ​ – __ ​    ​  ​ sq.u. 4 6

Area Bounded by the Curves 

12. Given curve is 2

Hence, the required area 2

2

x + y – 6x – 4y + 12 £ 0, y £ x, x £ 5/2

= ​Ú  ​   ​ (x + 2 – x2)dx –1

fi (x – 3)2 + (y – 2)2 £ 1, y £ x, x £ 5/2

( 

__________ 1 – (x –    3)2 ​

(  ( 

fi y = 2 ± ​÷ 

__________ 1 – (x –    3)2 ​ as

fi y = 2 – ​÷ 

)

x2 x3 2 = ​​ __ ​   ​  + 2x – __ ​   ​   ​​   ​  2 3 –1

fi (y – 2)2 = {1 – (x – 3)2}

)

8 1 1 = ​ 2 + 4 – __ ​   ​  – ​ __  ​ + 2 + __ ​   ​   ​ 3 2 3 1 7 = ​ 8 – __ ​   ​  – __ ​   ​   ​ 2 3

5 x £ __ ​    ​ 2

)

48 – 3 – 14 ___ 31 = ​ __________  ​      = ​   ​ sq.u. 6 6 14. Given curve is y = x log x and y = 2x – x2

Hence, the required area

( 

5/2

)

__________

( 

)

5 1 1 = ​ __ ​ ​  2 + __ ​    ​  ​ ​ __ ​  – ​Ú ​   ​ ​ ​ 2 – ​÷1  – (x –    3)2 ​  ​ dx 2 2 2 2 5/2

__________

( 

Hence, the required area

)

9 = __ ​    ​ – Ú​  ​   ​   ​ ​ 2 – ​÷1  – (x –    3)2 ​  ​ dx 8 2

(  {  (  ) (  (  )

1

)

5/2 (x – 3) __________2 __ 9 1 = __ ​   ​  – ​​ 2x – _______ ​   ​ ​    1  – (x –    3)  ​ + ​    ​ sin–1 (x – 3)  ​​ ​  ​ ÷ 8 2 2 2

__

​ 3 ​    ÷ 9 1 1 __ 1 = __ ​   ​  – ​ 2 ◊ ​ __ ​  – __ ​   ​  ​ – ​   ​   ​ × ___ ​   ​  8 2 2 2 2

)}

1 1   + ​ __ ​ ​  sin–1 ​ – ​ __ ​   ​ – sin–1 (– 1)  ​  ​ 2 2

(  ( 

__

( 

))

​ 3 ​    1 ÷ 9 p p = ​ __ ​  – ​ 1 + ___ ​   ​ + ​ __  ​ ​ – ​ __ ​  + __ ​   ​   ​  ​ 8 8 2 6 2 __

= ​Ú ​    ​ ((2x – 2x2) – xlogx) dx 0

(  ) ​​( __​ x2 ​  logx – __​ x4 ​  )​​ ​​  2 1 = ​( 1 – __ ​   ​  )​ + __ ​   ​  3 4 1 2 = ​​ x2 – __ ​   ​  x3   ​​ ​​  – 3 0

1 = ​ __ ​  + 3 15. Given

2 1

2

0

7 1 __ ​   ​  = ___ ​    ​   sq.u. 4 12 curves are x2 + (y – 1)2 = 1 __

and c2 x2 + y2 = c2 where c = ÷ ​ 2 ​    – 1

)

​ 3 ​    p ÷ 9 = __ ​   ​  – ​ 1 + ___ ​   ​ + ​ __ ​   ​ 8 8 6

( 

__

)

​ 3 ​    p 1 ÷ = ​ __ ​   ​  – ___ ​   ​ – ​ __ ​   ​ sq.u. 8 8 6 13. Given curves are x2 = y, y = x + 2 Hence, the required area __

1/​÷2 ​   

______

______

)​ = p ◊ (1)2 – 2 ​Ú ​   ​   ​ ​( c ​÷1  – x2   ​ – 1 – ÷ ​ 1  –  x2 ​   0

__

   1/​÷2 ​

______

= p ◊ (1) – 2 ​Ú ​   ​   ​ ​( (c + 1) ​÷1  – x2   ​ – 1 )​ 2

0

3.37

3.38  Integral Calculus, 3D Geometry & Vector Booster

} ) (  {  x 1 = p ◊ (1) – 2​​( ​ 2 ​ ​{ __ ​    ​ ​÷1  – x  ​ + __ ​   ​  sin  x }​ – x )​​ ​  ​ 2 2 = p – 2 ​  ​ 2 ​ ​{ ____ ( ​ 2​12 ​   ​  ◊ ​ ___​12 ​  ​ + __​ 12 ​  ◊ ​ __p4 ​  }​ – ___​ ​12 ​  ​  )​ ______

__

1/​÷2 ​    x 1 = p ◊ (1)2 – 2​​ (c + 1)​ __ ​    ​ ​÷ 1 – x2   ​ + __ ​   ​  sin–1 x  ​– x  ​​ ​  ​ 2 2 0

______

__

2

2

÷   

__

÷   

–1



__

__

÷    ÷   

__ 1/​÷2 ​   

0

__

÷   

__

(p – 2)​÷2 ​    = p – _________ ​   ​    4 __ __ 1 = __ ​   ​ ​ { ​( 4 – ​÷2 ​     )​p + 2​÷2 ​     }​ sq.u. 4 16. Given curve is (y – 2)2 = (x – 1) and the equation of the tangent to the curve at (2, 3) is x – 2y + 4 = 0.

Hence, the required area 3

= Ú​  ​    ​ (x2 – x1) dy 0

3

= Ú​  ​    ​ ((y – 2)2 + 1 – (2y – 4)) dy 0

3

= Ú​  ​    ​ (y2 – 4y + 4 + 1 – 2y + 4) dy 0

Hence, the required area

(  ( 

)

1 1__ __ 1 = 3 ​ 2 ◊ ​ __ ​  ◊ ​ ___   ​ – ​    ​ p ◊ 1  ​ 2 ÷ ​ 3 ​    6

)

p 1 = 3​ ___ ​  __  ​ – __ ​   ​   ​ ​ 3 ​    6 ÷

( 

__ p = ​ ​÷3 ​     – ​ __ ​   ​ sq.u. 2 18. The tangent at x = p to the curve f (x) = |cos x| will be parallel to x-axis and cuts the curve f (x) = cos–1 (cos x) at B and C.

)

Thus, AD = p – 1 Hence, the area of DABC 1 = __ ​   ​  × (2p – 2) × (p – 1) 2 1 = __ ​   ​  × 2(p – 1) × (p – 1) 2 = (p – 1)2 sq.u. 19. Given curves are |y| = 1 – x2, x2 + y2 = 1.

3

= Ú​  ​    ​ (y2 – 6y +9) dy 0

( 

)

3 y3 = ​​ __ ​   ​  – 3y2 + 9y  ​​ ​​  3 0

= 9 – 27 + 27 = 9 sq.u. 17. Here D, E and F are the mid-points of the sides of the trangle ABC respectively.

Hence, the required area

( 

1

)

= p – 4 ​ ​Ú ​    ​ (1 – x2) dx  ​ 0

(  )

x3 1 = p – 4 ​​ x – ​ __ ​   ​​ ​​  3 0

(  ) 8 = ​( p – __ ​   ​  )​  sq.u. 3

1 = p – 4 ​ 1 – __ ​   ​   ​ 3

Area Bounded by the Curves 

20. Given curves are 1 |y| = e–|x| – ​ __  ​ and |x| + |y| = ln 2 2

Hence, the required area

( 

ln2

( 

22. Given curves are

)

)

1 1 = 4 ​ __ ​   ​  (ln2)2 – ​Ú ​   ​   ​ ​ e–x – __ ​   ​   ​dx  ​ 2 2 0

( 

( 

x2 + y2 – 2x + 4y – 11 = 0

and

y = – x2 + 2x + 1 – 2 ​÷3 ​   



(x – 1)2 + (y + 2)2 = 16

and

y + 2(​÷3 ​     – 1) = – (x – 1)2

__

__

(  ( 

ln2

e 1 1 = 4 ​ __ ​   ​ (ln 2)2 – ​​ ___ ​   ​ – ​ __ ​   ​​ ​  ​  ​ 2 –1 2 0

)

2

= 2 ​ ​Ú ​  ​ (Parabola –  Circle) dx  ​

(  )

0

2 = 2 (ln 2) + 2 ln​  ​ __ e ​  ​. 21. Given curves are 2



Hence, the required area

) )

–x

3.39

   y2 – 2y + 4x + 5 = 0 and x2 + 2x – y + 2 = 0 2

2

fi  (y – 1) = – 4(x + 1) and (x + 1) = (y – 1).

2

__

= 2 ​  ​Ú ​  ​ ((– x2 + 2x + 1 – 2 ​÷3 ​   )   ​ 0 ​

____________

( 

)) )

​ –​   – (x –   1)2 ​  ​  ​ dx  ​ ​ ​  ​ – 2 + ​÷16

[ ( 

)

__ 2 x3 = 2 ​ ​​ – ​ __ ​  + x2 + x – 2​÷3 ​     x  ​​ ​ ​ 3 0​

( 

(  ) ) ] ​÷15 ​   8 1 = 2 ​( – ​ __ ​  + 6 – 4  ​​÷ 3 ​ – ​( (– 4) + ____ ​   ​   + 8 sin  ​( __ ​    ​ )​ )​ 3 2 4 ​ ​÷15 ​   1   +  ​​( – ​ ____  ​   – 8 sin  ​( __ ​   ​  )​ )​ )​ 2 4 ​ 8 = 2 ​( 10 – __ ​   ​  – 4 ​÷3 ​    )​ 3 22 = 2 ​( ___ ​   ​ – 4 ​÷3 ​    )​ sq.u. 3

(x – 1) ___________2 x–1 2   – ​ ​​ – 2x + ​ ______  ​ ​    16     –  (x  –    1)  ​ + 8sin–1 ​ ​ _____  ​    ​  ​​ ​  ​ ÷ 2 4 0 ​ ___

__



___  



–1

–1

__



Hence, the required area –1

________

 ​Ú   __​ ​ ​( 1 + ​÷– 4(x   + 1) ​    )​ – (1 + (x + 1)2) dx

=

–1 – 3​÷4 ​   

(  ( 

( 

))

–1

(x + 1)3 2 = ​​ x + 2 ◊ ​ __ ​  (– (x + 1)3/2 ) – ​ x + ​ _______  ​    ​  ​​   3 __​  3 3 –1 – ​÷4 ​   

( 

3

))

–1

(x + 1) 4 = ​​ __ ​   ​  (– (x + 1)3/2) – ​ ​ _______  ​    ​  ​​   3 __​  3 3 –1 – ​÷4 ​   

(  ( ( 

(  ) ) __

(  3 )3

​​ – ​÷4 ​      ​​ ​ 4 = ​ __ ​   ​  ​   ​ – ​÷4 ​   )     ​  ​ + ​ _______ ​   ​    ​  ​ 3 3

| ( 

3 __ 3/2

)|

))

4 4 12 = ​ ​ __ ​   ​  (–2) – ​ __  ​  ​  ​ = ___ ​   ​ = 4 sq.u. 3 3 3

__



23. Given curve is 9x2 + 4y2 – 36x + 8y + 4 = 0 fi

(9x2 – 36x) + (4y2 + 8y) + 4 = 0



9 (x2 – 4x) + 4(y2 + 2y) + 4 = 0



9 (x – 2)2 + 4(y + 1)2 = 36 + 4 – 4 = 36



9 (x – 2)2 + 4(y + 1)2 = 36

(y +  1)2 (x – 2)2 _______ fi ​ _______  ​   + ​   ​   = 1 4 9

3.40  Integral Calculus, 3D Geometry & Vector Booster 1 11 = 6 – ​ __ ​  = ___ ​   ​ sq.u. 2 2 25. The required area will be equal to area enclosed by y = f (x) and the y-axis between the abscissae y = –1 and y = 4 \  f  (0) = 1, f (–2) = –1, f (2) = 4 Clearly, f (x) is monotonic in [–2, 2]. Hence, the required area Solving, we get x = 2 and x = 4 Hence, the required area 2

(  ÷  (  ) (  ) ) Ú  (  ) ÷  (  ) Ú (  ÷  (  ) ) _____________ 2

(x – 2) 10 –  3x = ​Ú ​  ​ ​ –1 + 3 ​ 1 – ​ ​ _______     ​    ​ ​ – ​ _______ ​   ​    ​  ​ dx 4 2 2 ____________ 2

(x – 2) 3x = ​  ​ ​  ​ –1 + 3 ​ 1 – ​ ​ _______     ​    ​ ​ – 5 + ___ ​   ​   ​ dx 4 2 2 ____________

4

(x – 2)2 = ​  ​ ​ ​ – 6 + 3 ​ 1 – ​ ​ _______     ​    ​ ​ + 4 2

( 

3x ___ ​   ​   ​ dx 2

(  ÷  (  ) 3x x–2   ​​( _____ ​   ​    )​ )​ + ___ ​   ​   )​​ ​​  2 4 ​

___________

x–2 x  –  2 = ​ – 6x + 3 ​ ​ _____  ​    ​  ​ 1  – ​​ _____ ​   ​        ​​ ​ ​ ​ 4 ​ 2 ​ 2

1  ​​ + __ ​   ​  sin–1 ​ 2

( 

\

–2

( 

)

2

(  )

0

( 

)

x3 x2 13   + ​Ú  ​ ​ ​ ___ ​    ​ + __ ​   ​  + ___ ​    ​ x + 2  ​ dx 8 12 –2 24

( 

)

x4 x3 13x2 2 = ​​ 3x – ​ ___  ​ – ___ ​    ​ – ____ ​   ​    ​​ ​​  24 0 96 24

( 

)

0 13x2 x4 x3   + ​​ ___ ​    ​ + ___ ​    ​ + ____ ​   ​   + 2x  ​​   ​  24 96 24 –2

( 

) ( 

)

)

)

16 8 52 16 8 52 = ​ 6 – ___ ​   ​ – ___ ​    ​ – ___ ​   ​   ​ – ​ ___ ​   ​ – ___ ​    ​ + ___ ​   ​ – 4  ​ 96 24 24 96 24 24

|  |  | 

32 = ​ 10 – ___ ​   ​ – 96

2 4

p = ​ – 24 + 3 ​ __ ​   ​   ​ + 12 + 12 – 3  ​ 4 p = 3 ​ __ ​   ​  – 1  ​ sq.u. 4 24. The required area will be equal to area enclosed by y = f (x) and the y-axis between the abscissae y = – 2 and y = 6.

( 

0

13 x3 x2 ___ = ​Ú ​  ​ ​ 3 – ___ ​    ​ – __ ​   ​  – ​   ​  x  ​ dx 24 8 12 0

= ​Ú ​  ​  (E – L) dx

4

0

2

4

4

2

= ​Ú ​  ​ (4 – f (x)) dx + Ú​   ​ ​ ( f (x) – (–1)) dx

|

104 ____ ​   ​  ​ 24

|

1 13 = ​ 10 – __ ​   ​  – ___ ​   ​  ​ 3 3 14 =  ​​ 10 – ___ ​   ​  ​  ​ 3​ ​ 16 = ___ ​   ​ sq.u. 3 26. Given curves are y = xe x, y = xe–x

)

f  (0) = 2, f (–1) = – 2, f (1) = 6

Clearly, f (x) is monotonic in [–1, 1]. Hence, the required area 1

–1

0

0

= Ú​  ​  ​ (6 – f (x)) dx + Ú​  ​  ​ ​ ( f (x) – (– 2)) dx 1

–1

0

0

= Ú​  ​  ​ (4 – x3 – x) dx + Ú​  ​  ​ ​ (x3 + 3x + 4) dx

) ( 

( 

x2 1 __ ​   ​   ​​ ​​  + 2 0

x4 = ​​ 4x – __ ​   ​  – 4

| (  | 

) ( 

x4 ​​ __ ​   ​  + 4

)

0 3x2 ___ ​   ​  + 4x  ​​   ​  2 –1

)|

1 1 1 3 = ​ ​ 4 – __ ​   ​  – ​ __ ​   ​ – ​ __ ​   ​  + __ ​   ​  – 4  ​  ​ 4 2 4 2 2 = ​ 8 – __ ​   ​  – 2  ​ 4

|

Hence, the required area 1



= Ú​  ​  ​ (xex – xe–x) dx 0

1



= (x (ex + e–x)​)10​ ​​  – ​Ú ​  ​ (ex + e–x) dx 0

Area Bounded by the Curves 



( 

) ( 

3.41

)

1 1 __ = ​ e + ​ __ e ​  ​ – ​ e – ​ e ​  ​

2 = __ ​ e ​ sq.u. 27. Given curves are



|x – 2y| + |x + 2y| £ 8 and xy ≥ 2.

Hence, the required area 4

Hence, the required area 4

( 

)

( 

)



2 = 2 ​Ú  ​ ​ ​ 4 – __ ​ x ​  ​ dx 1/2



= 2 (4x – 2 log x​)21/2 ​   ​ 



1 = 2 ​ 8 – 2log2 – 2 + 2 log ​ __ ​   ​   ​  ​ 2



= 2 (6 – 4 log 2) sq.u.

( 

(  ) )

30. Given curves are



2 = 2 ​Ú ​  ​ ​ 2 – __ ​ x ​  ​ dx 1



= 2 (2x – 2 log x​)41​ ​​ 



= 2 (8 – 2 log 2 – 2)



= 2 (6 – 2 log 2) sq.u.



|x + y| £ 2 and x2 + y2 ≥ 2.

28. Given curves are |x| + |y| ≥ 3 and xy ≥ 2.

Hence, the required area

( 

__

)



p ◊ (​÷2 ​    )2 1 = 2 ​ __ ​   ​  × 2 × 2 – _______ ​   ​    ​ 2 4



p = ​ 4 – __ ​   ​   ​ sq.u. 2

( 

)

Hence, the required area 2

( 



)



2 = ​Ú ​  ​ ​ 3 – x – ​ __ x ​  ​ dx 1



2 x2 = ​​ 3x – __ ​   ​  – 2 log x  ​​ ​​  2 1



1 = ​ 6 – 2 – 2 log 2 – 3 + __ ​   ​   ​ 2



( 



)

(  3 = ​( __ ​   ​  – 2 log 2 )​ sq.u. 2

)

29. Given curves are

|x – y| + |x + y| £ 8 and xy ≥ 2.

(Tougher Problems for JEE-Advanced) 1. Given curve is



2x2 + 6xy + 5y2 = 1



Let x = r cos q, y = r sin q



1 fi r2 = __________________________ ​          ​ 2 2 cos q  +  6 sinq cosq + 5 sin2q

Hence, the required area p/2



= ​Ú   ​ ​  r2 dq –p/2

3.42  Integral Calculus, 3D Geometry & Vector Booster p/2

( 

)



1 = ​Ú   ​ ​  ​ _________________________ ​          ​  ​ dq 2 2 –p/2 2cos q +  6sinq cosq + 5sin q



sec2q = ​Ú   ​ ​  ​ _________________ ​         ​  ​ dq 2 –p/2 2 + 6 tanq +  5 tan q

p/2





( 

( 





( 



)

dt 1 = __ ​   ​ ​   Ú  ​ ​  ​ __________ ​        ​  ​ 6 5 – • 2 __ 2 t + ​   ​  t + ​ __ ​  5 5 •



)

dt = ​Ú  ​ ​  ​ __________ ​  2        ​  ​, – • 5t +  6t + 2

 ( ( 

–1

(  (  ) )



= p sq.u.



y – 2 = ± 2 (x – 1)

(Let  t = tan q)



y = ± 2x

)



  – •

Hence, the required area 1



= 4 ​Ú ​  ​ (a2/3 – x2/3)3/2 dx 0

0

= 4 ​Ú ​ ​ (a sin3q) (– 3a cos2q sinq) dq p ​ __ ​  2

(Let  x = a cos2q) p __ ​    2​

= 12 a2 ​Ú ​  ​ ​ sin4q cos2q dq



3 1 1 p = 12a2 × __ ​   ​  ◊ ​ __ ​  ◊ ​ __ ​  ◊ ​ __ ​  6 4 2 2

(  )

Now,

m = ( f ¢(x))x = 0 = 0 y – b = m(x – a)



y – b = 2a (x – a)

Since the point (a, b ) lies on the curve, so

2

1 – 2x2 = 0 1__ fi x = ± ​ ___   ​  ​ 2 ​    ÷ 1 By the sign scheme, it is maximum at x = ___ ​  __  ​  ​ 2 ​    ÷ 1 Thus, c = ___ ​  __  ​   ​ 2 ​    ÷ Hence, the required area

Equation of the tangent at (a, b) is

2

e–​x​ ​ – 2x2 e–​x​ ​ = 0



3. Clearly, f (x) = x2 + 1 f ¢(x) = 2x

)

2 2 dy fi ​ ___  ​ = e–​x​ ​ – 2x2 e–​x​ ​ dx



3pa2 = ​ ____ ​   ​    ​ sq.u. 8



)

dy For maximum or minimum, ___ ​    ​ = 0 dx

0



)

(  ( 

0 a



( 

1 x3 x2 = 2 ​​ __ ​   ​  – __ ​   ​  + x  ​​ ​​  3 2 0 1 1 = 2 ​ __ ​   ​  – __ ​   ​  + 1  ​ 3 2 4 1 = 2 ​ ​ __ ​  – ​ __ ​   ​ 3 2 5 = 2 × __ ​   ​  6 5 = __ ​   ​  sq. u. 3 4. Given curve is 2 y = xe–​x​ ​



= 4 ​Ú ​  ​ y dx



= 2 ​Ú ​  ​ (x2 + 1 – x) dx 0

a



a = ± 1, b = 2

Hence, the equation of the tangent is

Hence, the required area



From Eq. (i) and (ii), we get

)

2. Given curve is x2/3 + y2/3 = a2/3.



...(ii)



) (  ) 5t + 3 1 = __ ​   ​  × (​​  5 tan  ​( ______ ​   ​    ​  ​​ ​  1 )) 5





b = a2 + 1

dt = 1/5 ​Ú  ​ ​  ​ _____________ ​        ​  ​ 3 2 1 – • __ ​​ t + ​   ​   ​​ ​ + ​ __ ​   ​   ​ 5 5

p p = ​ __ ​   ​  – ​ – ​ __ ​   ​  ​ 2 2





c



= ​Ú ​  ​ x e–​x​ ​ dx 2

0

...(i)

– c2



1 = – ​ __ ​  ​Ú ​   ​ ​ et dt,    (Let  – x2 = t) 2 0

Area Bounded by the Curves  2 1 = – ​ __ ​  (et​)– c ​0​  ​ 2



2 1 = – ​ __ ​  (e– ​c​ ​ – 1) 2

2 1 = __ ​   ​  (1 – e– ​c​ ​) sq. u. 2 1 The area is maximum, when c = ___ ​  __  ​  ​ 2 ​    ÷ Hence, the maximum area

)

1 – ​ __  ​ ​e​ 2 ​  ​

1 = __ ​   ​ ​  1 – 2 1 1 = __ ​   ​ ​  1 – ___ ​  __  ​  ​ ​÷e    ​  2 5. Let the required area be A.

( 

)

0

)



1 a2 x3 ___ ax2 = ​​ ____ ​   ​   + ​   ​  + x  ​​ ​​  3 2 0



a2 a = ​ __ ​   ​  + __ ​    ​ + 1  ​ 3 2

)

( 

)

dA 2a 1 fi ​ ___ ​ = ​ ___ ​   ​ + __ ​   ​   ​ 3 2 da d 2A fi ​ ____2 ​ = da



a3 = 3a



a2 = 3



A = ​Ú ​  ​ (a2 x2 + ax + 1) dx

(  ( 



a3 2 ​ __ ​   ​  + a  ​ = (a3 + a) 3 2a3 + 6a = 3a3 + 3a



2 __ ​   ​  > 0 3

So, the area is the least. For maximum or minimum,

7. Given curve is





fi x–2=0 fi x=2 So c=2 Hence, the required area is 2



2a fi ​ ___ ​ + 3



1 __ ​   ​  = 0 2 3 fi a = – ​ __ ​  4 Hence, the value of a is –3/4. 6. Given curve is y = x2 + 1

a



= Ú​  ​  ​ (x2 + 1) dx 0

= ​Ú ​  ​ xe– x dx 0



2

= (– xe– x​)20​ ​​  + ​Ú ​  ​ e– x dx – x

= – (xe

+

0 – x 2 e ​)0​ ​​ 

= (1 – 3e–2) sq.u. 8. Given curves are |x| + |y| ≥ 1 and x2 – 2x + 1 £ 1 – y2 |x| + |y| ≥ 1 and (x – 1)2 + y2 £ 1 fi

Hence, the required area

y = xe– x

dy fi ​ ___  ​ = e– x – xe– x dx d 2y fi ​ ___2 ​ = – e– x – e– x + xe– x dx For point of inflection, d 2y ​ ___2 ​ = 0 dx fi – e– x – e– x + xe– x = 0

dA ​ ___ ​ = 0 da



__

fi a = ​÷3 ​    __ Hence, the value of a is ÷ ​ 3 ​   . 

1

Thus,

x3 = ​​ __ ​   ​  + x  ​​ ​​  3 0 a3 __ = ​ ​   ​  + a  ​ 3 It is given that,



( 

(  ) (  ) (  )

a





3.43

Ï x + y ≥ 1, x + y £ - 1 and (x – 1)2 + y2 £ 1 Ì Ó x - y ≥ 1, x - y £ - 1

3.44  Integral Calculus, 3D Geometry & Vector Booster Hence, the required area

( 

1

1 = 2 ​ ​Ú ​  ​ ​÷1  – (x –    1)2 ​ dx + __ ​   ​  × 1 × 1  ​ 2 0 =

( 

(x – 1) __________2 2 ​​ ​ ______  ​   ​ 1 – (x –   1)  ​ +

÷ 

2

( 

___________

| | 

|

1

  + ​ 2  ​Ú ​   ​ ​ ​÷10  –   (x +   1)2 ​dx  ​ + ​ ​Ú ​  ​ (1 – x)dx  ​

)

__________

| 

___

​÷10 ​     – 1

(  ) )

1

x–1 1 ​ __ ​  sin–1 ​ _____ ​   ​    ​  ​​ ​​  + 1 2 2 0

(  ) )

( 

2

1

)

2

x3 = ​​ – ​ __ ​  + 2x2 – 3x  ​​ ​​  3 1

[ 

___________ (x + 1)​ 10 – (x +   1)2 ​ ___________________

÷ 

(  ) ] (  ) ___

​÷10 ​     – 1

x +  1      ​    + 5sin–1 ​ _____ ​  ___ ​    ​  ​​ ​  2 ​÷10 ​     2

1 1 1 = 2 ​ __ ​   ​ + __ ​   ​ sin–1 ​ __ ​   ​ ​  ​ + 1 2 2 2

  + 2 ​​ ​ 

p = ​ 2 + __ ​   ​   ​ sq.u. 6

x2 2   – ​​ x – __ ​   ​   ​​ ​​  2 1 8 1 = ​ – ​ __ ​  + 8 – 6 + __ ​   ​  – 2 + 3  ​ 3 3

( 

)

9. Given curves are |x + y| £ 1, |y – x| £ 1 and 3x2 + 3y2 ≥ 1.

( 

( 

)

(  ) )



3 3 1   + 2 ​ 0 + 5sin–1 (1) – __ ​    ​ – 5 sin–1 ​ ____ ​  ___    ​  ​  ​ + __ ​    ​ 2 2 ​÷10 ​    

(  ) (  ) )

3 2 1 = ​ __ ​  + __ ​    ​ + 5p – 3 – 10 sin–1 ​ ____ ​  ___    ​  ​ 3 2 ​÷10 ​    

( 

3 11 = ​ 5p – ___ ​   ​ – 10 sin–1 ​ ____ ​  ___    ​  ​  ​ sq.u. 6 ​÷10 ​     11. Given curves are (x2 + y2) £ 4 £ 2(|x| + |y|) Hence, the required area = area of the square – area of the circle p = ​ 2 – __ ​   ​   ​ sq.u. 2 10. Given curves are

( 

)



|x – 2| + |y – 2| £ 3, x2 – 4x + y + 3 £ 0

and

x2 + y2 + 2x – 9 £ 0



|x – 2| + |y – 2| £ 3, (x – 2)2 £ – (y + 1)

and

(x + 1)2 + y2 £ 10



(x – 2)2 £ – (y + 1), (x + 1)2 + y2 £ 10



Ï x + y £ 7, x + y ≥ 1 Ì Ó x - y £ 3, x - y ≥ - 3

Hence, the required area = area of a circle-area of a square = 4p – 4 = 4 (p – 1) sq.u. 12. Given curves are |4  –  x2|    y = _______ ​   ​   and y = 7 – |x| 4 |x2  – 4| fi  y = _______ ​   ​   and y = 7 – |x| 4

Hence, the required area 2

= Ú​  ​  ​ (– x2 + 4x – 3) dx 1

Area Bounded by the Curves 

Hence, the required area

[ 

(  ) (  ) (  ) ] 2

)

4

]

4 – x2 x2 – 4 1 = 2 ​ __ ​   ​  (7 + 3) × 4 – Ú​  ​  ​ ​ ______ ​   ​    ​ dx – ​Ú ​  ​ ​ ______ ​   ​    ​ dx  ​ 2 4 2 0 2

[  ( 

3 2

x = 2 ​ 40 – ​​ x – ___ ​    ​  ​​ ​​  – 12 0

[  (  [ 

On solving, we get,

____

[ (  ) (  ) ] Ú  [  (  ) ] Ú  [  (  )] Ú  [ (  )] ___

x ​​ ___ ​    ​ – x  ​​ ​  ​ 12 2

) ( 

____

B (b – a, ​÷4ab    ​) , B ¢(b – a, – ​÷4ab    ​) 

Hence, the required area

4

2

2​÷ab    ​ 



)]

3.45

y2 = ​Ú ___​  ​  ​ ​ b – ___ ​    ​  ​ – 4b – 2​÷ab    ​ 

y2 ​ ___ ​    ​ – a  ​  ​ dy 4a

8 64 8 = 2 ​ 20 – ​ 2 – ___ ​    ​  ​ – ​ ___ ​   ​ – 4 – ___ ​    ​ + 2  ​  ​ 12 12 12 2 16 2 = 2 ​ 18 + __ ​   ​  – ​ ___ ​ + 4 + __ ​   ​  – 2  ​] 3 3 3



2 1 y = ​ ___​  ​  ​ (a + b) – __ ​   ​  ​ __ ​ a ​  + 4 – 2 ​÷ab    ​ 

= 32 sq.u.



2 1 y = 2(a + b) ◊ 2 ​÷ab    ​ – ​  ​  ​ ​ ​ __ ​   ​ ​  __ ​ a ​  + 4 0



​÷ab    ​  y2 y2 1 = 4 (a + b) ​÷ab    ​ – __ ​   ​   ​  ​  ​ ​ ​ ​ __ ​ a ​  + __ ​   ​   ​  ​ dy 2 0 b



3 1 y = 4 (a + b) ​÷ab    ​ – __ ​   ​ ​​  ___ ​    ​ + 2 3a

]

13. Given curves are y = x2 + x – 2, y = 2x where

___

2 ​÷ab     ​

___

x (x + x – 2) ≥ 0



x (x – 1) (x + 1) ≥ 0 2

Solving, y = x + x – 2, y = 2x, we get,



x = – 1, x = 2

___

​÷ab    ​ 

y2 __ ​   ​   ​  ​ dy b

___

2



y2 __ ​   ​   ​  ​ dy b



___

___

(  ( 

)

___

  ​  y3 2 ​÷ab  ___ ​    ​  ​​ ​  ​ 3b 0

___

___

)

___    ​ _______ 8ab ​÷ab     ​ 1 8ab ​÷ab  = 4 (a + b) ​÷ab    ​ – ​ __ ​ ​  _______ ​        ​ + ​      ​  ​ 2 3a 3b ___ ___ 4 = 4 (a + b) ​÷ab     ​ – __ ​   ​  (a + b) ​÷ab     ​ 3 ___ 8 = __ ​   ​  (a + b) ​÷ab    ​ sq.u. 3

15. Given curve is y = – x2 – 2x + 3 dy fi ​ ___  ​ = – 2x – 2 dx

(  )

dy fi ​​ ___ ​    ​  ​​ ​ = – 6 dx x = 2

Hence, the required area 0

2

–1

1

= Ú​   ​ ​ [2x – (x2 + x – 2)] dx + ​Ú ​  ​ [2x – (x2 + x – 2)]dx

[ 

] [ 

The equation of the tangent to the given curve at P (2, – 5) is 6x + y = 7

]

0 2 x2 x3 x2 x3 = ​​ __ ​   ​  – __ ​   ​  + 2x  ​​   ​  + ​​ __ ​   ​  – __ ​   ​  + 2x  ​​ ​​  2 3 2 3 –1 1

[  ( 

)]

10 13 7 = ​ __ ​   ​  + ​ ___ ​   ​ – ___ ​   ​   ​  ​ 3 6 6 14 7 = ___ ​   ​ = __ ​    ​ sq.u. 3 6 14. Given curves are y2 = 4a(x + a) and y2 = 4b(b – x)

|  |

Hence, the required area

3



1 = __ ​   ​  ◊ 2 ◊ 12 – ​ ​Ú  ​ ​  x dy  ​ 2 – 5



= 12 – ​ ​Ú  ​ ​ (–1 + ÷ ​ 4  – y ​)   dy  ​

| 

3

_____

– 5



| [ 

]

|

|

3 2 = 12 – ​ ​​ – y – __ ​    ​ (4 – y)3/2  ​​   ​ ​ ​ 3 – 5

3.46  Integral Calculus, 3D Geometry & Vector Booster

[ 

]

2 = 12 – ​ 10 – __ ​   ​   ​ 3



Hence, the required area

and

y = – x + 2x + (1 – 2 ​÷3 ​   ) 



(x – 1)2 + (y + 2)2 = 16

and

y = – (x – 1)2 + 2(1 – ÷ ​ 3 ​   ) 

]

_______

(  Ú  (    ÷

)

1 ​ Let  a = ________ ​  _______    ​   ​ 2 ÷​ a  + b2 ​ 

__

2

1 ​ __  b

________

 ​ ​÷1   –  a  2 x2 ​    – b  2 x2   ​ ÷​ 1  = 4 ​  ​Ú ​  ​   ​ ​ _________   ​  + Ú​  ​   ​ ​ ________   ​    dx  ​ a b a 0



x2 + y2 – 2x + 4y – 11 = 0



[ 

a

8 = __ ​   ​  sq.u. 3 16. Given curves are

[ 

a

( ÷ 

_______

1 ​ __  b

)

_______

)

]

a b  ​ 1 1 = 4 ​ __ ​   ​ ​Ú ​  ​ ​ ​ ​ __ ​  2  ​ – x2   ​  ​ dx + __ ​ a ​ ​ ​ ​ ​ ​ __ ​  2  ​ – x2 ​   ​ dx  ​ b 0 a a b

__

( 

Solving, we get x = –1, 3

(  ) )

a 4 = ​ ___ ​    ​ tan–1 ​ __ ​   ​  ​  ​ sq.u. ab b 18. Given curves are 1 |y| + __ ​   ​  £ e–|x| and {|x|, |y|} £ 2 2

Hence, the required area 3

= ​Ú  ​ ​ (yp – yc) dx –1

Hence, the required area

3

__

= ​Ú  ​ ​ [(– x2 + 2x + 1 – 2 ​÷3 ​   )  – (– 2 – –1

___ ​÷16 ​    –

(x – 1)2)] dx

ln 2



[ 

__ (x  –  1) ____________2 x3 = ​ – ​ __ ​  + x2 + (3 – 2 ​÷3 ​   )   x + ​ ______  ​     ​ ​÷16   –  (x –   1)  ​ 3 2 ​

(  ) ] )

16 x–1 3  ​​ + ___ ​   ​  sin–1 ​ _____ ​   ​    ​  ​​   ​  4 ​ 2 –1 __ 8p 32 = ​ ​ ___ ​ – 4​÷3 ​     + ___ ​   ​   ​ sq.u. 3 3 17. Given curves are

( 

a2 x2 + b2 y2 = 1 and b2 x2 + a2 y2 = 1 On solving, we get, 1 _______ x = ± ​ ________    ​  =y 2 ÷​ a  + b2 ​ 



( 

)

1 = 4 ​Ú ​   ​ ​ ​ e–x – __ ​   ​   ​ dx 2 0 ln 2 x = 4 ​​ – e– x – __ ​    ​  ​​ ​  ​ 2 0

( 

)

(  ) (  ) 1 ln2 = 4 ​( __ ​   ​  – ___ ​   ​   )​ 2 2

ln2 = 4 ​ – e– ln 2 – ___ ​   ​  + 1  ​ 2 1 ln2 = 4 ​ – ​ __ ​  – ​ ___ ​  + 1  ​ 2 2

= (2 – 2 ln 2) sq.u. 19. Given curves are y = min{x3, |x – 2|, e3 – x}, x-axis, y-axis and x = 4.



Area Bounded by the Curves 

On solving, we get,

2



A = (1, 1), B = (3, 1), C = (4, e)

= ​Ú  ​ ​ 1 dx = (x​)2​–2  ​  = 4 –2

Hence, the required area



1

2

3

4

0

1

2

3

2. Given curve is |x| + |y| = 1

= ​Ú ​  ​  x3 dx + Ú​  ​  ​ (2 – x) dx + Ú​  ​  ​ (x – 2) dx + ​Ú ​  ​ (e3 – x) dx

(  ) ( 

) ( 

)

3 x4 1 x2 2 x2 = ​​ __ ​   ​   ​​ ​​  + ​​ 2x – ​ __ ​   ​​ ​​  + ​​ __ ​   ​  – 2x  ​​ ​​  + ​​( – e3 – x  )4​​3​​  4 0 2 1 2 2

(  9 1 = (​  __ ​    ​ – __ ​   ​  ​ sq.u. 4 e)

)

1 1 __ 1 1 = ​ __ ​   ​  + __ ​   ​  + ​   ​  + 1 – __ ​ e ​  ​ 4 2 2

Hence, the required area

20. Given curves are

S1:{(x, y): x2 + 2y2 £ 2}



= ar (ABCD)



S2: {(x, y): 2x2 + y2 £ 2}



= 4 (ar D OAB)

and

S3:{(x, y): x2 + y2 £ 2}



1 = 4 × __ ​   ​  × 1 × 1 2



= 2 sq.u.



3. Given curve is |x – 2| + |y – 2| = 1

The area of the first quadrant ___

​÷2/3 ​    

__ ______

= ​Ú ​   ​ ​ ​( ​÷2 ​ ​    ÷ 1 – x2 ​  – x )​ dx 0

(  ( 

______

__

(  ) )

)

___

Hence, the required area

    x x x2 ​÷2/3 ​ 1 = ​​ ​÷2 ​ ​     __ ​    ​ ​÷1  – x2 ​  + __ ​   ​  sin–1 ​ __ ​    ​  ​  ​ – __ ​   ​   ​​ ​  ​ 2 2 2 2 0



1 2 1 1 = ​ ___ ​  __  ​ sin–1 ​ ​ __ ​   ​ ​    ​ + __ ​   ​  – __ ​   ​   ​ 3 3 3 ​ 2 ​    ÷

= 2 sq.u. 4. Given curve are

1 2 = ___ ​  __  ​ sin–1 ​ ​ __ ​   ​ ​    ​ 3 ​ 2 ​    ÷ Hence, the required area



eln (x + 1) ≥ |y|, |x| £ 1



x + 1 ≥ |y|, |x| £ 1

| 

( ÷  ) ( ÷  ) __

( 

2p = 8 ​ ___ ​   ​ – 8

( 

|

__

1 = 4 × __ ​   ​  × 1 × 1 2

( ÷  ) ) ( ÷  ) ) __

1 2 ___ ​  __  ​ sin–1 ​ ​ __ ​   ​ ​    ​  ​ 3 ​ 2 ​    ÷ __

__ 2 = ​ 2p – 4 ​÷2 ​     sin–1 ​ ​ __ ​   ​ ​    ​  ​ sq.u. 3

Integer Type Questions

[ 

(  ) ]

x x Œ [–2, 2], y = ​ sin2x + cos ​ __ ​    ​  ​  ​ = 1 4 Hence, the required area

1. For

Hence, the required area

3.47

3.48  Integral Calculus, 3D Geometry & Vector Booster

1 = 2 × __ ​   ​  × 2 × 2 2



= sq.u.



5. Given curves are



y = ln |x| and y = 1 – |x|.

Hence, the required area 1



= ​Ú ​  ​ (e – e x) dx 0

Hence, the required area

[ 

]

0

1 = 2 ​ __ ​   ​  × 1 × 1 + Ú​   ​ ​ e x dx  ​ 2 – •

( 

)



y = 3 – |x| and y = |x – 1|

Here,

AB = ​÷1  2 + 12 ​  =÷ ​ 2 ​   

and

BC = ​÷2  2 + 22 ​  =÷ ​ 8 ​     = 2 ​÷2 ​   

__

_______

__

= AB × BC



= ​÷2 ​     × 2 ​÷2 ​     = 4 sq.u.



__

= (e – e + 1)



= 1.

9. Given curves are



1 £ |x – 2| + |y + 1| £ 2

Putting

X = x – 2, Y = y + 1

Thus, the equation redices to 1 £ |X| + |Y| £ 2

Hence, the required area __

__

7. Given curves are



|x| y = __ ​ x ​ , x π 0 and y = x (x – 1)(x – 3)



Ï1 : x > 0 y= Ì and y = x (x – 1) (x – 3) Ó-1: x < 0

8. Given curves are y = e x, x = 0, y = e





Hence, the required area

= (e – e x ​)10​ ​​ 



3 1 = 2 ​ __ ​   ​  + 1  ​ = 2 × __ ​   ​  = 3 sq.u. 2 2 6. Given curves are

_______





( 

3 = 4 × __ ​   ​  = 6 sq.u. 2 10. Given curve is |y| = sin (2x), where 0 < x < 2p

)

1 1 = 4 ​ __ ​   ​  × 2 × 2 – 2 × __ ​    ​ × 1 × 1  ​ 2 2

Area Bounded by the Curves 

Hence, the required area p/2



= 4  ​Ú ​   ​ ​ (sin (2x)) dx 0

( 

)



cos(2x) p/2 = 4 ​​ – ​ _______  ​    ​​ ​  ​ 2 0



= – 2 (–1 – 1)

= 4 sq.u. 11. Given curve is

Hence, the required area,

(  ) (  (  ) ) (  ) (  (  ) (  ) ) (  ) (  ) (  ) (  ) a

|x + y| + |x – y| £ 4, |x| £ 1, y ≥ |x – 1|



( 

)

1 1 4 ​Ú ​  ​ ​ __ ​ x ​ – ______ ​       ​  ​ dx = log ​ ___ ​  __  ​  ​ 2x – 1 ​÷5 ​    2 a

fi fi fi fi

Hence, the required area

1 = __ ​    ​ × 2 × 2 2



= 2 sq.u.



4 £ x2 + y2 £ 2 (|x| + |y|)

( 

64 a2 log ​ ______ ​       ​ ​ = log ​ ___ ​    ​ ​ 2a – 1 15

a2 ​ ______ ​      ​  ​ 2a – 1

|  |

64 = ​ ___ ​    ​ ​ 15



1. Given curves are x2 = 4y and x = 4y – 2

Hence, the required area

Hence, the required area __

16 a2 4 ​ log ​ ______ ​       ​ ​ – log ​ __ ​   ​ ​  ​ = log ​ ___ ​   ​   ​ 2a – 1 3 5

fi a=8 Hence the value of a is 8.

12. Given curves are

x2 1 4 ​ __ ​   ​ log ​ ______ ​       ​ ​  ​ ​  = log ​ ___ ​  __  ​ ​ 2 2x – 1 2 ​÷5    ​ 

)

2

= ​Ú  ​ ​ (y2 – y1) dx



p (​÷2 ​   )  2 = 4 ​ ______ ​   ​   – (p – 2)  ​ 2





= 4 (p – (p – 2))



x +  2 = ​Ú  ​ ​ ​ _____ ​   ​   – 4 –1



= 8 sq.u.

1 = __ ​   ​   ​Ú  ​ ​ (x + 2 – x2) dx 4 –1



x3 2 1 x2 = __ ​   ​ ​​  __ ​   ​  + 2x – __ ​   ​   ​​   ​  4 2 3 –1

13. Given curves are

1 1 ______ y = ​ __  ​, x = 2, x = a, where a > 2 x ​, y = ​ 2x – 1 

–1 2

( 

)

x2 __ ​   ​   ​ dx 4

2

( 

)

3.49

3.50  Integral Calculus, 3D Geometry & Vector Booster

) (  )) ( (  9 7 1 10 __ 1 27 = __ ​    ​ ​( ___ ​   ​ + ​   ​  )​ = __ ​   ​ ​ ( ___ ​   ​   ​ = __ ​   ​  sq.u. 4 3 4 6) 8 6

8 1 1 1 = ​ __ ​ ​  ​ 2 + 4 – __ ​   ​   ​ – ​ __ ​    ​ – 2 + __ ​   ​   ​  ​ 4 3 2 3



2. The required area 1 = 4 × __ ​   ​  × 1 × 1 = 2 sq.u. 2



b



3. Given ​Ú ​  ​  f (x) dx = (b – 1) sin (3b + 4) 1

Differentiating both sides w.r.t. b, we get    f (b) = sin (3b + 4) + 3 (b – 1) cos (3b + 4)

Hence, the required area

fi  f (x) = sin (3x + 4) + 3 (x – 1) cos (3x + 4)

 | |   0

4. Given curve is

= ​ ​Ú  ​ ​ tan x dx   ​ +



= ​ (log secx​)0​  __p ​ ​ ​ + (log sec​)0​4​ ​

p – ​ __ ​  3

|

It is given that

( 

4

)

( 

)

8 8 ​Ú ​  ​ ​ 1 + __ ​  2  ​   ​ dx = Ú​  ​  ​ ​ 1 + __ ​  2  ​   ​ dx a 1 x x

Ú 

p ​ __  2 ​



+ Ú​  ​ ​ cot x dx p __ ​   ​  4

p __ ​   ​ 

|

– ​   ​  3

p  __ ​  ​ 

+ (log (sin x)​)​p2 ​​ 



a

p ​ __  4 ​ ​  ​ ​ ​ tan x dx 0

(  )

(  )

1 1 = log (2) + log ​ ___ ​  __  ​  ​ – log ​ ___ ​  __  ​  ​ ​ 2 ​    ​ 2 ​    ÷ ÷

= log (2) sq.u. 6. Given curves are

(  ) (  ) 8 8 fi ​( a – __ ​ a ​ – 2 + 4 )​ = (​  4 – 2 – a + __ ​ a ​ )​

8 a 8 4 fi ​​ x – __ ​ x ​  ​​2​​  = ​​ x – __ ​ x ​  ​​a​​ 

16 fi  2a – ___ ​  a ​ = 0 fi  2a2 = 16

Hence, the required area

fi  a2 = 8

2

__

fi  a = 2​÷2 ​   





p p Ï ÔÔ y = tan x : - 3 £ x £ 3 Ì Ô y = cot x : p £ x £ p ÔÓ 6 2



2

_____

= ​Ú  ​ ​ ​÷5  – x2   ​dx – ​Ú  ​ ​ |x – 1|dx –1

__

Hence, the value of a is 2​÷2 ​   .  5. Given curves are

__ ​   ​  4

–1

(  ) 3 5p = ​( __ ​   ​  + ___ ​   ​  )​ – 2 2 4 5p 1 = ​( ___ ​   ​ – __ ​   ​  )​ sq.u. 4 2 3 5p 5 = ​ __ ​   ​  + ___ ​   ​   ​ – __ ​   ​  2 4 2

7. Given curves are

Area Bounded by the Curves  __

Hence, the required area

( 

__

0

(  )

​÷2 ​   

)

( 

)

( 

)

__

​÷2 ​     _____

x2 = ​ ​Ú __  ​ ​  x dx + Ú​  ​   ​ ​ ​ – ​ ___  ​  ​dx  ​ – ​Ú __ ​ ​  ​÷5  – x2   ​dx R2 0 – ​÷2 ​    – ​÷2 ​   



(  ) (  )

5 = ​ – ​ __ ​   ​ + (2 + 2p) 3 1 = ​ 2p + __ ​   ​   ​ sq.u. 3



Hence, the equation of the tangent is p y – 1 = 2 ​ x – __ ​   ​   ​ 4 p __ y – 1 = 2x – ​   ​  2 p y = 2x + ​ 1 – __ ​   ​   ​ 2

x2 + y2 = 4, x2 = – ​÷2 ​   y  and y = x



Hence, the required area p __ ​   ​  4

x2 + y2 = 25, 4y = |4 – x2| and x = 0



(  (​  __​ p4 ​  – __​ 12 ​  )​ )​ × 1 p 1 1 p (log (sec x)​)​ ​ ​ – __ ​   ​ ​ ( __ ​   ​  – ​ __ ​   ​  – __ ​   ​   ​  ​ 2 4 ( 4 2 ))

1 p ​Ú ​  ​ ​ tan x dx – __ ​   ​ ​  __ ​   ​  – 2 4 0

8. Given curves are



p __ ​   ​  4 0

__ 1 log ​( ​÷2 ​     )​ – __ ​   ​  4

1 1 ​ __ ​  log (2) – __ ​   ​  2 4 10. Given curve is y = x (x – 1)2

Hence, the required area

(  (  ) (  ) ( Ú (  ) Ú (  ) 2

4

5 ______

) )

p ◊ 52 x2 x2 = ____ ​   ​   – ​ ​Ú ​  ​ ​ 1 – ​ __ ​   ​dx + ​Ú ​  ​ ​ __ ​   ​ – 1  ​ dx + ​Ú ​  ​ ​÷25   – x2   ​dx  ​ 4 4 0 2 4 4 2

4

5 _______

25p x2 x2 = ​ ____  ​   – ​ ​  ​ ​ ​ 1 – __ ​   ​   ​dx + ​  ​ ​ ​ __ ​   ​ – 1  ​dx + Ú​  ​  ​ ​÷25    – x2 ​d  x  ​ 4 4 0 2 4 4

( 

(  ) )

25p 25p ___ 25 4 8 ____ 4 = ____ ​   ​   – ​ __ ​   ​  + __ ​   ​  + ​   ​   – ​   ​ sin–1 ​ __ ​   ​   ​ + 6  ​ 4 3 3 4 2 5

Hence, the required area

25 4 = ​ 2 + ___ ​   ​ sin–1 ​ __ ​   ​   ​  ​ sq.u. 2 5



( 

(  ) )

9. Given curve is y = tan x dy fi ​ ___  ​ = sec2x dx



= ​Ú ​  ​ (2 – x (x2 – 2x + 1))dx 0

2

(  )

dy p fi ​​ ___ ​    ​  ​​x = ​ __p ​ ​ = sec2 ​ __ ​   ​   ​ = 2 4 dx 4 p When x = __ ​   ​ , then y = 1 4

0

2



(  )

2

= ​Ú ​  ​ (2 – x (x – 1)2)dx



= ​Ú ​  ​ (2 – (x3 – 2x2 + x))dx 0



( 

)

x4 2 3 __ x2 2 = ​​ 2x – __ ​   ​  + __ ​   ​  x – ​   ​    ​​ ​​  4 3 2 0

3.51

3.52  Integral Calculus, 3D Geometry & Vector Booster

( 

)

16 = ​ 4 – 4 + ___ ​   ​ – 3  ​ 3

10 = ___ ​   ​ sq.u. 3 11. Given curves are ln x y = ex ln x, y = ___ ​  ex ​ and x = 1

1



(  1

)

(  )



4  – ​÷2 ​     __ 5 3 = ​ ​ ______ ​    – ​   ​  log 2 + __ ​   ​   ​ sq.u. 2 2 log 2

1



1 x2 x2 1 1 (log x) = __ ​ e ​  ​​ ______ ​   ​    ​​ ​  ​ + ​​ __ ​   ​  log x  ​​   ​  – ​​ __ ​   ​   ​​   ​  2 2 4 1/e 1/e 1



1 1 1 1 = – ​ ___  ​ – e ​ ___ ​   2 ​ – __ ​   ​  + ___ ​    ​  ​ 2e 4 4e2 2e



e 1 1 1 = – ​ ___  ​ – ___ ​    ​ + __ ​    ​ – ___ ​    ​  2e 2e 4 4e

) ( 

{ 

)

(  (  1

log x 1 = __ ​ e   ​​Ú  ​ ​ ​ ____ ​  x    ​  ​ dx – e ​Ú  ​ ​ x log x dx 1/e 1/e 2 1/e

__

2 13. Given curves are y = x2 and y = ______ ​    2   ​ 1 +  x





( 

(  ) )

Hence, the required area

log x = ​Ú  ​ ​ ​ ____ ​  ex      ​ – ex log x  ​ dx 1/e

) ( 





Hence, the required area

(  ( 

__

​ 2 ​    ÷ 1 1 ____ ​    ​  ​ – ​ 2log 2 – 2 – ​ __ ​ log ​ __ ​   ​   ​  ​ 2 2 log 2

4 = ​ ____ ​     ​ – log 2

) (  ) }

)

2 = 2 ​Ú ​  ​ ​ _____ ​    2   ​ – x2   ​  0 1 + x

)

x3 1 = 2 ​​ 2tan–1x – __ ​   ​   ​​ ​​  3 0 p 1 = 2 ​ 2 ◊ ​ __ ​  – __ ​   ​   ​ 4 3 2 = ​ p – __ ​   ​   ​ sq.u. 3 14. Given curves are y = |x – 1| and y = 1

( 

( 

)

)

|  |

e2 – 5 = ​ ​ _____       ​  ​ 4e 12. Given curves are



1 y = ln x, y = 2x, x = __ ​    ​ and x = 2 2 Hence, the required area 1 = __ ​   ​  × 2 × 1 = 1 sq.u. 2 15. Given curves are y = 4x – x2 and y = x2 –

Hence, the required area 2



= Ú​   ​ ​ (2x – log x) dx 1/2



(  )

2x 2 = ​​ ____ ​    ​  ​​   ​ – (x log x – x​)21/2 ​   ​  log 2 1/2

Area Bounded by the Curves  5/2

Now,

A1 = ​Ú ​   ​ ​ ((4x – x2) – (x2 – x)) dx



3.53

x2 = 1 + 2y, x2 = 1 – 2y

0

5/2

= ​Ú ​   ​ ​ (5x – 2x2) dx



0

( 

)



5x2 2x3 5/2 = ​​ ___ ​   ​  – ___ ​   ​    ​​ ​  ​ 2 3 0



125 ____ 250 125 = ​ ____ ​   ​   – ​   ​  ​ = ____ ​   ​ sq.u. 8 24 24

( 

)

1

and

A2 = ​Ú ​  ​ (0 – (x2 – x)) dx 0

( 

)



x2 x3 1 = ​​ __ ​   ​  – __ ​   ​   ​​ ​​  2 3 0



1 = __ ​   ​  – 2

1 __ ​   ​  = 3

1 __ ​   ​  sq.u. 6

Now, Area of the above x-axis = A1 – A2

125 = ____ ​   ​ – 24

1 __ ​   ​  = 6

121 ____ ​   ​  24

Hence, the required ratio

= (A1 – A2) : A2



121 1 = ____ ​   ​  : ​ __ ​  = 121 : 4 24 6

16.

Equation of the sides of a square are x = 1, x = –1, y = 1 and y = –1 Let (x, y) be any point inside the region S. Thus, according to the given conditions ______

​÷x  2  + y2   ​ < |1 + x|, |1 – x|, |1 + y|, |1 – y| fi

(x2 + y2) < (1 + x)2, (1 – x)2, (1 + y)2, (1 – y)2



y < 1 – 2x, y2 < 1 + 2x

and

2

2

x < 1 – 2y, x < 1 + 2y

The region S is the region lying inside the four parabolas y2 = 1 – 2x, y2 = 1 + 2x

The parabola y2 = 1 – 2x, x2 = 1 – 2y intersect the line y __= x and the point of intersection is (a, a), where a=÷ ​ 2 ​     – 1. Let A = Area of the region OPQO = Area of OPR + area RPQR 1/2



_______ 1   – 2x) ​  dx = __ ​   ​  a2 + Ú​  ​   ​ ​ ​÷(1 2 a



1/2 1 2 1 ​   ​  × __ ​    ​ × (1 – 2x)3/2   ​​ ​  ​ = ​ __ ​  a2 – ​​ __ 2 3 2 a



1 1 ​   ​  (1 – 2a)3/2 = __ ​   ​  a2 + __ 2 3

( 

)

a2 a3 ​   ​  = ​ __ ​  + __ 2 3 2 a = __ ​   ​  (3 + 2a) 6 __ __ 1    )​ ​( 3 + 2​÷2 ​     – 2 )​ = ​ __ ​ ​ ( 3 – 2​÷2 ​  6 __ 1 ​ 2 ​     – 5 )​ sq.u. = __ ​   ​  ​( 4÷ 6 Hence, the required area



= Area of the shaded region



= 4(2A) = 8A



__ 8 = __ ​   ​ ​ ( 4​÷2 ​     – 5 )​ 6

__ 4 = __ ​   ​ ​ ( 4​÷2 ​     – 5 )​ sq.u. 3 17. It is given that, dy ​ ___  ​ = (2x + 1) dx



dy = (2x + 1)dx Integrating, we get

y = x2 + x + c

which is passing through the point (1, 2), so 2=1+1+c fi c=0

3.54  Integral Calculus, 3D Geometry & Vector Booster Hence, the equation of the curve is

y = x2 + x

Hence, the required area = A t



x2 = ​Ú ​  ​ ​ x – __ ​   ​   ​ dx t 0



x2 x3 = ​​ __ ​   ​  – __ ​   ​   ​​  ​  2 3t 01



t2 t2 = ​ __ ​   ​  – __ ​   ​   ​ 2 3

0



( 

)

x3 x2 1 ​   ​   ​​ ​​  = ​​ __ ​   ​  + __ 3 2 0 1 = __ ​   ​  + 3

1 __ ​   ​  = 2

5 __ ​    ​ sq.u. 6

18. Given curves are

p y = tannx, y = 0, x = 0, x = __ ​   ​ . 4 p __ ​   ​  4

Now,

An = Ú​  ​  ​ ​ (tan x) dx n

0

Thus,



p __ ​   ​  4

p __ ​   ​  4

0

0

= ​Ú ​  ​ ​ (tannx)dx + ​Ú ​  ​ ​ (tann – 2x)dx p __ ​   ​  4



= ​Ú ​  ​ ​ (tann – 2x) (tan2x + 1)dx 0

p __ ​   ​  4



= ​Ú ​  ​ ​ (tann – 2x)sec2x dx 0

1



= ​Ú ​  ​ tn – 2dt, t = tan x 0

(  )



t n – 1 1 = ​​ _____ ​      ​ ​​ ​​  n – 10



1 = ​ _____ ​       ​  ​ n–1

|  |

19. Given curves are

( 

)

(  ( 

) )

x2 y = x – bx2 and y = __ ​   ​  b

t

3t2  – 2t2 = ________ ​   ​    6 t2 = __ ​   ​  6 2 b 1 = __ ​   ​ ​​  ______ ​  2      ​  ​​ ​ 6 b +1 Taking logarith of both sides, we get

( 



An + An – 2

)



t

= ​Ú ​  ​ (x2 + x) dx

) ( 

x2 b = ​Ú ​  ​ ​ x – bx2 – __ ​   ​   ​ dx, ​ Let t = ______ ​  2      ​  ​ b 0 b +1

Hence, the required area 1

( 



)

log A = 2log b – 2log (b2 + 1) – log 6

4b 1 dA 2 _______ fi ​ __ ​ ​  ___ ​ = __ ​   ​ – ​      ​ A db b (b2 + 1)

( 

)

2 (b2  – 2b + 1) dA fi ​ ___ ​ = A ​ ​ _____________        ​  ​ db b (b2 + 1) dA For maximum or minimum, ___ ​   ​ = 0 gives db b = 1 Since b > 0, so b = 1 Thus A is maximum, when b = 1 20. Let the co-ordinates of P be (x, y) Equation of the line OA : y __= 0 Equation of the line OB : ​÷__3 ​    y = x Equation of the line AB : ​÷3 ​    y = 2 – x d (P, OA) = Distance of P from the line OA = y d (P, OB) = Distance of P from the line OB |R3y – x| = ​ ________  ​    2 d (P, AB) = Distance of P from the line AB



|R3y  – x – 2| = ​ ___________  ​      2

Area Bounded by the Curves 

It is given that, d (P, OA) £ min {d (P, OB), d (P,OA)}

3.55

From the graph, it is clear that



1 Ï 2 : 0£ x£ Ô(1 – x ) 3 Ô 1 Ô f (x) = Ì2 x(1 – x ) : £ x £ 1 3 Ô 1 Ô 2 : £ x £1 Ôx 3 Ó

Hence, the required area



{ 

__

}

|R3y – x| |​___________   y    –  x + 2| ÷3 ​ y £ min ​ ​ _______  ​  , ​   ​       ​ 2 2 |R3y – x| |R3y  – x + 2| y £ ​ ________  ​   and y £ ​ ___________  ​      2 2

|R3y – x|  ​  , then Case I: When y £ ​ ________ 2 __    y )​ (​  x – ÷​ 3 ​ y £ ​ ________  ​    2



​( 2 + ​÷3 ​     )​ y £ x



y £ ​( 2 – ​÷3 ​     )​ x



y £ (tan15°) x

__

__

|​÷3 ​   y    – x + 2|  ​    ,  then Case II: When y £ ____________ ​  2 __ 2y £ 2 – x – ÷ ​ 3 ​    y __



​( 2 + ​÷3 ​     )​ y £ 2 – x



y £ (​  2 – ​÷3 ​     )​ (2 – x)



y £ – (tan (15°)) (x – 2)

__

2/3

1

0

1/3

2/3

( 

) ( 

) (  )



(1 – x)3 1/3 2x3 2/3 = ​​ – ​ _______  ​    ​​ ​  ​ + ​​ x2 – ___ ​   ​    ​​ ​ + 3 3 1/3 0



1 2 3 __ 1 = ​ – ​ __  ​ ​​ __ ​   ​   ​​ ​ + ​    ​  ​ 3 3 3



__



1/3

= ​Ú ​   ​ ​ (1 – x)2dx + ​Ú ​ ​ ​ 2x (1 – x)dx + Ú​   ​ ​ x2dx



x3 1 ​​ __ ​   ​   ​​   ​  3 2/3

(  (  ) ) 2 2 2 1 2 1 + ​​( __ ​    ​ )​​ ​ – __ ​   ​ ​​ ( __ ​   ​   ​​ ​ – ​​( __ ​   ​  )​​ ​ + __ ​   ​ ​​ ( __ ​    ​  ​​ ​ 3 3 3) 3 3 3) 1 1 __ 2 + ​( __ ​    ​ – __ ​    ​ ​​  ​   ​   ​​ ​  ​ 3 3(3) ) 2

3

2

3

3

17 = ___ ​   ​ sq.u. 27

22. Let C1 and C2 be the graphs of dunctions y = x2, y = 2x, 0 £ x £ 1 respectively. Let C3 be the graph of a function

y = f (x), 0 £ x £ 1, f (0) = 0.

Hence, the area of the shaded region

1 = __ ​   ​  × base × height 2



1 = __ ​    ​ × 2 × (1 ◊ tan15°) 2



= tan 15°



= (​  2 – ​÷3 ​     )​ sq.u.

__

21. Given curve is

f (x) = max{x2, (1 – x)2, 2x (1 – x)}

Let the co-ordinates P be (x, x2), where 0 £ x £ 1. x

Area (ORPO)

= ​Ú ​  ​ t2 0

=

0

(  ) (  ) (  ) (  ) x

Area (ORPO)

x

– ​Ú ​  ​  f (t)dt

_ ​  ​ ​ ​÷t    ​  dt

Ú  0

x2

t2 – ​Ú ​  ​ ​ ​ __ ​   ​   ​ dt 0 2



x t2 x 2 = ​​ __ ​   ​  t3/2   ​​  ​​  – ​​ __ ​   ​   ​​ ​ ​ 3 4 0 0



2x3 x4 = ​ ___ ​   ​  – __ ​   ​   ​ 3 4

2

3.56  Integral Calculus, 3D Geometry & Vector Booster According to the question,

( 

x

)

x3 2x3 x4 ​ __ ​  – Ú​  ​  ​ f (t)dt = ​ ___ ​   ​  – __ ​   ​   ​ 3 0 3 4 Differentiating both sides w.r.t. x, we get

x2 – f (x) = 2x2 – x3 3

( 

)|

0



x2 x3 = ​​ ​ (1 – m) __ ​   ​  – __ ​   ​   ​  ​​   ​  2 3 1 – m ​



1 = –  ​ __ ​  (1 – m)3 6

It is also given that

2

fi f (x) = x – x Hence, the required curve is f (x) = x3 – x2, where 0 £ x £ 1. 23.  Case-I: When m < 0



9 1 – ​ __ ​  (1 – m)3 = __ ​   ​  2 6



(1 – m)3 = – 27



1 – m = – 3

fi m = 4. 24. We have, Ï x 2 + ax + b : x > –1 Ô : –1 £ x £ 1 f (x) = Ì2 x Ô 2 Ó x + ax + b : x > 1 As f is continuous on R, f is continuous at –1 and 1,

Area of the region 1 – m



= ​Ú ​   ​ ​ ((x – x2) – mx) dx 0

( 

)|

1 – m



x2 x3 =  ​​​ (1 – m) __ ​   ​  – __ ​   ​   ​  ​​ ​  ​ 2 3 0 ​



1 1 = __ ​   ​  (1 – m)3 – __ ​    ​ (1 – m)3 2 3

1 = __ ​    ​ (1 – m) 6 Also, it is given that,

9 1  ​ __ ​  (1 – m)3 = __ ​   ​  2 6 fi fi fi

(1 – m)3 = 27 (1 – m) = 3 m = – 2.

Case II: When m > 0

Area of the region

​    lim  ​  f (x) =    ​  lim  ​  f (x) = f (–1) – + and ​ lim    +​ f (x) =   ​ lim  ​ f (x) = f (1) –

= ​Ú   ​ ​  (x – x2 – mx) dx 1 – m

x Æ 1

x Æ 1

Thus,

1 – a + b = – 2 and 1 + a + b = 2



a – b = 3 and a + b = 1



a = 2 and b = –1.

Hence,

Ï x 2 + 2 x – 1 : x > –1 Ô f (x) = Ì2 x : –1 £ x £ 1 Ô 2 Óx + 2x – 1 : x > 1

Let us find the point of intersection of

x = – 2y2 and y = f (x).

These two curves meet at (– 2, –1)

The required area

0



x Æ – 1

x Æ – 1

– 1/8



( ÷ 

___

)

– x = ​Ú ​  ​ ​ ​ ​ ___ ​   ​ ​  – f (x)  ​ dx 2 – 2

Area Bounded by the Curves  – 1/8



( ÷  )

– 1/8

( ÷  )

– 1

___

Y

– x = ​Ú ​  ​ ​ ​ ​ ___ ​   ​ ​   ​ dx – ​Ú ​  ​ ​   f (x) dx 2 – 2 – 2 –1/8

___

P(9, 3)

M(0, 3)



– x = ​Ú ​  ​ ​ ​ ​ ___ ​   ​ ​   ​ dx – ​Ú ​ ​ ​ (x2 + 2x – 1) dx 2 – 2 – 2



–  ​Ú ​  ​ ​ f (x) dx



X

O

– 1/8



– 1



) ( 

( 

– 1/8 – 2 = ​​ ____ ​  __  ​ (– x)3/2  ​​ ​  ​ – 3​÷2 ​    – 2

Hence, the required area 3



( (  )

) ( 



)

2__ __ 1 3/2 1 = – ​ ____    ​ ​ ​​ ​   ​   ​​ ​ – 23/2  ​ – ​ – ​ __ ​  + 1 + 1  ​ 8 3 3​÷2 ​   

( 

) ( 

)

8 1   + ​ – ​ __ ​  + 4 + 2  ​ – ​ ___ ​    ​ – 1  ​ 3 64 __



​ 2 ​     __ ÷ = ___ ​   ​ ​( ​÷2 ​     – 2– 9/2 )​ + 3



881 = ____ ​     ​ 192

5 __ ​   ​  + 3

= ​Ú ​  ​  (2y + 3 – y2) dy 0

– (– x2​)– 1/8 ​ ​  ​ – 1



)

– 1 x3 ​​ __ ​   ​  + x2 – x  ​​ ​  3 – 2

63 ___ ​   ​  64

25. Let b π 0 and for j = 0, 1, 2, ..., n, let S1 be the area of the region bounded by the y-axis and the curve jp (j + 1)p xe xy, ​ __ ​  £ y £ ​ _______     ​. Show that S0, S1, ..., Sn are b b in G.P. Also, find their sum for a = –1 and b = p [IIT-JEE, 2001] 26. The given curves are y = |x| – 1 and y = 1 – |x|



( 

)

y3 3 = ​​ y2 + 3y – __ ​   ​   ​​ ​​  3 0 =9+9–9 = 9 sq.u.

dy (x  + 1)2 + (y – 3) 28. Given ​ ___  ​ = ​ _______________     ​    (x + 1) dx dy y 3 fi ​ ___  ​ = (x + 1) + ______ ​       ​ – ______ ​       ​ (x + 1) (x + 1) dx dy y 3 fi ​ ___  ​ – ______ ​       ​ = (x + 1) – ______ ​       ​ (x + 1) dx (x + 1) which is a linear differential equation. Thus,

dx – Ú____ ​    ​  x + 1 ​ =

IF = e​ ​

1 e– log(x + 1) = ______ ​       ​ (x + 1)

Therefore, the solution is y 3 ​ _____     ​ = Ú ​ 1 – _______ ​       ​  ​ dx x+1 (x + 1)2

( 



)

y 3 _____ ​       ​ = x + _____ ​       ​ + c x+1 x+1

Put x = 2 and y = 0, then c = – 3 Hence, the equation of the curve is y 3 ​ _____     ​ = x + _____ ​       ​ – 3 x+1 x+1 Hence, the required area

= ar (Quad ABCD)



= 4ar (DOAB)



1 = 4 × __ ​   ​  × 1 × 1 2



y = x2 + x + 3 – 3x – 3 = x2 – 2x.

= 2 sq.u. 27. The given curves are

_

y = ​÷x    ​,  2y + 3 = x and y = 0 Hence, the required area

3.57

3.58  Integral Calculus, 3D Geometry & Vector Booster Hence, the required shaded area

2



= ​Ú ​  ​ ​ (0 – (x2 – 2x))dx

0

0

( 

)



x3 2 = ​​ x – __ ​   ​   ​​ ​​  3 0



8 = ​ 4 – __ ​   ​   ​ = 3

2

(  )

4 __ ​   ​  sq.u. 3

29. The given curves are

y = ax2 and x = ay2, where a > 0

( 

)

1/2

( 

)



1 1 = ​Ú   ​ ​ ​​  (x + 1)2 – ​ __ ​   ​ dx + ​Ú ​   ​ ​ ​ (x – 1)2 – ​ __  ​  ​ dx 4 4 –1/2 0



0 (x + 1)3 __ 1 1 1/2 = ​​ ​ _______  ​   – ​   ​  x  ​​   ​ + ​​ (x – 1)3/3 – ​ __ ​  x  ​​ ​  ​ 3 4 –1/2 4 0



1 1 1 1 1 1 = __ ​   ​  – ​ ___ ​    ​ + __ ​    ​  ​ – ___ ​    ​ – __ ​   ​  + __ ​   ​  3 24 8 24 8 3



1 1 1 1 = __ ​   ​  – 2 ​ ___ ​    ​ + __ ​    ​  ​ + __ ​   ​  3 24 8 3



2 2 __ 2 1 __ 1 = __ ​   ​  – __ ​   ​  = ​    ​ – __ ​   ​  = ​   ​  sq.u. 3 6 3 3 3

( 

) ( 

( 

)

)

( 

)

31. The given curves are

x2 = y, x2 = – y and y2 = 4x – 3

Hence, the required area 1/a

__

(÷   

)



x = ​Ú ​   ​ ​ ​ ​ __ ​ a ​ ​ – ax2  ​dx 0



1/a 1 2 1 = ​​ ___ ​  __  ​  ◊ ​ __ ​  x3/2 – __ ​   ​  ax3  ​​ ​  ​ ​÷a     ​ 3 3 0



1 2 1 1 = ​ ___ ​  __  ​  ◊ ​ __ ​  a3/2 – __ ​   ​  a ◊ ​ __3  ​   ​ ​÷a     ​ 3 3 a

( 

)

( 

)

1 = ___ ​   2 ​  3a It is also given that, 1 ​ ___ 2 ​ = 1 3a 1 fi a2 = __ ​   ​  3

÷ 

__

1 a = ±  ​ __ ​   ​ ​   3 1 fi a = ___ ​  __  ​,  since a > 0. ​ 3 ​    ÷ 30. The given curves are fi

y = (x + 1)2, y = (x – 1)2 and y = 1/4

Hence, the required area

( 

1

1

0

3/4

______

)

= 2 ​ ​Ú ​  ​ x2dx – ​Ú  ​ ​ ​÷4x   – 3 ​   dx  ​

( (  ) ( 

))



3/2 1 x3 1 2 (4x – 3) = 2 ​ ​​ __ ​   ​   ​​ ​​  – ​​ __ ​   ​  ◊ ​ _________  ​     ​​   ​ ​  ​ 4 3 0 3 3/4



1 1 = 2 ​ ​ __ ​   ​   ​ – ​ __ ​   ​  – 0  ​  ​ 3 6



1 1 = 2 ◊ ​ __ ​  = __ ​   ​  6 3

( (  ) (  ) )

32.

The given system of equations 4x2f (–1) + 4x f (1) + f (2) = 3x2 + 3x is satisfied for 3 distinct real numbers a, b and c. Comparing the co-efficients of x2, x and constant terms, we get 4f (–1) = 3, 4f (1) = 3, f (2) = 0 Let

f (x) = ax2 + bx + c

Given

3 f (–1) = __ ​   ​  4



3 a – b + c = __ ​    ​ 4



3 f (1) = __ ​   ​  4





3 a + b + c = __ ​   ​  4



b=0 f (2) = 0 4a + 2b + c = 0 c = – 4a we get





Thus, And fi fi Solving,

3.59

Area Bounded by the Curves 

|  | 

|

130 = ​ 80 + 8 – 3 – ____ ​   ​    ​ 3 130 = ​ 85 – ____ ​   ​    ​ 3 125 = ____ ​   ​    3

|

_______

÷ 

1 + sin x 33. We have C1 : y = ​ ​ _______   ​ ​  cos x   

 ÷  ÷

______________



1 a = – ​ __ ​ , b = 0, c = 1 4

Thus,

1 f (1) = – __ ​   ​  x2 + 1 4

( 

p 1  –  cos ​ __ ​   ​  + x  ​ 2 = ​ ​ _____________           ​ ​ p __ sin ​ ​   ​  + x  ​ 2





( 

)

)

______________________

( 

p x 2sin2 ​ __ ​   ​  + __ ​    ​  ​ 4 2 = ​ ​ _____________________             ​ ​ p x p x 2 sin ​ __ ​   ​  + __ ​    ​  ​ cos  ​ __ ​   ​  + __ ​    ​  ​ 4 2 4 2



( 

) ) ( 

)

÷  (  ) p x 1 – sin x Similarly, C  : y = ÷ ​ ​  _______   ​ ​ = ​   tan ​( __ cos x    ÷ ​ 4 ​  – ​ __2  ​ )​ ​ _________

p __ x = ​ tan ​ __ ​   ​  +   ​    ​  ​ ​ 4 2



_______

__________



2

  

Hence, the area of the shaded region

( 

)

Let





1  – 0 1 m1 = m (AV) = ​ _____   ​ = – __ ​   ​  0–2 2 t2 1 – __ ​   ​  –1 t 4 m2 = m (BV) = ________ ​   ​     = –  ​ __  ​  t–0 4



m1 × m2 = –1



t  1 ​ –​ __ ​   ​ ​ – ​ __  ​   ​ = –1 2 4

p/4



(  ( 

__

​÷2 ​     – 1

(  ) (  )



__



( (  ) ) Ú  (  ) (  )

____________ 2

____________ 2

  

( 

  

)

)

)

( 

) ( 

(  ) )

4t dt_____ x = Ú​  ​   ​ ​ ​ ____________ ​        ​  ​, ​ Let tan  ​ __ ​    ​  ​ = t  ​ 2 2 2 0 (1 + t )​÷1  – t    ​

34. Given curve is

2

2



x2 3 = ​ ​ ​  ​ 4 – __ ​   ​  – __ ​   ​  x  ​ dx 4 2 – 8



x3 = ​​ 4x – ___ ​    ​ – 12



8 128 = ​ ​ 8 – ___ ​    ​ – 3  ​ – ​ – 32 + ____ ​   ​   – 48  ​  ​ 12 3

3x2 2 ___ ​   ​    ​​   ​  4 – 8

) ( 

__________

2t (2dt) _____ = Ú​  ​   ​ ​ ​ ____________ ​        ​  ​ 0 (1 + t2)​÷1  – t2   ​ ​÷2 ​     – 1

3 x2 = ​Ú  ​ ​ ​​  ​ 1 – __ ​   ​   ​ – __ ​   ​  (x – 2)  ​ dx 4 2 – 8

( ( 



0

fi t = – 8 Therefore, the co-ordinates of B = (– 8, –15). Hence, the required area



0

p   – AVB = __ ​   ​ , so 2

__________

p __ p __ x x = ​Ú ​   ​ ​ ​ ​  tan ​ __ ​   ​  +   ​    ​  ​ ​ – ​  tan ​ __ ​   ​  –   ​    ​  ​ ​  ​ dx 4 2 4 2 0 p/4



( ÷  ( 

) ÷  (  ) ) x x ​( 1  + tan ​( __ ​    ​ )​ )​ – ​( 1 – tan ​( __ ​    ​ )​ )​ 2 2 = Ú​ ​   ​ ​  ​ ​ ________________________          ​  ​ dx x ​ ​(   1 – tan  ​( __ ​    ​ )​ )​ ​ 2 ÷ x 2tan ​( __ ​    ​ )​ 2 = Ú​ ​   ​ ​ ​ _____________ ​        ​  ​ dx x ​ ​(   1 – tan  ​( __ ​    ​ )​ )​ ​ 2 ÷ p/4

t2 Let the co-ordinates of B be B  ​ t, l – ​ __ ​   ​ 4

))



y3 – 3y + x = 0



3y2y ¢ – 3y ¢ + 1 = 0



(3y2 – 3)y ¢ + 1 = 0



1 1 y ¢ = – ​ ________      ​ = – ​ ________      ​ 2 2 (3y – 3) 3(y – 1)

...(i)



 2yy ¢ y ≤ = – ________ ​  2  2   ​ 3(y – 1)

...(ii)

3.60  Integral Calculus, 3D Geometry & Vector Booster From Eq. (i), we get

Also, the shaded area

From Eq. (ii), we get

1

__ 1 1 y ¢ (– 10 ​÷2 ​   )  = _______ ​       ​ = – ​ ___  ​  3(1 – 8) 21 __

0

__ 4​÷2 ​    _______

2 (2​÷2 ​    ) (–1) y ≤(– 10​÷2 ​   )  = ___________ ​         ​ = – ​  2    ​  3(1 – 8)2(21) (3) (7)3 __

35. Hence, the required area

1

1

= ​Ú ​  ​ ​ e dx – ​Ú ​  ​ ​ exdx



0

0

1

= e – ​Ú ​  ​ ​ e xdx



0

b

38. Given f (x) = 1 + 2x + 3x2 + 4x3 f ¢(x) = 2 + 6x + 12x2 > 0 for all x in R Thus, f (x) is an increasing function on R. So, f (x) can have atmost one root. It is clear that f (x) cannot have a poistive real root. We have



= ​Ú ​  ​  f (x)dx



= (x f (x)​)ba​ ​​  – ​Ú ​  ​  (x f ¢(x))dx



x 1 = (bf (b) – af (a)) – __ ​   ​  ​Ú ​  ​   ​ ​ _____ ​    2   ​  ​ dx 3 a 1–y



x 1 = (bf (b) – af (a)) + __ ​   ​  ​  ​   ​ ​ _____ ​       ​  ​ dx 3 a y2 – 1



x 1 = (bf (b) – af (a)) + __ ​   ​  ​  ​   ​ ​ _________ ​       ​  ​ dx 3 a ( f (x))2 – 1

36. For

x Œ (– 2, 2),



(g (x))3 – 3g (x) + x = 0

a

b

a

(  ) Ú  (  ) Ú  (  ) b 

b

3

(g (– x)) – 3g (– x) – x = 0

(  ) 3 1 __ 1 1 and f ​( – ​ __ ​  )​ = 1 – 1 + __ ​   ​  – __ ​    ​ = ​   ​  > 0 2 4 2 4 3 1 Hence, f (x) has a root in (​  – ​ __ ​ , – __ ​   ​  )​. 4 2 3 1 39. Let a Œ ​( – __ ​   ​ , – __ ​   ​  )​ and t = |x| = |a| 4 2

b



= ​Ú ​  ​ ​ (e – ex ) dx



...(i) ...(ii)

Adding Eqs. (i) and (ii), we get fi {(g (x))3 + (g (x))3} – 3{g (x) + g (– x)} = 0

fi {g (x) + g (– x)}{(g (x))2 + (g (– x))2 – g(x)g(– x)) – 3} = 0



fi {g (x) + g (– x)} = 0

As fi

1

3 3 27 ___ 27 1 f ​ – ​ __ ​   ​ = 1 – __ ​   ​  + ___ ​    ​ – ​    ​ = – ​ __  ​ < 0 4 2 16 16 2

3 1 –  __ ​   ​  < a < – __ ​   ​  4 2 3 1 – __ ​   ​  < t < – __ ​   ​  4 2 t

1/2

Now, ​Ú  ​ ​ g ¢(x)dx



–1

= (g (x)​)1–1 ​   ​  = g (1) – g (–1) = g (1) + g (1) = 2g (1) 37. We have

3/4

​Ú ​   ​ ​ f (x)dx < Ú​  ​ ​ ​  f (x)dx < ​Ú ​   ​ ​ f (x) dx 0

0

2

3

0

x4​)1/2 ​0​  ​



(x + x + x +



< ​Ú ​  ​   f (x)dx < (x + x2 + x3 + x4​)3/4 ​ ​  ​ 0

t

0

( 

)

t



1 1 __ 1 1 ​ __ ​    ​ + __ ​    ​ + ​   ​  + ___ ​    ​  ​ < Ú​  ​  ​​  f (x)dx 2 4 8 16 0



9 3 81 27 < ​ __ ​   ​  + ___ ​    ​ + ___ ​    ​ + ____ ​    ​  ​ 4 16 64 256



15 525 ___ ​   ​ < ​Ú ​  ​  f  (x)dx < ____ ​   ​  16 0 256



3 __ ​   ​  < 4

( 

)

t

Hence, the required area e



= ​Ú ​  ​ ​ x dy 1 e



= Ú​  ​  ​ ​ ln y dy     

1 e



= Ú​  ​  ​ ​ ln (1 + e – y) dy 0

t

15 525 ___ ​   ​ < Ú​  ​  ​  f (x)dx < ____ ​   ​ < 3 16 0 256

40. We have,

f (x) = 1 + 2x + 3x2 + 4x3

fi f ¢(x) = 2 + 6x + 12x2

Area Bounded by the Curves 

fi f ≤(x) = 6 + 24x By the sign scheme, we get that

( 



( 

fi 1 1 f ¢(x) decreases in ​ – •,  – ​ __ ​   ​ and increases in ​ – ​ __ ​ , •  ​ 4 4 fi 1 In particular f ¢(x) decreases in ​ – t, – __ ​   ​   ​and increases 4 fi 1 in ​ – __ ​   ​ , t  ​. 4 43.

( 

)

( 

)

)

)

3.61

2 1 ​ __ ​  (1 – b)3 = ___ ​    ​  3 12 1 (1 – b)3 = __ ​   ​  8 1 (1 – b) = __ ​   ​  2 1 b = __ ​   ​  2

2

41. We have R1 = Ú​   ​ ​   x f (x) dx         

– 1 2



= ​Ú  ​ ​ (1 – x)f (1 – x) dx –1 2



= ​Ú  ​ ​ (1 – x)f (x) dx –1



2

2

–1

–1

= ​Ú  ​ ​   f (x)dx – ​Ú  ​ ​ ​ x f (x) dx



= ​Ú  ​ ​   f (x)dx – R1 –1

2



1 S ≥ __ ​ e ​ (Since area of a rectangle OCDS = 1/e),

2

2R1 = Ú​   ​ ​   f (x)dx = R2

2

Since

e– ​x​ ​ ≥ e– x, " x Œ [0, 1]



1 S ≥ ​Ú ​  ​  e– xdx = ​ 1 – __ ​ e ​  ​ 0

1

–1

42. The given curves are y = (1 – x)2, y = 0 and x = 0

( 

)

Area of a rectangle OAPQ + Area of a rectangle QBRS > S 1__ 1 –__1 ___ 1 fi S £ ​ ___   ​ (1) + ​ ​ _____  ​    ​ ​ ​  __  ​  ​ ​ e    ​  ÷ ​ 2 ​    ​÷2 ​    ÷

(  ) (  )

( 

)

1 1 1 Since ​ __ ​ ​  1 + ___ ​  __  ​  ​ £ 1 – __ ​ e ​ ​÷e    ​  4 Thus, option (c) is incorrect. 44. The given curves are y = sin x + cos x and y = |cos x – sin x|

b

We have, R1 = Ú​  ​  ​  (1 – x)2dx 0



( 

)

(1 – x)3 b = ​​ – ​ _______  ​    ​​ ​​  = 3 0

1 __ ​   ​  (1 – (1 – b)3) 3

1

Also,

R2 = Ú​  ​  ​  (1 – x2)dx b

Now, fi fi

( 

)

(1 – x)3 1 __ 1 = ​​ – ​ _______  ​    ​​ ​​  = ​   ​  ((1 – b)3) 3 3 b 1 R1 – R2 = __ ​   ​  4 1 1 1 __ ​   ​  (1 – (1 – b)3) – __ ​    ​ (1 – b)3 = __ ​   ​  3 3 4 2 1 1 1 __ ​    ​ (1 – b)3 = __ ​   ​  – __ ​   ​  = ___ ​    ​  3 3 4 12

Hence, the required area p/2



= ​Ú ​   ​ ​ (sin x + cos x) dx 0

( 

p/4

p/2

0

p/4

)

  – ​ Ú​  ​   ​  ​(cos x – sin x)dx + Ú​   ​​  ​(sin x – cos x)dx  ​

3.62  Integral Calculus, 3D Geometry & Vector Booster

= – (cos x​)p/2 ​ ​  ​ + (sin x​)p/2 ​0​  ​ 0



__

( 

– ​ (sin x​)p/4 ​ ​  ​ + 0

(cos x​)p/4 ​ ​  ​ – 0

)

   (sin x​)p/2 ​ ​ ​  ​ p/4

(cos x​)p/2 ​ ​  p/4

( 

Area = {​ ( x, y) Œ R2 : y ≥ ​÷|x| ​   ,  5y £ x + 6 £ 15 }​

)

1 1 = – (0 – 1) + (1 – 0) – ​ ___ ​  __  ​ + ___ ​  __  ​ – 1  ​ ​ 2 ​     ​÷2 ​    ÷

( 

) ( 

)

1__ 1 – ​ 0 – ​ ___   ​  ​ – ​ 1 – ___ ​  __  ​  ​ ​ 2 ​    ​ 2 ​    ÷ ÷



45. Shifting the origin to (– 3, 0), we get the

( 

)

__ 1 1 = 2 – ​ ​÷2 ​     – 1 + ___ ​  __  ​ – 1 + ___ ​  __  ​  ​ ​ 2 ​    ​ 2 ​    ÷ ÷ __



= 2 – ​( 2​÷2 ​     – 2 )​



= 4 – 2​÷2 ​   



= 2​÷2 ​ ​    ( ​÷2 ​     – 1 )​. Sq.u.

__

__

__

Hence, the required area = Region (OPK) + Region (QLKR)   + Region (OLQ) – Triangle (PQR)

8 5 3 1 5 = __ ​   ​  + 1 + __ ​   ​  – __ ​    ​ = 4 – __ ​   ​  = __ ​   ​  sq.u. 3 3 2 2 2

Chapter

4

Differential Equation

Concept Booster 1.  Introduction A differential equation is a mathematical equation for an unknown function of one or more variables that relates the values of the function itself and its derivatives of various orders. It plays a prominent role in engineering, physics, economics, biology, and other disciplines. Differential equations arise in many areas of science and technology, specifically whenever a deterministic relation involving some continuously varying quantities (modelled by functions) and their rates of change in space and/or time (expressed as derivatives) is known or postulated. This is illustrated in classical mechanics, where the motion of a body is described by its position and the velocity as the time value varies. Newton’s laws allow us (given the position, velocity, acceleration and various forces acting on the body) to express these variables dynamically as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an equation of motion) may be solved explicitly. An example of modelling a real world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball’s acceleration towards the ground is the acceleration due to gravity minus the acceleration due to air resistance. The gravity is considered constant, and the air resistance may be modelled as proportional to the ball’s velocity. It means that the ball’s acceleration, which is a derivative of its velocity, depends on the velocity (and the velocity depends on time). Finding the velocity as a function of time involves solving a differential equation. Differential equations are mathematically, studied from different perspectives, mostly concerned with their

solutions—the set of functions that satisfy the equation. Only the simplest differential equations admit solutions given by explicit formulae; however, some properties of solutions of a given differential equation may be determined without finding their exact form.

2. Definition An equation that involves the dependent variables, independent variables and the derivatives of dependent variables is called a differential equation, i.e.

{ 

{ 

}

}

dy dx ​ x, y, ___ ​    ​  ​ = 0 or ​ x, y, ___ ​    ​  ​ = 0 dx dy For examples, dy 1. ​ ___  ​ = sin x dx dy3 d 2y dy 2. ​ ___3 ​ + 4 ​ ___2 ​ + 5 ​ ___  ​ + 10 y = 0 dx dx dx ________

÷  (  ) ÷  ________



(  )

dy 2 d2y 3. ​ 1 + ​​ ___ ​    ​  ​​  ​ ​ = ​ 2 + ​ ___ ​  2 ​    ​ ​ dx dx dw du dv ___ 4. ​ ___  ​ + ___ ​    ​ + ​   ​ = u + v + w dx dx dx

each are differential equations.

3. Ordinary Differential Equation A differential equation that involves the derivative with respect to a single independent variable is called an ordinary differential equation. It can also be expressed as a function of variables x and y, and the derivatives of y w.r.t. x, i.e.

( 

)

dy f  ​ x, y, ___ ​    ​  ​ = 0. dx

Thus, dy 1. ​ ___  ​ + 10 y = 0 dx

4.2  Integral Calculus, 3D Geometry & Vector Booster

dy 2. ​ ___  ​ + 2y = sin x dx

Example 6.  The order of the differential equation whose



d2y dy 3. ​ ___2 ​ + 2 ​ ___  ​ + 5y = 0 dx dx



y = (c1 + c2) cos (x + c3) – c4 ex + c5,



where c1, c2, c3, c4 and c5 are arbitrary constants



d ny 4. ​ ___n  ​ + ny = 0 dx



is 3.



are ordinary differential equations.

4.  Partial differential equation A differential equation which contains two or more independent variables and partial derivatives w.r.t. them is called a partial differential equation. For examples,

∂z ∂ z 1. ​ ___ ​ + ___ ​    ​ = 0 ∂ x ∂ y



∂2 z ____ ∂2 z 2. ​ ____2   ​ + ​  2   ​ = x ∂ x ∂ y

5. Order

of a

6. Degree

genral solution is given by

of a

differential equation

The index power of the highest order derivative of a differential equation is called the degree of a differential equation, and is free from any radical sign.

Example 1.  The degree of the differential equation

(  )

(  )

d3y 2102 d 4y dy 2013 ​​ ___ ​  3 ​  ​​ ​ + ​ ___4   ​ + ​​ ___ ​    ​  ​​ ​ + 5005y = 0 dx dx dx

is 1.

Example 2. The degree of the differential equation

÷(  

) ÷(  

_________

differential equation

The order of a differential equation is the highest order derivative of a differential equation. Example 1.  The order of the differential equation



__________

)

5 d2y d2y ​ ​ 1 + ___ ​  2 ​  ​ ​  = ​ ​ 10 + ___ ​      ​  ​ ​ dx dx2

4

is 5.

Example 3.  The degree of the differential equation

dy dy ​ ___2 ​ + 2 ​ ___  ​ + 5y = 0 dx dx is 2.

dy ​ ___  ​ + dx

Example 2.  The order of the differential equation

Example 4.  The degree of the differential equation

d 2y 100 ​​ ​ ___2 ​  ​​ ​ + dx

​e​dx ​ = x + 1

2

(  )



d 4y ___ ​  4  ​ + dx

dy ___ ​    ​ + 50y = 0 dx

is 4.

Example 3.  The order of the differential equation

(  )

dy sin ​ ___ ​    ​  ​ = x dx



is 1.

Example 4.  The order of the differential equation of the

curve



y = (a + b) e3x + (c + d) e–2x



a, b, c, d, Œ R





is 2. Example 5. The order of the differential equation of the curve

y = (a + b) cos ((c + d) x + e),



where

a, b, c, d, e,  Œ R



is 3.



dx ___ ​    ​ = y dy

is 2. dy ___ ​    ​



is not defined.

Example 5.  The degree of the differential equation

( 

)

dy log ​ 1 + ___ ​    ​  ​ = x dx is not defined.

Example 6. The order and the degree of the differential

equation

( 

)

(  )

dy 2/3 d3y ​​ 1 + 3 ​ ___  ​  ​​ ​ = 4 ​ ___ ​  3 ​  ​ dx dx

are 3 and 3, respesctively

Example 7. The order and the degree of the differential

equation

÷ 

_______



÷(   (  ) )

__________

d2y 4 dy 5 ​ 1 + ___ ​  2 ​ ​   = ​ ​ y + ​​ ___ ​       ​  ​​ ​  ​ ​ dx dx 5

are 2 and 4, respectively.

Differential Equation 

7. Linear

and

non-linear differential equation

A differential equation in which the dependent variables and all its derivatives present occur in the first degree only and no products of dependent variables and/or derivatives occur is known as linear differential equation. A differential equation which is not linear is called a nonlinear differential equation. For examples,

dy 1. ​ ___  ​ + 5y = x is linear. dx



d2y dy 2. ​ ___2 ​ + 5 ​ ___  ​ + 6y = 0 is linear. dx dx



d 2y 3. ​ ___2 ​ + dx



d2013y dy 4. ​ _____    ​ + 5 ​ ___  ​ + 10y = 0 is linear. 2013 dx dx

8. Formation

first order

(ii) (iii) (iv) (v) (vi) (vii) (viii)



dy = f (x) dx

Integrating, we get

Ú dy = Ú f (x) dx

dy ​ ___  ​ = f (x) ◊  f (y) dx fi

dy ​ ____  ​ =  f (x) dx f (y)

Integrating, we get

and

first degree

All differential equations of the first order cannot be always solvable. However they can be solved by suitable methods if they belong to any of the following standard forms. (i)

dy ___ ​    ​ = f (x) dx

Let the differential equation be

A differential equation of the first order and the first degree can be written as the form of dy ​ ___  ​ = f (x, y) or M dx ± N dy = 0, where M and N are dx functions of x and y or constants.





9.2  Variable Separable Form

Let the equation of the curve be f (x, y, c1, c2 ..., cn) = 0, ...(i) where c1, c2, ..., cn are n arbitrary constants apart from x and y. To obtain the differential equation of the curve (i), we have to differentiate (i) up to n times w.r.t. x and eliminate those arbitrary constants from (n + 1) equations, which yield the required differential equation. of

9.1  differential equation of the form

Thus, y = j (x) + c is the required solution.

differential equation

9. Differential equation

(ix) Reducible to exact differential equation. (x) Clairauts differential equation.



dy y ​ ___  ​ + 10x = 0 is not linear. dx

of a

4.3

dy A differential equation is of the form ___ ​    ​ = f (x). dx Variable separable form. Reducible to variable separable form. Homegeneous differential equation. Reducible to homegeneous differential equation. Linear differential equation. Bernoulli’s differential equation. Exact differential equation.



dy

  ​ =  f (x) dx Ú ​ ____ f (y) Ú

fi j (y) = y (x) + c, which is the required solution.

9.3  Reducible to variable separable form Let a differential equation is of the form dy ​ ___  ​ = f (ax + by + c) dx Let

(ax + by + c = v)

( 

)

dy 1 ___ dv fi ​ ___  ​ = __ ​   ​ ​ ​    ​ – a  ​ dx b dx The Eq. (i) reduces to

( 

)

1 dv ​ __ ​ ​ ___ ​    ​ – a  ​ = f (v) b dx dv fi ​ ________      ​ = dx b f (v) + a

Integrating, we get

dv fi Ú ​________        ​ =  dx bf (v) + a Ú fi j (v) = x + c fi

j (ax + by + c) = x + c,

which is the required solution.

...(i)

4.4  Integral Calculus, 3D Geometry & Vector Booster

9.4  Homogeneous differential equation Homogeneous equation If the degree of each term throughout the equation is the same, it is called a homogeneous equation. For examples, 2

2

2

x3 + xy2 + x2y + y3 = 0 are the homogeneous equation of 3rd degree. A homogeneous differential equation is of the form f (x, y) dy ​ ___  ​ = ​ ______   ​   ...(i) dx g (x, y) where the degree of f (x, y) is the same as the degree of g (x, y). In this case, divide the numerator and the denominator by the highest power of x. Thus the given differential equation reduces to dy y ​ ___  ​ = f  ​ __ ​ x ​  ​ ...(ii) dx

(  )

dy dv ___ ​    ​ = v + x ​ ___  ​ ◊ dx dx y __ Let ​ x ​ = v fi y = vx. fi

dv

j (v) = log |x| + c



y j  ​ __ ​ x ​  ​ = log |x| + C

a1a + b1b + c1 = 0 and a2a + b2 b + c2 = 0.

Solving, we get

b1c2  –  b2c1 a2c1 –  a1c2 a = __________ ​     ​ and b = __________ ​      ​. a1b2 – a2b1 a1b2 – a2b1 Then the Eq. (ii) reduces to ...(iii)

X V dY ___ ​    ​ = V + ___ ​   ​  dX dX

Then the Eq. (iii) reduces to dV a1  +  b1V V + X ​ ___  ​ = ________ ​   ​  . dX a2 + b2V

dx



Let us choose a and b in such a way that



Integrating, we get      ​ =  ​ ___ ​  Ú  ​ _______ f (v)  –  v Ú x

...(ii)

which is a homogeneous equation of the first degree. Y Let ​ __ ​ = V X

dv dx _______ ​      ​ = ___ ​  x ​  f (v) – v



(a1X + b1Y) +  (a1a  + b1b + c1) = ___________________________ ​           ​ (a2X + b2Y) + (a2a + b2b + c2)



dY a1X +  b1Y ​ ___  ​ = _________ ​   ​  dX a2X + b2Y

The Eq. (ii) reduces to dv v + x ​ ___  ​ = f (v) dx



dx = dX, dy = dY

dY a1(X +  a)  +  b1(Y + b) + c1 ​ ___  ​ = ________________________ ​          ​ dX a2(X + a) + b2 (Y + b) + c2

2. x3 + x2y + y3 = 0,





dy dY Thus, ​ ___  ​ = ___ ​    ​. dx dX Now, Eq. (i) can be reduced to

2

1. x + y = 0, x + xy + y = 0 are the homogeneous equations of 2nd degree.

The Eq. (i) can be reduced into homogeneous equation form by means of suitable substitutions. x = X + a, y = Y + b, where a, b are constants.

Integrating, we get j (V) = log |X| + k

(  )



Y j  ​ __ ​   ​ ​ = log (X) + c X

which is the required solution.



y–b j  ​ x_____ ​  – a   ​  ​ = log (x – a) + c

9.5  Reducible to homogeneous differential equation

which is the required solution of the given differential equation.

(  )

Let a differential equation is of the form dy a1x + b1y + c1 ​ ___  ​ = _____________ ​        ​, dx a2x + b2y + c2 a1 where ​ __ a2 ​  π

b1 __ ​   ​ , b2

(  )

9.6  Linear differential equation ...(i)

A differential equation is said to be linear differential eqation of the first order, when the dependent variable and its derivatives appear only in the first degree. Let a differential equation is of the form

Differential Equation 

dy ​ ___  ​ + Py = Q ...(i) dx where P and Q are either functions of x or constants.

Ú pdx

Here IF = e = e  . Multiplying both sides of Eq. (i) by IF, we get dy e px  ​ ___  ​ + P e px y = Q ◊ e px dx d fi ​___     ​ (y e px) = Q ◊ epx dx Integrating, we get y ◊ e px = Ú Q ◊ epx dx + c



y ◊ (I.F) = Ú Q ◊ (I.F) dx + c



y ◊ (I.F) = j (x) + c



y ◊ e px = j (x) + c



y = (j (x) + c) e– px

Note:  Sometimes it is convenient to express the differential equation in the form dx ​ ___  ​ + Px = Q dy where P and Q are either functions of y or constants. IF = e Ú Pdy = e Py

...(i)

where P and Q are either functions of x alone or constants.

dv Thus, ​ ___  ​ + P (1 – n) v = Q (1 – n) dx which is a linear differential equation. IF = e Ú P (1 – n) dx = e (1 – n) Ú pdx Thus the required solution is

v (IF) = Ú Q ◊ (IF) dx + c

( 

)

fi y (1 – n) ◊ e (1 – n) Ú  pdx = Ú Q ​ e(1 – n) Úpdx  ​ dx + c

Its solution is given by u (x, y) = c, " c Œ R. For examples, 1. ex ◊ cos y dy + ex  ◊ sin y dx = 0 is an exact differential equation. Since, it is derived by d (ex sin y) = 0 fi

ex sin y = c

which is the required solution. 2.

x dy + y dx = 0 is an exact differential equation. fi d (x y) = 0 fi xy = c which is the required solution.

Dear friends you should remember the follwoing exact differentials. These help us to find the integrating factors.

9.7  Bernouli’s differential equation

Dividing both sides of Eq. (i) by yn, we get dy y–n   ​ ___  ​ + P y1–n = Q, dx dy dv 1 ___ Let y1– n = v fi y–n  ___ ​    ​ = ______ ​       ​ ​   ​ . dx (1 – n) dx

du = Mdx + Ndy = 0

General form of variable seperation (By Inspection)

Thus the solution is x (IF) = Ú Q (I.F) dx + c

A differential equation is of the form dy ​ ___  ​ = Py = Qyn dx

9.8 Exact differential equation



which is the required solution of the given differential equation.

Then

is the required solution of the given differential equation.

A differential equation is said to be an exact differential equation, if it is formed by the equation, an exact differential to zero. Thus a differential equation is of the form M (x, y)dx + N (x, y) dy = 0 said to be exact, if the expression M (x, y) dx + N (x, y) dy is the exact differential of some function u (x, y) i.e.

px



4.5



1. d (x ± y) = dx ± dy



2. d (x y) = x dy + y dx



y dx – x dy x 3. d ​ __ ​ y ​  ​ = ​ _________  ​     y2



(  ) y x dy – y dx 4. d ​( __ ​ x ​ )​ = _________ ​   ​      x 2



dx + dy 5. d [log (x + y)] = _______ ​       ​ x+y



x dy  + y dx 6. d [log (xy)] = __________ ​  xy     ​ 



y dx – x dy x 7. d ​ log ​ __ ​ y ​  ​  ​ = _________ ​    ​     xy



y x dy – y dx 8. d ​ log ​ __ ​ x ​  ​  ​ = ​ _________   ​ xy   



x dx  +  y dy 1 9. d ​ __ ​   ​  log ​( x2 + y2 )​  ​ = __________ ​  2     ​  2 x + y2

(  (  ) )

[  (  ) ]

[ 

]

4.6  Integral Calculus, 3D Geometry & Vector Booster

[  (  ) ]

x+y x dy – y dx 1 10. d ​ __ ​   ​  log ​ ​ _____  ​  ​  ​ = _________ ​  2  ​     x – y  2 x – y2

(  ) y dx – x dy x 12. d ​[ tan ​( __ ​ y ​ )​ ]​ = _________ ​   ​    x +y

x dy + y dx 1 _________ 11. d ​ – ​ __      xy  ​   ​ = ​  x2y2 ​



)

Æ (x2 + y2) x = r cos q, y = r sin q,

(  )

y x2 + y2 = r2, q = tan–1 ​ __ ​ x ​  ​ x dx + y dy = r dr, x dy – y dx = r2 dq

16. when the expression is in the form of: Æ (x2 – y2) Let

x = r sec q, y = r tan q,

where

y x2 – y2 = r2, q = sin–1  ­​ __ ​ x ​  ​



x dx – y dy = r dr, x dy – y dx = r2 sec q dq

(  )

10. Orthogonal Tragectories If a curve intersects a family of curves at right angles, then previous one is the orthogonal trajectory to the later one. The differential equation of the orthogonal trajectories of dy the curves f  ​ x, y, ___ ​    ​ ​ = 0 is the family of the curves, whose dx

( 

)

( 

pn + f1 pn–1 + f2 pn–2 + ...



15. when the expression is in the form of



dy + fn–1 ​ ___ ​    ​  ​ + fn = 0 dx



______ x dx + y dy 14. d ​ ​÷x  2 + y2   ​  ​ = _________ ​  ______    ​  . ​÷x  2 + y2   ​

where

(  )

dy + fn–1 (x, y) ​ ___ ​    ​ ​ + fn (x, y) = 0  ...(i) dx

(  ) (  ) (  ) (  )

2

[  (  ) ]

Let

(  )

dy n dy n – 1 dy n–2 fi ​​ ___ ​    ​  ​​ ​ + f1 ​​ ___ ​    ​  ​​ ​ + f2 ​​ ___ ​    ​  ​​ ​ + ... dx dx dx

y x dy – y dx 13.  ​ tan–1 ​ __ ​ x ​  ​  ​ = _________ ​  2  ​     x + y2

( 

(  )



–1 

2

(  )

dy n dy n – 1 dy n – 2 ​ ___ ​    ​ ​ ​ + f1 (x, y) ​​ ___ ​    ​ ​ ​ + f2 (x, y) ​​ ___ ​    ​ ​ ​ + ... dx dx dx

)

dx differential equation is f  ​ x, y, – ​___     ​ ​ = 0. dy ule to find out the orthogonal trajectory: R (i) Let the equation of the family of curves is f (x, y, c) = 0, where c Œ R.

+ fn – 1 p + fn = 0  ...(i)

dy p = ​ ___  ​ dx and f1, f2, ..., fn are functions of x and y. The Eq. (i) can aslo be written as f (x, y, p) = 0 where

...(ii)

For examples, 1. The equation dy 5 dy y ​​ ​ ___  ​  ​​ ​ + 2013 x ​ ___ ​    ​  ​ – y = 0 dx dx is a differential equation of 5th degree. 2. The equation dy 2014 dy ​​ ___ ​    ​  ​​ ​ + x ​ ___ ​    ​  ​ – 2015y = 0 dx dx is a differential equation of 2014th degree. The differential equation f (x, y, p) = 0 can be solvable (i) for p (ii) for x (iii) for y (iv) for the first degree in x and y. Now, we shall discuss the varoius methods to solve the above types of equations.

(  )

(  )



(  )

(  )

(i) Equations solvable for p

Consider a differential equation of the form (p – f1 (x, y)) (p – f2 (x, y)) ... (p – fn (x, y)) = 0,

(ii) Form a differential equation of the given curve. dy dx (iii) Replace ___ ​    ​ by – ___ ​    ​. dx dy dx (iv) Solve the equation f  ​ x, y, – ___ ​    ​ ​ = 0, dy

which is solvable for p.

We will get the required orthogonal trajectories.

Each of these equations is of it first order and of first degree. Let the solutions of these equations are given by j (x, y, c1) = 0,

( 

)

11. First Order Higher Degree Differential Equation The most general form of a differential equation of the first order and of higher degrees (say nth degree) is

fi [p – f1 (x, y)] = 0,

(p – f2 (x, y)) = 0



(p – fn (x, y)) = 0

j 2(x, y, c2) = 0

4.7

Differential Equation 

j n (x, y, cn) = 0,



where c1, c2,

dy where P = ___ ​    ,​ dx

cn are arbitrary constants. Hence, the general solution is

y = Px + f (P),

is called the Clairaut’s differential equation.

j1(x, y, c1) ◊ j2(x, y, c2) ... qn (x, y, cn) = 0

Rule to find the Clairaut’s differential equation

which contains n arbitrary constants, whereas an equation of the first order and of first degree should contain only one arbitrary constant. So, we can take, without loss of generality, c1 = c2 = cn = c. Hence, the genral solution of Eq. (i) is





j 1(x, y, c) ◊ j 2 (x, y, c)



j n (x, y, c) ◊ j2 (x, y, c) = 0.



When the differential equation f (x, y, p) = 0 is solvable for x, it can be expressed in the form of x = f (y, p) ...(i) Differentiating w.r.t. y, we get dp dx ___ ​    ​ = f  ​ y, p, ___ ​    ​  ​ dy dy

(  ) (  )

dp 1 ___ fi ​ __ ...(ii) p ​ = f  ​ y, p, ​ dy  ​  ​ which is a differential equation of two variables y and p and hence it can be solved. Let us consider its solution be j (y, p, c) = 0 ...(iii) Eliminating p between (i) and (iii) gives the required solution. (iii) Equations solvable for y If the given equation is solvable for y, it can be expressed in the form y = f (x, p) ...(i) Differentiaing w.r.t. x, we get dy dp ​ ___  ​ = p = j  ​ x, p, ___ ​    ​  ​ = 0 dx dx which is a differential equation in two variables x and p and hence its solution is possible. Let us consider its solution be

)

y  (x, p, c) = 0

...(ii)

Eliminating p between (i) and (ii) we get the required solution of Eq. (i).

(iv) Clairaut’s Differential Equation

A differential equation of the first order in the form

y = Px + f (P)

...(i)

Differentiating w.r.t. x, we get dy dP dP ​ ___  ​ = P + x ​ ___ ​ + f ¢(P) ​ ___ ​  dx dx dx fi fi

(ii) Equations solvable for x

( 

1. Given



dP dP P = P + x ​ ___ ​ + f ¢(P) ​ ___ ​  dx dx dP (x + f ¢(P))  ​ ___ ​ = 0 dx dP ___ ​   ​ = 0 or (x + f ¢(P)) = 0 dx



P = c

...(ii)

or,

(x + f ¢(P)) = 0

...(iii)

Eliminating P between Eq. (i) and (ii), we get,

y = cx + f (c)

where is the general solution of Eq. (i). Eliminating P between (i) and (iii), we get an equation, which has no constant. This is the singular solution of (i).

12. Higher Order Differential Equation

(i) Let a differential equation is of the form

d 2y ​ ___2 ​ = f (x) dx d dy ___ fi ​    ​   ​ ___ ​    ​ ​ = f (x) dx dx

(  )

Integrating, we get dy ​ ___  ​ = f (x) + c1 dx Integrating again, we get

y = Ú f (x) dx + c1 x + c2

fi y = j (x) + c1 x + c2 which is the required solution. (ii) Let a differential equation is of the form

d 2y  ​___2 ​ = f (y) dx

...(i)

dy Let ​ ___  ​ = p dx fi

d 2y ___ ​  2  ​ = dx

dp ___ ​    ​ = dx

dp dp dy ___ ​    ​ ◊ ​___     ​ = p ◊ ​___     ​ dy dy dx

4.8  Integral Calculus, 3D Geometry & Vector Booster From Eq. (i), we get, dp p ​___     ​ = f (y) dy fi p dp = f (y) dy

Let the curve be y = f (x) and the point be P (x, y). dy Then tan (y) = ___ ​    ​. dx (i) Length of the tangent (PT ) y siny = ___ ​    ​  PT fi PT = y cosecy

Integrating, we get



p2 __ ​   ​  = Ú f (y) dy + c1 2



p2 = 2 Ú f (y) dy + 2c1

   = j (y) + 2c1 fi

__________

__________ dy ___ ​    ​ = ± ​÷ j (y)   +    2c1 ​ dx __________ fi dy = ± ​÷ j (y)   +    2c1 ​ dx Integrating, we get



y = y (x) + c2

which is the required solution. (iii) Let a differential equation is of the form

(  )

dx 2 = y ​ 1  + ​​ ___ ​    ​  ​​   ​ ​ dy

÷  (  )

(  )

_________

y = Ú ± ​÷j (y)   +    2c1 ​ dx + c2

d2y dy j ​ ___ ​  2 ​ , ___ ​    ​  ​ = 0 dx dx



________

(ii) Length of the sub-tangent (TM): y tan y = ​ ___    ​  TM fi TM = y coty dx = y ◊ ​ ___ ​    ​  ​ dy (iii) Length of the normal (PN ): y cos y = ___ ​     ​  PN fi PN = y secy





= y ​÷1  + cot2y   ​



p = ±  ​÷ j (y)   +    2c1 ​



_________



________

...(i)

(  )

dy d2y dp d dy Let ​ ___  ​ = p fi ___ ​  2 ​ = ___ ​    ​ ​  ___ ​    ​  ​ = ___ ​    ​ dx dx dx dx dx The Eq. (i) reduces to dp j  ​ ___ ​    ​, p  ​ = 0 ...(ii) dx which is an equation of the first order. Then solve Eq. (ii) and get the required solution. Also, Eq. (i) can be written in the form dp j  ​ p ​ ___  ​, p  ​ = 0 ...(iii) dy which is also an equation of the first order. Solve it and get the required solution.

(  )





= y ​÷1  + tan2y ​ 





dy 2 = y ​ 1 + ​​ ___ ​    ​  ​​   ​ ​ dx



÷  (  )

________

(iv) Length of the sub-normal (MN): y tany = ____ ​       ​ MN

(  )

dy fi MN = y ​ ___ ​    ​  ​. dx (ii) Length of Intercepts of the

tangent by the axes:

(  )

13. Applications

of

Differential Equation

Geometrical Application (i) Lengths of tangent, sub-tangent, normal and subnormal to the curve at a point



(i) The equation of the tangent to a curve at (x1, y1) is dy y – y1 = ​​ ​ ___  ​  ​​ ​ (x – x1) dx at (x1, y1) (ii) The length of the x-intercept is

(  )

(  ) (  )

dx x1 – y1 ​​ ___ ​    ​  ​​ ​ dy at (x1, y1) (iii) The length of the y-intercept is dx = x – y ​​ ___ ​    ​  ​​ ​ dy at (x1, y1)

Differential Equation 

4.9

Exercises (Problems based on Fundamentals) Find the order and the degree of each of the following differential equations: 2



d y 1. ​ ___2 ​ + 4y = 0 dx



dy 2. ​​ ___ ​    ​  ​​ ​ + dx



d2y 3. ​ ___2 ​ + dx

(  )

2

19. y = aex + be– x, where a and b are parameters.  

20. y = sin (bx + c), b and c being parameters. 21. y = ae2x + be3x, where a and b are parameters.

dx ___ ​    ​ = 2 dy

(  ) ÷  (  ) ÷  ÷  (  ) ÷  (  ) dy 2 ​​ ___ ​    ​  ​​ ​ + xy = 0 dx

_____

_________



d2y dy 2 3 ___ 4. ​ 1 + ​​ ___ ​    ​  ​​ ​ ​  = ​ c ◊ ​  2 ​ ​   dx dx



dy dy 2 5. x + ___ ​    ​ = ​ 1 + ​​ ___ ​    ​  ​​ ​ ​  dx dx



dy dy 2 6. y = x ​ ___  ​ + a ​ 1 + ​​ ___ ​    ​  ​​ ​ ​  dx dx



d 4y d3y 7. ​ ___4 ​ + sin ​ ___ ​  3 ​  ​ = 0 dx dx



d2y 2 8. ​​ ___ ​  2 ​  ​​ ​ + dx



9. ​e​dx ​ = (x + 1)

_________

_________

(  )

(  ) (  )

(  )

dy 6 d2y ​​ ___ ​    ​  ​​ ​ = x sin ​ ___ ​  2 ​  ​ dx dx

dy ___ ​    ​

(  )

17. y = m x, where m is a parameter. 18. y = A cos x + B sin x, where A and B are parameters.

(  )

dy dy 10. sin ​ ___ ​    ​  ​ + cos ​ ___ ​    ​  ​ = x dx dx Formation of a differential equation 11. Find the differential equation of all non-vertical lines in a plane. 12. Find the differential equation of the family of parabolas having vertex at the origin and the axis along positive x-axis. 13. Find the differential equation of the family of all circles, whose centre lies on x-axis and touches the y-axis at the origin. 14. Find the differential equation of all parabolas whose axes are parallel to the x-axis and have latus rectum 4a. 15. Find the differential equation corresponding to the family of curves y = c (x – c)2, where c is an arbitrary constant. 16. Find the differential equation of the system of y2 x2 ellipses __ ​  2  ​ + ​ __2  ​ = 1, where a and b are arbitrary a b constants.

22. Find the differential equation of all circles touching the (a) x-axis at the origin. (b) y-axis at the origin. 23. Obtain the differential equation of all circles of the radius r. 24. Find the differential equation of all the circles in the first quadrant which touch the co-ordinate axes. 25. Find the differential equation of all the circles which pass through the origin and the centre lies on x-axis. 26. Find the differential equation of all non-vertical lines in a plane. 27. Find the differential equation of all the parabolas with the latus rectum 4a and whose axes are parallel to the x-axis. 28. Find the differential equation of all the ellipses having foci on the x-axis and the centre at the origin. 29. Find the differential equation of the family of parabolas having vertex at the origin and the axis along positive y-axis. 30. Find the differential equation of the family of curves __ y2 = 2c (x + ​÷c     ​). 31. Find the order and the degree of the differential equation of all parabolas whose axis of symmetry is parallel to x-axis. Differential equation of first order and first degres dy 32. Solve: ___ ​    ​ = dx

x2 – 1 ​ _____   . ​ x2 + 1

dy 1 33. Solve: ___ ​    ​ = _____ ​      . ​ dx ex + 1 dy cos 2 x – cos x 34. Solve: ___ ​    ​ = ____________ ​          .​ 1 – cos x dx dy 1 35. Solve: ___ ​    ​ = ________ ​       ​. dx x (x4 + 1) ____

dy ​÷sin x    ​  36. Solve: ___ ​    ​ = ________ ​     ​.  dx sin x cos x dy x2 37. Solve: ___ ​    ​ = ________ ​       ​. dx (3 + 2x)2

4.10  Integral Calculus, 3D Geometry & Vector Booster dy 38. Solve: ___ ​    ​ = dx dy 39. Solve: ___ ​    ​ = dx dy 40. Solve: ___ ​    ​ = dx

÷  ​

_______ __ 1 – ​÷x    ​  ​ ________   ​ ​  . 1 + ​÷x    ​  _____

61. Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0. Reducible to variable separable Form

____

(​÷ tan x    ​ + ​÷cot x    ​) .

dy 62. Solve: ___ ​    ​ = (x + y + 1)2. dx

1 ____________ ​  3       ​. sin x + cos3 x

dy 63. Solve: ___ ​    ​ = sin (x + y) + cos (x + y). dx

dy 1 41. Solve: ___ ​    ​ = _______________ ​  ____     4 ​. _____ dx (​÷sin x    ​+ ÷   ​ cos x      ​)

64. Solve: (x + y) (dx – dy) = (dx + dy).

Variable separable Form

dy 65. Solve: tan y ​ ___  ​ = sin (x + y) + sin (x – y). dx dy 66. Solve: ___ ​    ​ – x tan y  ( y – x) = 1. dx

dy 42. Solve: ___ ​    ​ = 1 + x + y + xy. dx dy 43. Solve: ___ ​    ​ = ex–y + x2 ◊ e–y. dx x 

2 

x

44. Solve: 3 e  tan y dx + (1 – e ) sec y dy = 0. ________________ dy 45. Solve: ÷ ​ 1  + x2 + y2 +   x2y2 ​ + xy ​ ___  ​ = 0. dx

)

dy dy 47. Solve: x ​ ___  ​ = a ​ y2 + ___ ​    ​  ​. dx dx dy 48. Solve: xy2 ___ ​    ​ = 1 – x2 + y2 – x2y2. dx dy 49. Solve: (x + 1) ​ ___  ​ = 2xy. dx 50. Solve: sec2x tan y dx + sec2y tan x dy = 0. 51. Solve: (1 + e2x) dy + (1 + y2) ex dx = 0. dy 52. Solve: ___ ​    ​ = ex+y + x2ey. dx

_____

54. Solve: ÷ ​ 1  + x2   ​dy + ÷ ​ 1  + y2   ​ dx = 0. ________________ 1  +  x2 + y2 +   x2y2 ​ +

55. Solve: ÷ ​ 

xy = 0.

dy 56. Solve: xy  ___ ​    ​ + 1 + x + y + xy = 0. dx 57. Solve: (1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0. _____

_____

58. Solve: x ​÷1  – y2   ​ dx + y ​÷1  – x2   ​ dy = 0.

( 

) ( 

)

dy dy 59. Solve: ​ y – x ​ ___  ​  ​ = a ​ y2 + ___ ​    ​  ​. dx dx dy 60. Solve: xy ​ ___  ​ = dx

dy 69. Solve: ___ ​    ​ = sec (x + y). dx dy 70. Solve: sin–1 ​ ___ ​    ​  ​ = x + y. dx dy 71. Solve: ___ ​    ​ = cos (x + y + 1). dx dy 72. Solve: (x2 + 2 xy + y2 + 1) ​ ___  ​ = 2 (x + y). dx dy 73. Solve: ___ ​    ​ = sin (10x + 6y). dx y dy ____________ 2 (x2 + y2)  –  1 74. Solve: __ ​ x ​  ___ ​    ​ + ​  2       ​ = 0. dx x + y2 + 1 Homogeneous differential equation 75. Solve: (x3 + y3) dy – x2 y dx = 0.

_____ _____ dy 53. Solve: y ​÷1  + x2   ​ + x​÷1  + x2   ​  ___ ​    ​ = 0. dx _____

68. Solve: (x + y) (dx – dy) = dx + dy.

(  )

dy sin y + cos y 46. Solve: ___ ​    ​ = ​ ___________        ​. dx x (2log x + 1)

( 

dy (x – y) + 3 67. Solve: ___ ​    ​ = ​ ___________        ​. dx 2 (x – y)  +  5

1 + y2 ​ _____2   ​  (1 + x + x2). 1+x

______

76. Solve: x dy – y dx = ÷ ​ x  2 + y2   ​ dx. 77. Solve: (x2 – y2) dx = 2xy dy. 78. Solve: (1 + 2ex/y) dx + 2e x/y (1 – x/y) dy = 0.

( 

) ( 

)

dy dy 79. Solve: x ​ ___ ​    ​ + 1  ​ = y ​ 1 – ___ ​    ​  ​. dx dx dy 80. Solve: x ​ ___  ​ = x + y. dx dy y  – x 81. Solve: ___ ​    ​ = _____ ​     ​. dx y + x dy 82. Solve: 2 xy ​ ___  ​ = x2 + y2. dx 83. Solve: (y2 – 2xy) dx = (x2 – 2xy) dy.

Differential Equation 

84. Solve: x2y dx – (x3 + y3) dy = 0. 85. Solve: (x3 – 3xy2) dx = (y3 – 3x2y) dy.

÷ 

______ 2

dy y y 86. Solve: ___ ​    ​ = __ ​   ​ – ​ __ ​  2 ​  – 1 ​  . dx x x dy y y 87. Solve: ___ ​    ​ = __ ​ x ​ + sin ​ __ ​ x ​  ​. dx dy y 88. Solve: x ​ ___  ​ = y – x tan ​ __ ​ x ​  ​. dx

(  ) (  ) x 89. Solve: (​  1 + e​ ​ ​ )​ dx + ​e​ ​  ​( 1 – __ ​ y ​ )​ dy = 0. x __ ​ y ​

x __ ​ y ​

Reducible to homogeneous differential equation dy 90. Solve: ___ ​    ​ = dx

x + 2y + 3 ​ __________       ​. 2x + 3y + 4

dy (x + y)2 91. Solve: ___ ​    ​ = ​ ____________      ​. (x + 2) (y – 2) dx 93. Solve: (x + 2y + 3) dx = (2x + 3y + 4) dy. dy x  +  2y – 5 94. Solve: ___ ​    ​ = ​ _________   ​. dx 2x + y – 4 dy 4x  +  6y – 5 95. Solve: ___ ​    ​ = ​ __________     ​. dx 6x + 9y + 7 dy 96. Solve: ___ ​    ​ = dx

6x  –  2y – 7 ​ __________       ​. 3x – y + 4

Linear differential equation 97. Solve: y dx – x dy + ln x dx = 0. dy 98. Solve: x2 ___ ​    ​ – 3xy = 4x4 + 2x2. dx dy 99. Solve: ___ ​    ​ = y tan x – sin x. dx dy 2 100. Solve: x log x  ___ ​    ​ + y = __ ​ x ​ log x. dx x 101. Solve: x dx = ​ __ ​  2  ​  – y  ​ dy. y

(  )

dy y 107. Solve: ___ ​    ​ + __ ​   ​ = x3. dx x dy 108. Solve: ___ ​    ​ = dx dy 109. Solve: ___ ​    ​ – dx



y tan x – 2 sin x. y __ ​ x ​ = 2x2.

dy 2 110. Solve: x log x ​ ___  ​ + y = __ ​ x ​  log  x. dx

111. Solve: y dx – (x + 2y2) dy = 0. 112. Solve: y dx + (x – y3) dy = 0. dy 113. Solve: x ​ ___  ​ – ay = x + 1. dx dy 114. Solve: (x + 1)  ​ ___  ​ – ny = ex (x + 1)n + 1. dx 115. Solve: (1 + y2) dx = (tan–1 y – x) dx. dy 116. Solve: (x + 3y + 2)  ​ ___  ​ = 1. dx 117. Solve: (1 + y2) dx =  (xy + y3 + y) dy. Bernoulli’s differential equation dy y y 118. Solve: ___ ​    ​ + __ ​ x ​ log x = __ ​  2  ​  (log y)2. dx x dy 119. Solve: ___ ​    ​ + xy = x2 y6. dx dy sin2 y 120. Solve: ___ ​    ​ + _____ ​  x    ​ = x3 cos2 y. dx dy 121. Solve: ___ ​    ​ – x3 y2 + xy = 0. dx dy 122. Solve: (1 – x2) ​ ___  ​ + xy = xy2. dx dy 123. Solve: x  ​ ___  ​ + y = x3 y6. dx –1 dy 124. Solve: (1 + x2) ​ ___  ​ + y = e​ tan ​ x​. dx

dy 102. Solve: (x + 3y + 2) ​ ___  ​ = 1. dx

dy 125. Solve: ___ ​    ​  (x2 y3 + xy) = 1. dx

dy 103. Solve: ___ ​    ​ + 2y = e3x. dx

126. Solve: (y log x – 1) y dx = x dy



dy 104. Solve: x ​ ___  ​ = x + y. dx

dy 105. Solve: x ​ ___  ​ + y = xex. dx

dy 106. Solve: x ​ ___  ​ + y = x log x. dx

dy 127. Solve: ___ ​    ​ = x2 y3 – xy dx dy xy __ 128. Solve: ___ ​    ​ + _____ ​   2   ​ = x​÷y    ​.  dx 1 – x dy y y 129. Solve: ___ ​    ​ + __ ​ x ​ ◊ log y = __ ​  2  ​  (log y)2 dx x

4.11

4.12  Integral Calculus, 3D Geometry & Vector Booster dy 1 130. Solve: ___ ​    ​ + __ ​   ​ ◊ sin 2y = x3 ◊ cos 2y. dx x



2

131. Solve: (xy2 – e​ 1/x ​ ​) dx – xy2 dy = 0. dy 132. Solve: ___ ​    ​ + x (x + y) = x3 (x + y)3 – 1. dx Exact differential equation 133. Solve: x dx + y dy = x dy – y dx. 134. Solve: x dy – y dx = x4dx.

dy 158. Solve: ___ ​    ​ = dx

= (2xy + sin x ◊ cosec2 y) dy

( 

)

2x –  3y + 1 ​ ​ __________       ​  ​. 3x – 2y – 2

159. Solve: x (dy + dx) = y (dx – dy).

( 

137. Solve: x dy + y dx + xy2 dx – x2y dy = 0.

dy y  –  x  ___ ​    ​ dx 1 1 162. Solve: ________ ​   ​  = __ ​  2  ​  + __ ​  2  ​ . dy x y y + x ​ ___  ​ dx

138. Solve: (4x – 3y) dx + (2y – 3x) dy = 0.

163. Solve: x2 y dy – xy2 dx = x4 dy + x3 y dx.

135. Solve: x dy + y dx = sin y dy. 136. Solve: x dy + y dx + y2(x dy – y dx) = 0.

( 

)

164. Solve: dx + x (y dx + x dy) = e– ey dx.

1 139. Solve: ​ sin y + y sin x + ​ __ x ​  ​ dx.

( 

)

1 + ​ x cos y – cos x + __ ​ y ​  ​ dy = 0.



x dx + y dy _________ y dx –  x dy 140. Solve: _________ ​  _______    ​  = ​   ​    . 2 2 x2 ​÷x  + y  ​ 

( 

)

xy 160. Solve: x (tan–1 x – log x) dy + y dx = ​ _____ ​   2   ​  ​ dx. 1+x 161. Solve: x (dy – x dx) + y dx = 0.

( 

x – ​ __ ​

165. Solve: y (y2 dx + (x2 dy – xy dx)) = e​ ​ y ​ dy. 166. Solve: y dx – x dy + xy2 dx = 0.

( 

)

( 

)

sin 2 x sin2 x 141. Solve: ​ _____ ​  y    ​ + x  ​ dx + ​ y – _____ ​  2 ​    ​ dy = 0. y dy x  + y ​ ___  ​ y4 dx 142. Solve: _______ ​   ​  = x2 + 2y2 + ​ __2 ​ . dy x y – x ​ ___  ​ dx dy a2 ​ x ​ ___  ​  –  y  ​ dy dx 143. Solve: x + y  ___ ​    ​ = ___________ ​  2     ​  . dx x + y2

168. Solve: (x2 + y2 + a2) y dy = (x2 + y2 – a2) x dx.

144. Solve: x dx + y dy = (x2 + y2) y dy.

172. Solve: x dx + y dy = m (x dy – y dx).

145. Solve: (x + y) dx + (x – y) dy = 0.

dy x + y ​ ___  ​ x sin2 (x2  +  y2) dx ____________ 173. Solve: ________ ​   ​  = ​   ​      . dy y3 ___ y – x ​    ​ dx dy a2 ​ x ​ ___  ​ – y  ​ dy dx 174. Solve: x + y  ___ ​    ​ = ___________ ​  2     ​   . dx x + y2

)

( 

)

146. Solve: y dx + x (x – 1) dy = 0. 147. Solve: y dx + x (1 – xy) dy = 0. 148. Solve: (x + y) (dx – dy) = (dx + dy). 149. Solve: dx + dy = x dy + y dx. 150. Solve: x dy – y dx = (x2 + y2) dx.

( 

)

1 1 151. Solve: ​ __ ​ x ​ + __ ​ y ​  ​ (x dy + y dx) = dx + dy. ______

152. Solve: (x dy + y dx) ​÷x  2 + y2   ​ = x2 y dx + xy2 dy. 153. Solve: (x – x3) dy = y (dx + x2 dy). 154. Solve: (x + 2y) dy + y dx = 0.

169. Solve: (1 + xy) y dx + x (1 – xy) dy = 0.

( 

)

x dy y 170. Solve: ______ ​  2      ​ = ​ ______ ​  2   2   ​  –  1  ​ dx. 2 x +y x +y dy x + y ​ ___  ​ y4 dx 171. Solve: _______ ​   ​  = x2 + 2y2 + __ ​  2 ​ . dy x y – x ​ ___  ​ dx

( 

)

÷  ÷ 

___________

x dx  +  y dy a2  –  x2 – y2 175. Solve: _________ ​     ​  = ​ ___________ ​  2     ​ ​   . x dy – y dx x + y2 __________

x dx  –  y dy 1  +  x2 – y2 176. Solve: _________ ​     ​  = ​ ​ __________        ​ ​   . x dy – y dx x2 – y2

(  )

155. Solve: (x + sin y) dy + y dx = 0.

x 177. Solve: sin ​ __ ​ y ​  ​ (y dx – x dy) = xy2 (x dy + y dx).

156. Solve: ey dx + (xe y – 2y) dy = 0.

178. Solve: x dy + y dx + y2 (x dy – y dx) = 0.

157. Solve: 2y dy + (cos x ◊ cot y – y2) dx.

)

dy dy 167. Solve: 2 ​ x – y ​ ___  ​  ​ (x2 + y2) = (x2 – y2) ​ y – x ​ ___  ​  ​. dx dx

179. Solve: (4x3 + ex sin y) dx + ex cos y dy = 0.

Differential Equation 

Orthogonal Trajectories 180. Find the orthogonal trajectories of the family of the straight lines which are passing through the origin. 181. Determine the 45∞ trajectories of the family of concentric circles x2 + y2 = a2. 182. Find the orthogonal trajectories of the family of the curves ax2 + y2 = 1. 183. Find the orthogonal trajectories of the circles x2 + y2 – ay = 0, where a is a parameter. 184. Find the orthogonal trajectories of the family of parabolas y2 = 4ax, where a is a parameter. 185. Find the orthogonal trajectories of the family of rectangular hyperbola xy = c2. 186. Find the orthogonal trajectories of the family of curves x2 – y2 = c2. First Order Higher Degree Differential Equation. Equation Solvable for p 187. Solve: (x + y + p) (2x + p) = 0. 188. Solve: p2 – p (ex + e–x) + 1 = 0. 189. Solve: p2 + 2 py cot x = y2. 190. Solve: p2 – px – xy – y2 = 0. 2

191. Solve: p y + (x – y) p – x = 0. 192. Solve: (p2 – 1) xy = (x2 – y2) p. 193. Solve: x y p2 – (x2 + y2) p + xy = 0. Equation solvable for x 194. Solve: p x – y p2 = a p. 195. Solve: y = 2 p x + y2 p3. 196. Solve: y2 log y = x y p + p2. 197. Solve: p2 y + 2p x = y. 198. Solve: p3 – 4 x y p + 8p2 = 0. 199. Solve: y p = 2p2 x + y2 p4. 200. Solve: x p2 – y p – p + 1 = 0. Equations solvable for y 201. Solve: y = (1 + p) x + a p2. 202. Solve: y = y p2 + 2px. 203. y = 2p x + tan–1 (xp2). 204. x2 p4 + 2x p = y. 205. y + p x = x4 p2. 206. y = p sin  + cos p. Clairaut Differential Equation 207. Solve: (y + 1) P – xP 2 + 2 = 0. 208. Solve: P3x – P2y – 1 = 0.

209. Solve: (y + 1) P – xP2 + 2 = 0. 210. Solve: sin y ◊ cos Px – cos y ◊ sin Px – P = 0. 211. Solve: (x – a) P2 + (x – y) P – y = 0. ______

212. Solve: y = px + a ​÷1    +  p2 ​.  a 213. Solve: y = P (x – b) + __ ​   . ​ P Higher Order Differential Equation d2y Differential equation is the form ___ ​  2 ​ = f (x) dx d 2y ___ 214. Solve: ​  2 ​ = x + sin x. dx d 2y 215. Solve: ___ ​  2 ​ = e2x + ex + 2014. dx d 2y 216. Solve: ​ ___2 ​ = sin2 x. dx d 2y 217. Solve: ___ ​  2 ​ = cos3 x. dx d2y 1 218. Solve: ___ ​  2 ​ = _________ ​  2       ​. dx sin x cos2 x d2y 219. Solve: ___ ​  2 ​ = sin4 x + cos4 x. dx d2y 220. Solve: ___ ​  2 ​ = xex. dx

d2y Differential equation of the form ___ ​  2 ​ = f (y) dx d2y 221. Solve: ___ ​  2 ​ + y = 0. dx d2y 1 222. Solve: ___ ​  2 ​ = __ ​  3  ​.  dx y d2y 1 223. Solve: ___ ​  2 ​ = ____ ​   __   ​. 4​÷y    ​  dx d2y 224. Solve: a2  ___ ​   ​ – y = 0. dx2 d2y 225. Solve: ___ ​  2 ​ = e2y. dx d2y 226. Solve: 2 ​ ___2 ​ = 3y2, dx

(  )

dy y (– 2) = –1, ​​ ___ ​    ​  ​​ ​ = – 1, dx x = – 2

4.13

4.14  Integral Calculus, 3D Geometry & Vector Booster

(  )

d2y 227. Solve: y3 ​ ___ ​  2 ​  ​ = –1, dx

242. A curve passes through (2, 0) and the slope of the

(  )

dy y (1) = –1, ​​ ___ ​    ​  ​​ ​ = 0. dx x = – 1

(  )

d 2y ___ dy Differential equation is the form j  ​ ___ ​  2   ​, ​    ​ ​ = 0 dx dx 2 d y dy 228. Solve: x ​ ___2 ​ + ___ ​    ​ + x = 0. dx dx d 2y 1 ___ dy 229. Solve: ​ ___2 ​ = __ ​ x ​ ​    ​ + x. dx dx d2y 230. Solve: y ​ ___2 ​ + dx

(  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) (  ) dy 2 ​​ ___ ​    ​  ​​ ​ = 1. dx

d 2y dy 2 dy 231. Solve: y ​ ___2 ​ – ​​ ___ ​    ​  ​​ ​ = y2 ​ ___ ​    ​  ​. dx dx dx d2y dy 2 232. Solve: (x + a) ​ ___2 ​ + x ​​ ___ ​    ​  ​​ ​ = dx dx d 2y 1 ___ dy 2 233. Solve: x ​ ___2 ​ – __ ​   ​ ​​  ​    ​  ​​ ​ = 4 dx dx

dy ​ ___ ​    ​  ​. dx

dy ​ ___ ​    ​  ​. dx

d2y dy 2 234. Solve: y ​ ___2 ​ = 1 –  ​​ ___ ​    ​  ​​ ​. dx dx d2y dy 235. Solve: ___ ​  2 ​ = 2y ​ ___ ​    ​  ​. dx dx

d2y dy 2 dy 236. Solve: y ​ ___2 ​ – ​​ ___ ​    ​  ​​ ​ = y2 ​ ___ ​    ​  ​. dx dx dx d2y 1 ___ dy a 237. Solve: ___ ​  2 ​ + __ ​ x ​  ​ ​    ​  ​ – __ ​  2  ​  = 0. dx dx x

d2y dy dy 2 238. Solve: y ​ ___2 ​ – y ​ ___ ​    ​  ​ ln y = ​​ ___ ​    ​  ​​ ​. dx dx dx Geometrical Applications

239. The slope of the curve at any point is the reciprocal of twice the ordinate at the point. The curve passes through the point (4, 3). Find the equation of the curve. 240. Find the equation of the curve whose slope at any point is y + 2 x and which passes through the origin. 241. Find the equation of the curve which passes through the origin and the tangent to which at every point (x, y) has slope equal to 4

x   +  2xy – 1 ​ ___________     ​  . x2 + 1

(x + 1)2  +  y – 3 tangent at P (x, y) is ______________ ​      ​    . (x + 1) Find the equation of the curve. 243. A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axes at A and B, P is the mid-point of AB. The curve passes through the point (1, 1). Determine the equation of the curve. 244. A curve passing through the point (1, 1) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the x-axis. Determine the equation of the curve. 245. If the length of the tangent at any point on the curve y = f (x) intercepted between the point and the x-axis is of length 1. Find the equation of the curve. 246. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, – 3). Find the equation of the curve, given that it passes through (– 2, 1). 247. The ordinate and the normal at any point P on the curve meet the x-axis at points A and B respestively. Find the equation of the family of the curves satisfying the condition AB is the AM of abscissa and the ordinate of P. 248. Find the nature of the curve for which the length of the normal at any point P is equal to the radius vector.



(Mixed Problems) 1. The order and the degree of the differential equation

÷ 

___

dy dy ​ ___ ​    ​ ​ – 4 ​ ___  ​ – 7y = 0 dx dx are

(a) 1 and 1/2 (b) 2 and 1 (c) 1 and 1 (d) 1 and 2 2. The order of the differential equation whose general solution is given by

y = c1​e2x + c ​ 2​ + c3 ex + c4 sin (x + c5) 3.

is (a) 5 (b) 4 (c) 3 (d) 2 The differential equation of all straight lines passing through the origin is

÷ 

____



dy (a) y = ​ x ​ ___  ​ ​   dx

dy (b) ​ ___  ​ = y + x dx

Differential Equation 



dy y (c) ​ ___  ​ = __ ​   ​ dx x

(d) none of these

4. A differential equation associated by the promitive y = a + be5x + ce–7x is

(a) y3 + 2y2 + y1 = 0



(b) 4y3 + 5y2 – 20y1 = 0



(c) y3 + 2y2 – 35y1 = 0

(d) none of these 5. The differential equation of the family of curves y = a cos (x + b) is

d2y (a) ​ ___2 ​ – y = 0 dx

d2y (b) ​ ___2 ​ + y = 0 dx

d2y (c) ​ ___2 ​ + 2y = 0 (d) none of these dx 6. The differential equation, whose general solution is y = A sin x + B cos x, is



d2y (a) ​ ___2 ​ + y = 0 dx

d 2y (b) ​ ___2 ​ – y = 0 dx



dy (c) ​ ___  ​ + y = 0 dx

(d) none of these



7. The differential equation of all straight lines passing through the point (1, – 1) is

10. The solution of the differential equation dy 1 + x2 ​ ___  ​ + ​ _____   ​= 0 x    dx is 1 (a) y = – ​ __ ​  tan–1 x + c 2 x2 (b) y + ln x + __ ​   ​  + c = 0 2 1 (c) y = __ ​   ​    tan–1x + c 2 x2 (d) y – ln x – ​ __ ​  = c 2 11. The solution of the differential equation

x cos y dy = (x ex ln x + ex) dx is

1 (a) sin y = __ ​ x ​ ex + c



(b) sin y + ex ln x + c = 0



(c) sin y = ex ln x + c



(d) none of these

12. The solution of the differential equation x (e2y – 1) dy + (x2 – 1) ey dx = 0 is

x2 (a) ey + e–y = ln x – ​ __ ​  + c 2 x2 (b) ey – e–y = ln x – ​ __ ​  + c 2



dy (a) y = (x + 1) ​ ___  ​ + 1 dx

dy (b) y = (x + 1) ​ ___  ​ – 1 dx





dy (c) y = (x – 1) ​ ___  ​ + 1 dx

dy (d) y = (x – 1) ​ ___  ​ – 1 dx







8. The differential equation of the family of parabolas with focus at the origin and the x-axis as axis is

(  ) (  ) (  ) (  )

dy dy (a) y ​​ ___ ​    ​  ​​ ​ + 4x ​ ___  ​ = 4y dx dx 2



x2 (c) ey + e–y = ln x + __ ​   ​  + c 2 (d) none of these

13. Solution of the equation (1 – x2) dy + xy dx = xy2dx is

dy 2 dy (b) – y ​​ ___ ​    ​  ​​ ​ = 2x ​ ___  ​ – y dx dx 2 dy dy (c) y ​​ ___ ​    ​  ​​ ​ + y = 2xy ​ ___  ​ dx dx



(a) (y – 1)2 (1 – x2) = 0



(b) (y – 1)2 (1 – x2) = c2y2



(c) (y – 1)2 (1 + x2) = c2y2



(d) none of these

dy dy (d) y ​​ ___ ​    ​  ​​ ​ + 2xy ​ ___  ​ + y = 0 dx dx

14.

The general solution of y dx + (1 + x2) tan–1 x dy is (a) y tan–1 x = c (c) y + tan–1x = c

2

9. The differential equation of all lines in the xy-plane is



dy (a) ​ ___  ​ – x = 0 dx

d2y (b) ​ ___2 ​ – dx



d 2y (c) ​ ___2 ​ = 0 dx

d2y (d) ​ ___2 ​ + x = 0 dx

dy x ​ ___  ​ = 0 dx

4.15

the differential equation = 0, (b) x tan–1y = c (d) x + tan–1 y = c

dy 15. For solving ​ ___  ​ = (4x + y + 1), suitable substitution dx is

(a) y = vx

(b) y = 4x + v

4.16  Integral Calculus, 3D Geometry & Vector Booster

(c) y = 4x

(d) y + 4x + 1 = v

16. The solution of the differential equation dy xy ​ ___  ​ = ______ ​      ​  dx x2 + y2 is 2

2



(a) ay2 = e​ x​ /y ​

(b) ay = ex/y



(c) y = ex2 + ey2 + c

(d) y = ex2 + y2 + c

17. (x2 + y2) dy = x y dx, if y (x0) = e, y (1) = 1, the value of x0 = ______ __ 1 (a) ​÷3 ​    e (b) ​ e2 – __ ​   ​ ​   2 ______ ______

÷ 

÷ 

÷ 

e2 – 1 e2 + 1 (c) ​ ​ ______  ​ ​       (d) ​ ​ ______  ​ ​      2 2 18. The solution of (1 + xy) y dx + (1 – xy) x dy = 0 is x x 1 1 (a) ​ __y ​ + __ ​ xy  ​ = k (b) log ​ __ ​ y ​  ​ = __ ​ xy  ​ + k



x (c) ​ __y ​ = exy + k

(  ) x (d) log ​( __ ​ y ​ )​ = xy + k

19. The solution of the equation (x + log y) dy + y dx = 0 is

(a) xy + y log y = c



(b) xy + y log y – y = c (c) xy + log y – x = c (d) none of these

20. The solution of (x – y3) dx + 3xy2dy = 0 is

x (a) log x + __ ​  3  ​  = k y y (b) log x + __ ​  3  ​  = k x x (c) log x – __ ​  3  ​  = k y (d) log xy – y3 = k

21. The solution of the differential equation dy 3x2 sin2 x ​ ___  ​ + _____ ​   3   ​ y = _____ ​       ​ dx 1 + x 1 + x3 is

1 (a) y (1 + x3) = x + __ ​   ​  sin 2 x + c 2 1 (b) y (1 + x3) = cx + __ ​   ​  sin 2 x + c 2 1 3 (c) y (1 + x ) = cx – ​ __ ​  sin 2 x + c 2 x 1 (d) y (1 + x3) = __ ​    ​ – __ ​    ​ sin 2 x + c 2 2

22. The solution of the equation

dy x ​ ___  ​ + 3y = x dx is

x4 (a) x3y + ​ __ ​  + c = 0 4

x4 (b) x3y = ​ __ ​  + c 4

x4 (c) x3y + __ ​   ​  + c (d) none of these 4 23. The solution of the differential equation dy ​ ___  ​ + 2y cot x = 3x3 cosec2 x dx

is

(a) y sin2 x = x3 + c

(b) y sin x = c



2

(d) y sin x2 = c

(c) y cos x = c

24. The integrating factor of the differential equation x dy – y dx = xy2 dx is

1 (a) ​ __2  ​   x

1 (b) ​ __2  ​  y



1 (c) ​ __ xy  ​  

1 (d) ​ ____    ​  x2y2

25. The equation of the curve through the point (1, 0) which satisfies the differential equation (1 + y2) dx – xy dy = 0, is

(a) x2 + y2 = 1

(b) x2 – y2 = 1



(c) 2x2 + y2 = 2

(d) none of these

(  )

7 26. The equation of a curve passing through ​ 2, ​ __ ​   ​ and 2 1 having gradient ​ 1 – ​ __2  ​   ​ at (x, y) is x (a) y = x2 + x + 1 (b) xy = x2 + x + 1 (c) xy = x + 1 (d) none of these 27. The differential equation of the family of circles passing through the fixed points (a, 0) and (– a, 0) is

(  )



(a) y1(y2 – x2) + 2xy + a2 = 0



(b) y1y2 + xy + a2x2 = 0



(c) y1(y2 – x2 + a2) + 2xy = 0



(d) none of these

y+1 28. The number of solutions of y = ​ _____   ​, y (1) = 2 x–1 is

(a) none (c) two

(b) one (d) infinite

Differential Equation 

29. The solution of



(a) order 1

(b) order 2

dy ​ ___  ​ = 1 + x + y2 + xy2, y (0) = 0 dx is



(c) degree 3

(d) degree 4



2

(a) y =

( 

2

)

x ​ x + ​ __ ​   ​ – 1 ​e​ 2 ​

2

( 

(b) y = 1 +



(c) y = tan (c + x + x2)

( 

2

(b) y2 = ax + b

y = (c1 + c2) cos (x + c3) – c4 ​ex + c ​ 5​ where c1, c2, c3, c4, c5 are arbitrary constants, is (a) 5 (b) 4 (c) 3 (d) 2 A solution of the differential equation

(  )

dy 2 dy ​​ ___ ​    ​  ​​ ​ – x ​ ___  ​ + y = 0 dx dx is

(a) y = 2 (c) y = 2x – 4

(a) – 1/2 (c) e – 1/2

(b) y = 2x (d) y = 2x2 – 4

(b) e + 1/2 (d) 1/2

(  )

dy 2  + sin x ___ 34. If y = y (x) and ________ ​   ​ ​    ​    ​  ​ = – cos x y (0) = 1, y + 1 dx

(  )

p then y ​ __ ​   ​   ​ equals 2 1 (a) ​ __ ​   3 1 (c) – ​ __ ​   3 35. 36.

_____

39.

_____

)

( 

_____

_____

)

is (a) 2 (b) 3 (c) 4 (d) none The degree of the differential equation

(  )

d3y 2/3 d2y dy ​​ ___ ​  3 ​  ​​ ​ – 3  ​ ___2 ​ + 5  ​ ___  ​ + 4 = 0 dx dx dx is

(a) 1 (c) 3

2 (b) ​ __ ​  3 (d) 1

If x dy = y (dx + y dy), y (1) and y (x) > 0, then y (– 3) = (a) 3 (b) 2 (c) 1 (d) 0 The differential equation representing the family __ of curves y2 = 2c (x + ​÷c     ​), where c is a positive parameter, is of

(b) 2 (d) none.

(More than one options are correct) 40. If m and n be the order and the degree of the differential equation

 ( )

 ( ) (  ) (  )

d2y 3 ___ ​​ ​   ​  ​​ ​ d2y d3y dx2 ​​ ___ ​  2 ​  ​​ ​ + 4 ​ ______ ​   ​   ​ + ___ ​  3   ​ = x2 – 1, 3 dx dx dy ​ ___ ​  3 ​  ​ dx 5

dy 33. If y (t) is a solution of (1 + t) ​ ___ ​ – ty = 1 and dt y (0) = – 1 then y (1) is equal to

(b) (x + 1) + ex

(a) x + 2

( 

(c) y = log x (d) y = ex + C 31. The order of the differential equation whose general solution is given by 32.



​ ​÷1  + x2   ​ + ÷ ​ 1  + y2   ​  ​ = A ​ x ​÷1  + y2   ​ – y​÷1  + x2   ​  ​

)

x (d) y = tan ​ x + ​ __ ​   ​ 2 2 d y 30. If ​ ___2 ​ = 0, then dx (a) y = ax + b

37. If f ¢(x) + f (x) = x, when f (0) = 2, then f (x) is (c) (x – 1) + 3e–x (d) none. 38. The degree of the differential equation

)

x2  ​ x + __ ​   ​   ​ 2 ​ c ​e​



4.17

then

(a) m = 3 and n = 5 (c) m = 3 and n = 3

(b) m = 3 and n = 1 (d) m = 3 and n = 2

41. If y = e4x + 2e–x satisfies the relation d 2y dy ​ ___2 ​ + A ​ ___  ​ + By = 0, then dx dx

(a) A = – 3

(b) B = – 4



(c) A – B = 1

(d) A + B = – 7

dy x2 + y2 + 1 42. The solution of ___ ​    ​ = ​  _________     ​  satisfying 2xy dx y (1) = 1 is given by

(a) a system of hyperbola (b) a system of circles (c) y2 = x (1 + x) – 1 (d) (x – 2) + (y – 3)2 = 5.

4.18  Integral Calculus, 3D Geometry & Vector Booster 43. The function f (x) satisfying the relation 2

2

({f (x)} + 4 ◊ f (x) ◊ f ¢(x) + {f ¢(x)} ) = 0 is given by __

__



  )   x (a) k​e (2 + ​ ​ ÷3 ​ ​

  )   x (b) k​e (2 – ​ ​ ÷3 ​ ​



  )   x (c) k​e (4 – ​ ​ ÷3 ​ ​

  )   x (d) k​e(4 +  ​ ​ ÷3 ​ ​

__

(a) m = 3 (b) n = 2 (c) m + n = 5 (d) m – n = 1 45. The value of k such that the family of parabolas y = cx2 + k is the orthogonal trajectory of the family of ellipses x2 + 2y2 – 2y = c is (a) 1/2 (b) 1/4 (c) 2 (d) 4. 46. A differential function f satisfies the relation x+y f ​ ​ ______     ​  ​ = f(x) f(y) " x, y Œ R –{– 1}, 1 + xy

)

where f(0) π 0 and f  ¢(0) = 1. Then dy y (a) f(0) = 1 (b) ​ ___  ​ = _____ ​    2   ​ dx 1 – x 1–x (c) f(x) = ​ _____   ​ (d) None of these 1+x d 47. Let ___ ​     ​(x2y) = x – 1, where x π 0 and x = 1, y = 0. dx Then 1 1 ___ 1 (a) The solution of the curve is y = __ ​   ​  – __ ​   ​ + ​    ​  2 x 2x2 (b) The set of values of x, where x is increasing is (– •, 0) (1, •) (c) The set of values of x where x is decreasing is (0, 1) (d) None of these. dy dy dy 2 48. Let y = x​ ___ ​    ​  ​ + ​ ___ ​    ​  ​ – ​​ ___ ​    ​  ​​ ​. then dx dx dx

(  ) (  ) (  )

(a) The genral solution is y = cx + c – c2 (b) The particular solution is y = 2x – 4 (c) The singular solution is 4y = (x + 1)2 (d) None of these dy 1 – 3x – 3y 49. Let ___ ​    ​ = _________ ​        ​. dx 1 + x + y If the solution of the above differential equation is mx + y + n loge|1 – x – y| + C then (a) m = 2 (b) n = 3 (c) m + n = 5 (d) n – m = 1 dy ax + b 50. Let ___ ​    ​ = ​ ______   ​. If the solution of the given differdx cy + d ential equation is a parabola, then

(a) a (b) c (c) a (d) c

= = = =

2, 0, 0, 0,

b d b a

= = = =

0 4 2, c = 4 2, b = 2, d = 4

__

44. If the order and degree of the differential equation y = c1 sin–1x + c2 cos–1x + c3 tan–1x + c4 cot–1x where c1, c2, c3 and c4 are arbitrary constants, are m and n respectively, then

( 





(Problems for JEE-Advanced)



1. Find the equation of the curve which passes through the origin and the tangent to which at every point

x4  +  2xy – 1 (x, y) has slope equal to ​ ___________     ​  . 1 + x2 [Roorkee-JEE, 2001]

2. Solve the differential equation y y y cos ​ __ ​ x ​  ​ (x dy – y dx) + x sin ​ __ ​ x ​  ​ (x dy + y dx) = 0

(  )

(  )

p when y (1) = __ ​   ​ . [Roorkee-JEE, 1997] 2 3. Solve the differential equation dy cos2 x ​ ___  ​ – (tan 2 x) y = cos4 x dx

(  )

__

3​÷3 ​    p p p where – ​ __ ​  < x < __ ​   ​  and y ​ __ ​   ​   ​ = ____ ​   ​    4 4 8 6 [Roorkee-JEE, 1996]



d 4. If y + ​ ___  ​  (xy) = x (sin x + log x), find y (x). dx [Roorkee-JEE, 1995] 5. Solve the differential equation

x (1 – x2) dy + (2x2y – y – 5x3) dx = 0 [Roorkee-JEE,1994] 6. A tangent to the curve y = f (x) cuts the line y = x at a point which is at a distance of one unit from y-axis. Find the equation of the curve. ______





7. Solve: x dy – y dx = ​÷x  2 + y2   ​dx. y y 8. Solve: ​ xe y/x – y sin ​ __ ​ x ​  ​  ​ dx + x sin ​ __ ​ x ​  ​ dy = 0. 9. Solve: (x + 2y) (dx – dy) = dx + dy.

( 

(  ) )

(  )

10. Solve: (1 + y2) dx = (tan– 1 y – x) dy. dy 2xy 11. Solve: ___ ​    ​ = __________ ​        ​. dx x2 – 2y –  1 12. Solve: x dy – {y + xy3(1 + log x)} dx = 0. 13. Solve: sec2x ◊ tan y dx + sec2y ◊ tan x dy = 0. ________ dy 14. Solve: ÷ ​ x  + y +  1 ​    ◊ ​ ___  ​ = x + y – 1. dx

( 

)

x 15. Solve: (1 + ex/y) dy + ​ 1 – __ ​ y ​  ​ ex/ydy = 0.

Differential Equation 

16. Solve: (4x – y + 3) dy + (2x – 3y – 1) dx = 0. dy 17. Solve: (1 + y2) + (x – etan–1y) ​ ___  ​ = 0. dx 18. Solve: y dx – x (1 + xy) dy = 0. 19. Prove that the equation of a curve whose slope at – (x + y) (x, y) is ​ _______ ​ and which passes through the point x    20.

21. 22. 23. 24. 25.

26.

27.

(2, 1), is x2 + 2xy = 8. If the square of the intercept cut by any tangent on the y-axis is equal to the product of the coordinate of the point of contact, find the equation of such curves. Find the curves for which the length of the normal is equal to the radius vector. dy 2 dy Solve: ​​ ​ ___  ​  ​​ ​ – (ex + e– x) ​ ___  ​ + 1 = 0. dx dx 2 dy dy Solve: ​​ ___ ​    ​  ​​ ​ + 2x ___ ​    ​ = 3x2. dx dx 2 dy dy Solve: xy ​ ​​ ​ ___  ​  ​​ ​ – 1  ​ = (x2 – y2) ​ ___  ​. dx dx Find the equation of the curve passing through the point (0, – 2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, – 3). Find the equation of the curve, given that it passing through (– 2, 1). Find the equation of the curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.

(  ) (  ) { (  ) }

28. Find the equation of the curve which touches the line y = 1 and passes through the point (0, 1) and satisfies

(  ) 2

dy the differential equation y3 ​ ___ ​  2 ​ – y  ​ = 1. dx 29. The ordinate and the normal at any point P on the curve meet the x-axis at points A and B respectively. Find the equation of the family of curves satisfying the condition AB = arithmetic mean of abscissa and ordinate of P. 30. A normal is drawn at a point P (x, y) of a curve. It meets the x-axis at Q. PQ is of the constant length k. Find the coordinates of Q. Also find the differential equation of the given curve. 31. Find the equation of the curve, the slope of whose 2y tangent at any point (x, y) is ​ ___ x ​ , for all x, y > 0 and which pass through the point (1, 1).

4.19

32. Let C be a curve such that the normal at any point P on it meets x-axis and y-axis at A and B, respectively. If PB : PA = 1 : 2 (internally) and the curve passes through the point (0, 4), prove that the curve is a ___

hyperbola and it passes through the point (​÷10 ​    , 6). 33. A normal is drawn at any point P (x, y) of a curve, it meets the x-axis and the y-axis in points A and B 1 1 respectively, such that ___ ​    ​ + ___ ​     ​ = 1, where O is OB OA the origin. Find the equation of such a curve passing through (5, 4).



(Tougher Problems for JEE-Advanced)



1. Find the order of the differential equation whose general solution is given by y = C1cos (2x + C2) – (C3 + C4)​3x + C ​ 5​ + C6sin (x – C7) 2. Form the differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to x-axis. 3. The slope of the tangent to a curve at a point P (x, y) 2y is ___ ​  x ​ , x, y > 0 and which passes through the point (1, 1), find the equation of the curve. 4. A conic C passes through the point (2, 4) and is such that the segment of any of its tangents at any point contained between the coordinate axes is bisected at the point of tangentcy. Find the equation of the conic. 5. Solve the differential equation x2 + y2 dy x2  + y2 ______ ​  ​ 2y  ___ ​    ​ = ​e​​​  x    ​ + ​ ______ ​  x    ​ – 2x  ​. dx 6. Find the integral curve of the differential equation dy x (1 – x lny)  ​ ___  ​ + y = 0, dx 1 which passes through the the point ​ e, __ ​ e ​  ​. 7. Solve the differential equation dy dy 2 ​ x – y ​ ___  ​  ​ (x2 + y2) = (x2 – y2) ​ y – x ​ ___  ​  ​ dx dx d 8. If y + ___ ​    ​ (x y) = x (sin x + log x), find y as a function dx of x. 9. Solve the differential equation (x dy + y dx) sin (xy) + (x2y dx + x y2dx) cos (x y) = 0.

( 

)

( 

)

(  )

( 

)

( 

10. Solve the differential equation dy 2y2cos x +  y sin 2x + 2cos x ◊ sin2x ​ ___  ​ = ____________________________ ​           ​. dx sin2x 11. Solve the differential equation

)

4.20  Integral Calculus, 3D Geometry & Vector Booster

(  )

(  )

y y y cos ​ __ ​ x ​  ​ (x dy – yd x) + x sin ​ __ ​ x ​  ​ (x dy + y dx) = 0, p where y (1) = __ ​   ​ . 2 12. Solve the differential equation

÷ 

______________________________

dy x4y2 – x6 + 2x4y – x6y2 – 2x6y + x4 ​ ___  ​ = ​ ______________________________ ​                 ​ ​ dx y2 – x2y2 + x3y2 – x5y2 x

log t    13. If f (x) = Ú​  ​  ​  ​ ________  2   ​dt, x ≥ 1, prove that 1 1  +  t + t

(  )

1 f (x) = f  ​ ​ __ x ​  ​. 14. Solve the differential equation dy x2 + y2 +  3x + 3y + 2xy + 1 ​ ___  ​ = _________________________ ​          ​. dx x2 + y2 – 3x – 3y + 2xy + 2 15. A differentiable function f satisfies the relation f (x + y) + f (x) ◊ f (y) = f (xy + 1). Given f (0) = –1, f ¢(0) = f ¢(1) =1, find the function f. 16. A differentiable function f satisfies the relation f (xy) = x f (y) + yf (x) for every x, y in R. If f ¢(1) = 1, the find the function f. y y x 1 17. Solve: ​ __ ​ y ​ sin ​ __ ​ y ​  ​ – __ ​  2  ​  cos ​ __ ​ x ​  ​ + 1  ​ dx x

( 

(  ) ) (  ) y x x 1 1 +  ​  __ ​ x ​ cos ​( __ ​ x ​ )​ – __ ​    ​ sin ​( __ ​ y ​ )​ + __ ​    ​   ​ dy = 0. ( y y )  



2

2

dy (1 + y2) 18. Solve: ___ ​    ​ = ​ _________      ​. dx xy (1 + x2) y dy ________________ 1 19. Solve: __ ​ x ​ + ___ ​    ​ = ​  4       ​. dx sin (xy) + cos2 (xy) 20. Solve: (x2 + y2 + 1) dy + 2xy dx = 0.

( 

)

2 2 2 dy 1 x  + y 21. Solve: y ​ ___  ​ + x = __ ​   ​ ​​  ______ ​  x    ​  ​​ ​. 2 dx y  +  sin x cos2(xy) x dy 22. Solve: _______________ ​      ​ dx    + _______ ​  2    ​  = 0. 2  cos (xy) cos (xy)

23. Find the general solution of the linear equation of dy the first order ___ ​    ​ + p (x) y = q (x), if one particular dx solution y1(x) is known. 24. Find the curve such that the square of the intercept cut by any tangent off the y-axis is equal to the product of the co-ordinates of the point of tangency. 25. If f (x) is a function such that x

x

0

0

x  ​Ú ​  ​  (1 – t) f (t) dt = ​Ú ​  ​  t f (t) dt, f (1) = 1, find f (x).

26. Find the equation of the curve passing through (3, 4) and satisfying the differential equation dy 2 dy y ​​ ​ ___  ​  ​​ ​ + (x – y) ​ ___  ​ – x = 0. dx dx y j  (y/x) 27. Solve: y¢ = __ ​ x ​ + ______ ​   ​  . j¢(y/x) 28. A differentiable function f satisfies the relation x+y f ​ ​ ______   ​   ​ = f (x) ◊ f (y) for all x, y in R – {–1}, where 1 + xy

(  )

( 

)

f (0) π 0 and f ¢(0) = 1. Find f (x). A differentiable function f satisfies the relation f (xy) = xf (y) + yf (x) for all x, y in R+. If f (1) = 1, find f (x). Find the curve for which the portion of the tangent included between the coordinate axes is bisected at the point of contact. 31. Find the nature of the curve for which the length of the normal at a point P is equal to the radius vector of the point P. 32. Find the equation of the curve passing through (2, 2) such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. 33. A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P.   Prove that the differential equation of the curve is dy y2 – 2xy ​ ___  ​ – x2 = 0 dx and hence find the equation of the curve. 34. Find the orthogonal trajectories to the curve y2 = a (x + a). 35. Find the equation of the curve in which the perpendicular from the origin upon the tangent is equal to the abscissa of the point of contact. 29. 30.

Integer type questions

1. Find the degree of the differential equation

(  ) (  ) (  )

d3y 2/3 d2y dy ​​ ___ ​  3 ​  ​​ ​ – 3 ​ ___ ​  2 ​  ​ + 5 ​ ___ ​    ​  ​ + 4y = 0. dx dx dx 2. If the order of the differential equation of the curve y = (c1 + c2) sin (x + c3) – c4​ex + c ​ 5​ is M, find the value of (M – 1). 3. If y = e4x + 2e–x satisfies the differential equation d3y dy ​ ___3 ​ + A ​ ___  ​ + By = 0, the value of A – B + 4. dx dx dy a x + b 4. The solution of ___ ​    ​ = ​ ______   ​, where a < 0 and dx b y + k b ≥ 0, represents a parabola, find the value of a + b + 4.

Differential Equation 

(  )

dy 5. The solution of the differential equation ln ​ ___ ​    ​  ​ = dx 3x + 4y, y (0) = 0 is

Ae3x + Be– 4y + C = 0, where A + B + C + 5 is... 6. The polynomial f (x) satisfies the equation f (x + 1) = x2 + 4x. The area enclosed by y = f (x – 1) and the __ 16​÷2 ​    2 _____ curve x + y = 0 is ​      ​,  where k is ... k 7. If the number of straight lines which satisfy the dy dy 2 differential equation ​ ___  ​ + x ​​ ​ ___  ​  ​​ ​ = y is m, the value dx dx of m + 2 is...

(  )



8. If f (x) + f ¢(x) = x, where f (0) = 2, then f (x) is

(x – 1) + ke– x, where k + 2 is ... 9. The solution of the differential equation dz z z 1 1 ​ ___  ​ + __ ​   ​ ln z = __ ​  2  ​  (ln z)2 is ____ ​     ​ = ____ ​   2 ​ + C, dx x x ln z x mz





( 

)

Comprehensive Link Passages

(b) –7 (d) –1

1. The degree of the differential equation

(  )



(  )

(  )

(  )

Passage I The differential equation corresponding to



y = c1​em ​ 1x​ + c2​em ​ 2x​ + c3​em ​ 3x​,



where c1, c2 and c3 are arbitrary constants and m1, m2 and m3 are the roots of m3 – 7m + 6 = 0 is

(  ) (  ) (  )

where a, b, g and d are arbitrary constants. On the basis of the above information, answer the following questions. 1. The order of the differential equation is (a) 1 (b) 2 (c) 3 (d) 4 2. The degree of the differential equation is (a) 1 (b) 2 (c) 3 (d) 4 3. The value of a and b, respectively, are

÷  (  ) ÷  (  ) _________

_________

4 d2y d3y ​ 1 + ​ ___ ​  2 ​  ​ ​  = ​ 1  + ​ ___ ​  3 ​  ​ ​  is dx dx



d 3y d2y dy a ​ ___ ​  3 ​  ​ + f  ​ ___ ​  2 ​  ​ + g  ​ ___ ​    ​  ​ + d = 0, dx dx dx

dy 3 ! ​​ xy ​ ___  ​  ​​ ​ + ... to • is dx (a) 0 (b) 1 (c) 2 (d) not defined 2. The dgree of the differential equation

3

In these questions, a passage (paragraph) has been given followed by questions based on each of the passage. You have to answer the questions based on the passage given.



(b) –7 (d) –1

dy dy 2 dy 3 1 1 1 x = 1 + ​ xy ​ ___ ​  ​ + ​ __  ​! ​​ xy ​ ___ ​  ​​ ​ + ​ __  ​! ​​ xy ​ ___ ​  ​​ ​ + ​ __  ​ 2 3 4 dx dx dx

10. The solution of the differential equation e ​ xy2 – __ ​  3  ​   ​ dx – x2 y dy = 0, x e 1 given y = 0 when x = 1, is y2 = __ ​   ​ ​ __ ​    ​  – x2  ​, where k x4 k + 5 is ...

)

(b) 1, 0 (d) 0, –1

Passage II The order of the differential equation is the highest order derivative appearing in the equation and the degree of the differential equation is the index power of the highest order derivative and is free from any type of radical sign. On the basis of the above information, answer the following questions.

where m + 4 is

( 

(a) 0, 1 (c) –1, 0 4. The value of g is (a) 6 (c) 2 5. The value of d is (a) 6 (c) 2

4.21



(a) 3 (b) 1 (c) 2 (d) not defined 3. The order and the degree of the differential equation of the curve y = mx + m2 + m3 + m4 is (a) 1, 3 (b) 1, 4 (c) 2, 3 (d) 2, 4 4. The order and the degree of the differential equations dy in ​ ​ ___  ​  ​ = x + 1 is dx (a) 1, 4 (b) 2, 4 (c) 1, not defined (d) 2, not defined

(  )

Passage III Differential equations are solved by reducing them to get the exact differential of an expression x and y, i.e. they are reduced to the form d [ f (x, y)] = 0 For example, x dx + y dy _________ x dy –  y dx _______ ​ _________    ​  = ​   ​    x2 ÷​ x  2 + y2 ​  + 2y dy _________ x dy  –  y dx 1 2x dx fi ​__    ​  × ___________ ​  ______        ​ = ​   ​    2 x2 ​÷x  2 + y2   ​

4.22  Integral Calculus, 3D Geometry & Vector Booster d (x2 + y2) y ______ ​  fi ​ _________   = – d ​ __ ​ x ​  ​ 2 2 ​÷x    +  y  ​  _______ y fi d (​÷x  2  +  y2 ​  ) = – d ​ ​ __x ​  ​ Thus the required solution is _______ y ​÷x  2  +  y2 ​  + __ ​ x ​ = c. On the basis of the above information, answer the following questions. 1. The general solution of (2x3 – xy2) dx + (2y3 – x2y) dy = 0, is

(  ) (  )



2

2 2

4

(a) x + x y – y = c

2

2 2

4

(b) x – x y + y = c

(c) x2 – x2y2 – y4 = c (d) x2 + x2y2 + y4 = c 2. The general solution of the differential equation x dy y ​ ______  2   ​ + ​ 1– ______ ​  2   2   ​  ​ dx = 0, 2 x +y x +y

( 

is

)

(  ) y  ​( __ ​ x ​ )​ = c

(  )



(1 – x)2 ​ ______  ​    (a) ​e​ 2 ​

(1 – x)2 ​ ______  ​    (b) ​e​ 2 ​ –



(c) ln (1 + x) – 1

(d) 1 + x.

Passage V A normal is drawn at a point P (x, y) of a curve. It meets the x-axis at Q. PQ is of constant length k. On the basis of the above information, answer the following questions. 1. The co-odinates of Q are



y (a) x + tan–1 ​ __ ​ x ​  ​ = c

x (b) x + tan–1 ​ __ ​ y ​  ​ = c





(c) x – tan–1

(d) none.



3. The general solution of the differential equation ey dy + (xey – 2y) dy = 0, is

(a) xey – y2 = c y

(c) ye + x = c

(b) xe y – x2 = c y



2

(d) xe – 1 = cy .

the function and get required result. On the basis of the above information, answer the following questions. 1. The equation of the curve to the point (1, 0) which satisfies the differential equation (1 + y2) dx – xy dy = 0, is

(a) x2 + y2 = 1

(b) x2 – y2 = 1



(c) x2 + y2 = 2

(d) x2 – y2 = 2



–1 

–1 

dx (d) ​ x – y ​ ___  ​, 0  ​. dy

2. The differential equation of the curve is

(  ) (  )

(  ) (  )

dy 2 dy 2 (a) ​​ y ​ ___  ​  ​​ ​ = y2 – k2 (b) ​​ y ​ ___  ​  ​​ ​ = k2 – y2 dx dx 2 dy dy 2 (c) ​​ ___ ​    ​  ​​ ​ = y2 – k2 (d) ​​ ___ ​    ​  ​​ ​ = k2 – y2 dx dx 3. The cartesian equation of the curve, if it passes through the point (0, k) is (a) x2 + y2 = k2

(b) x2 + y2 = 2k2 y (c) log ​ y + ​÷y  2 – k2 ​    ​= 0 (d) sin–1 ​ __ ​   ​  ​ = x + c. k

( 

______

(  )

)

Given below are matching type questions, with two columns (each having some items) each. Each item of Column I has to be matched with the items of Column II, by encircling the correct match(es). Note:  An item of Column I can be matched with more than one items of Column II. All the items of Column II have to be matched.

1. Observe the following Columns Column I

( 

–1 



(a) tan y + sin x = c (b) tan x + sin y = c



(c) tan–1 y ◊ sin–1 x = c



) )

dx (b) ​ x + y ​ ___  ​, 0  ​ dy

Column II 3

(B) The degree of the differential (Q) Not dy defined equation log ​ 1 + ___ ​    ​  ​ = x is dx

1 + y2 _____  ​ _______    ​ = 0, is  ​ ÷​ 1  + x2  –1 

(  ( 

) )

(A) The degree of the differential (P) equation of the curve __ y2 = 2c (x + ​÷c    ​)  is

2. The solution of the differential equation

dy ​ ___  ​ + dx

(  ( 

dy (a) ​ x + y ​ ___  ​, 0  ​ dx dy (c) ​ x – y ​ ___  ​, 0  ​ dx

Matrix Match (For JEE-Advanced Examination only)

Passage IV

dy The differential equation ___ ​    ​ = f (x) ◊ g (y) can be solved by dx dy seperating the variable ​ ____  ​ = f (x) dx and then integrating g (y)

1

(d) tan–1 y ◊ – sin–1 x = c.

dy 3. If ___ ​    ​ = 1 + x + y + xy and y (–1) = 0, then y is dx

)

(C) The order (L) and the degree (R) (M) of the differential equation of the curve y = a sin (bx + c) where a, b and c are arbitrary constants, the value of L + M is

4

Differential Equation 

(D) The order (L) and the degree (S) (M) of the family of parabolas having vertex at origin and axis along positive y-axis, then L + M + 3 is

5

(B)

(A) The integrating factor of the (P) – x2

​e​ ​

(B) The integrating factor of the (Q) differential equation dy ___ ​    ​ + x (x + y) = x3 (x + y)3 – dx 1 is

3

1 __ ​  4  ​  x 1 – ​ __4  ​  y

3. Observe the following Columns: Column II

(a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true and R is not the correct explanation of A. (c) R is true and A is false. (d) R is false and A is true. 1. Assertion (A): The order of all the non-vertical lines in a plane is 3. Reason (R): The order of all the non-vertical lines in a plane passing through the origin is 1. 2. Assertion (A): The order of the differential equation dy sin ​ ___ ​    ​  ​ = x is 1. dx Reason (R): The degree of the differential equation​

(  )

(B) x2 dy + (xy + y2) dx = 0, (Q) cos (y/x) = y = 1 when x = 1 log |cx| x dy y y ________ (C) ___    ​  ​    ​ – ​ __x ​ + cosec ​ __ ​ x ​  ​ = 0, (R) y = 2 ​ 1 – log |x| dx (x π 0, x π e) y = 0, when x = 1

(  )

dy (S) log (x2 + y2) + 2xy + y2 – 2x2 ​ ___  ​ = 0, dx 2 tan–1 (y/x) y = 2 when x = 1 p = ​ __ ​   ​  + log 2  ​. 2

( 

)

4. Observe the following Columns: Column I

Column II

(A) If m and n are the order and (P) the degree of the equation d 4y dy 4 ​ ___4 ​ = y + ​​ ​ ___  ​  ​​ ​, then (m dx dx + n) is

(  )

1/3

Assertion and Reason

(A) (x + y) dy + (x – y) dy = (P) y + 2x = 3x2y 0, y = 1, when x = 1



(S)



(D) The integrating factor of the (S) differential equation 3 (xy2 – ​e1/x ​ ​) dx – x2 y dy = 0 is

(D)

(D) The solution of dy y ​ ___  ​ – dx ________ ​  _______   ​  = 2x2 is 2 ​÷x    +  y2 ​ 

Codes

3

Column I

(R) sin–1 (y/x) = x2 + c

3

x y dx – (x + y ) dy = 0 is



(C) The solution of dy y x ​ ___  ​ = y + x tan ​ __x ​ is dx

e​ –x ​ ​

(C) The integrating factor of the (R) differential equation 2 

5

(  )

Column II

differential equation dy ___ ​    ​ = x3 y2 – xy is dx

(Q)

p y = 1 at x = 0, then y ​ __ ​   ​   ​ 2 is

2. Observe the following Columns: Column I

dy 2  + sin x ___ If ​ ________      ​ ​    ​ = – cos x, i + y dx

4.23

sin (y/x) = cx

dy ___ ​    ​

e​dx ​ = (x + 1) is 2. 3. Assertion (A): The integrating factor of the differential dy equation ___ ​    ​ + xy = 10 is ex. dx

Reason (R): The integrating factor of the differential dy equation ___ ​    ​ + Py = Q is e​ Ú​ Pdx​. dx 4. Assertion (A): The orthogonal trajectories of the curve xy = c is x2 – y2 = c. Reason (R): The solution of he differential equation x d y + y d x = 0 is x y = c 5. Assertion (A): The solution of the differential

2 

3

3

equation x y dx = (x + y ) dy is y =

x3 ___ ​  3  ​  3y c​e​ ​.

Reason (R): The integrating factor of the differential 1 equation M dx + N dy = 0 is ________ ​       ​. Mx  + Ny

4.24  Integral Calculus, 3D Geometry & Vector Booster 6. Assertion (A): The order of the differential equation of the curve y = c1ex + c2e2x + c3ex + 5 is 2. Reason (R): The order of a differential equation is the highest order derivative of a differential equation.

Questions asked in Previous Years’ JEE-Advanced Examinations

1. A normal is drawn at a point P (x, y) of a curve, it meets the x-axis at Q. If PQ is of constant length k,



prove that the differential equation describing such ______ dy curve is y ​ ___  ​ = ​÷k  2 – y2 ​.  dx Find the equation of such a curve passing through (0, k) [IIT, 1994] Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the co-ordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Form the differential equation and determine all such possible curves. [IIT, 1995] Determine the equation of the curve passing through the origin in the form y = f (x) which satisfies the dy differential equation ___ ​    ​ = sin (10x + 6y) dx [IIT, 1996] A curve y = f (x) passes through the point P(1, 1). The normal to the curve at P is a (y – 1) + (x – 1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, determine the equation of the curve. Also, obtain the area bounded by the y-axis, the curve and the normal to the curve at P. [IIT, 1996] A spherical rain drop evaporates at a rate proportional to its surface area at any instant t. The differential equation giving the rate of change of the radius of the rain drop is ... [IIT, 1997]



2.



3.



4.



5.



6. Let u (x) and v (x) satisfy the differential equations

dv du ​ ___  ​ + p (x)u = f (x) and ___ ​    ​ + p (x)v = g (x), where dx dx p(x), f (x) and g (x) are continuous functions. If u (x1)





> v (x1) for some x1 and f (x) > g (x) for all x > x1, prove that any point (x, y) where x > x1 does not satisfy the equation y = u (x) and y = v (x). [IIT, 1997] 7. A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axes at A and B, then P is the mid-point of AB. The curve passes through the point (1, 1). Determine the equation of the curve. [IIT, 1998] 8. The order of the differential equation whose general solution is given by y = (c1 + c2) cos (x + c3) – c4​ex + c ​ 5​,

where c1, c2, c3, c4, and c5 are arbitrary constants is ... (a) 5 (b) 4 (c) 3 (d) 2 [IIT, 1998] 9. A curve passing through the point (1, 1) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the x-axis. Determine the equation of the curve. [IIT, 1999] 10. A solution of the differential equation dy 2 dy ​​ ___ ​    ​  ​​ ​ – x ​ ___ ​    ​  ​ + y = 0 dx dx is (a) y = 2 (b) y = 2x (c) y = 2x – 4 (d) y = 2x2 – 4 [IIT, 1999] 11. The differential equation representing the family __ of curves y2 = 2c(x + ​÷c     ​), where c is a positive parameter is of (a) order = 1 (b) order = 2 (c) degree = 3 (d) degree = 4. [IIT, 1999] 2 2 12. If x + y = 1, then (a) yy ≤ – 2(y ¢)2 + 1 = 0 (b) yy ≤ + (y ¢)2 + 1 = 0 (c) yy ≤ + (y ¢)2 – 1 = 0 (d) yy ≤ + 2(y ¢)2 + 1 = 0. [IIT, 2000] dy 13. If y (t) is a solution of (1 + t) ​ ___ ​ – t y = 1 and dt y (0) = –1, then y (1) is (a) –1/2 (b) e + 1/2 (c) e – 1/2 (d) 1/2 [IIT, 2003] 14. A right circular cone with radius R and height H contains a liquid which evaporates at a rate propeortional to its surface in contact with air (proportonality constant (k > 0). Find the after what time which the cone is empty. [IIT, 2003]

(  ) (  )

(  )

dy 2  +  sin x ___ 15. If y = y (x) and ________ ​   ​ ​    ​    ​  ​ = – cos x and y + 1 dx

(  )

p y (0) = 1, then y ​ __ ​   ​   ​ equals 2

(a) 1/3 (c) –1/3

(b) 2/3 (d) 1. [IIT, 2004]

Differential Equation 

16. A curve C passes through (2, 0) and the slope at (x, (x +  1)2 + y – 3 y) as ​ _____________     ​   . Find the equation of the curve (x + 1)



(d) the fixed radius 1 and variable centres along the y-axis. [IIT, 2007]

and the area enclosed by the curve and the x-axis in the fourth quadrant. [IIT, 2004] 17. If y = y (x) and it follows the relation x cos y + y cos x = p, the value of y ≤ (0) is

24. Let f (x) be a differentiable on (0, •) such that





(a) 1 (c) p

(b) –1 (d) – p [IIT, 2005]

18. If the length of the tangent at any point on the curve y = f (x) intercepted between the point and the x-axis is of length 1, find the equation of the curve. [IIT, 2005] 19. The solution of the primitive integral equation 2

2

(x + y ) dy = xy dx is y = y (x). If y (1) = 1 and y (x0) = e, then the value of x0 is ________



(a) ​÷2 (e   –  1) ​  



(c) ​÷3 ​     e

2

__

________ 2 (e2  +  1) ​  ______

(b) ​÷ 

÷ 

e2 + 1 (d) ​ ​ _____  ​ ​     2

[IIT, 2005] 20. For the primitive integral equation y dx + y2dy = x dy, x ŒR, y > 0, y = y (x), y (1) = 1, then y (– 3) is



(a) 3 (c) 1

(b) 2 (d) 5

[IIT, 2005] 21. A curve y = f (x) passes through (1, 1) and the tangent at P (x, y) cuts the x-axis and y-axis at A and B, respectively such that BP : AP = 3 : 1, then (a) the equation of the curve is x y¢ – 3y = 0. (b) the normal at (1, 1) is x + 3y = 4. (c) the curve passes through (2, 1/8). (d) the equation of the curve is xy¢ + 3y = 0. [IIT, 2006] dy 2 22. If y satisfies the differential equation ___ ​    ​ = __ ​ x ​ + y, dx

y (1) = 1, then (x + y + 2)2 e – y equals ... ______ [IIT, 2006] dy 1 – y2 23. The differential equation ​ ___  ​ = ​ ​ _____ ​ ​   determines a y    dx

÷ 



family of circles with (a) the variable radii and fixed centre at (0, 1) (b) the variable radii and fixed centre at (0, –1) (c) the fixed radius 1 and variable centre along the x-axis.

4.25

( 

)

t2f (x) – x2f (t) f (1) = 1 and   ​ lim  ​   ​ ​ ____________        ​  ​ = 1 for each x > t Æ x t – x 0, then f (x) is



1 (a) ​ ___  ​ + 3 x 1 (c) – ​ __ x ​ +

2x2 ___ ​   ​    3 2 __ ​  2  ​   x

1 (b) – ​ ___  ​ + 3x 1 (d) ​ __ x ​

4x2 ___ ​   ​   3

[IIT, 2007] 25. Let a solution y = y (x) of the differential equation ______

______

2 x ​÷x  2  –  1 ​    dy – y ​÷y  2  –  1 ​    dx = 0 satisfies y (2) = ___ ​  __  ​ . ​ 3 ​    ÷ p –1 Assertion (A): y = (x) = sec ​ sec x – ​ __ ​   ​ 6

( 

)

__

÷ 

_____

   1 2​÷3 ​ 1 Reason (R): y (x) is given by __ ​ y ​ = ____ ​  x     ​ – ​ 1 – __ ​  2  ​ ​    x

26.

27.

28.

29.

(a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explannation of A. (c) A is true and R is false. (d) A is false and R is true. [IIT, 2008] If y ¢ = y + 1 and y (0) = 1, the values of y (ln2) is ... [IIT, 2009] Find the domain of the definition of non-zero solution of the differential equation (x – 3)2 y ¢ + y = 0 [IIT, 2009] Let f be a real-valued differentiable function on R (the set of real numbers) such that f (1) = 1. If the y-intercept of the tangent at any point P (x, y) on the curve y = f (x) is equal to the cube of the abscissa of P, the value of f (– 3) is ... [IIT, 2010] Let y ¢(x) + y (x)g ¢(x) = g (x)g ¢(x), y(0) = 0, x ŒR,

df (x) where f ¢(x) denotes ​ _____      ​ and g (x) is a given dx non-constant differentiable function on R with g (0) = g (2) = 0. The value of y (2) is ... [IIT, 2011] 30. Let f : [1, •) Æ [2, •) be a differentiable function such that f (1) = 2.

4.26  Integral Calculus, 3D Geometry & Vector Booster __

x

If 6 ​Ú ​  ​   f (t) dt = 3x f (x) – x – 5 for all x ≥ 1, the value 3



0

of f (2) is ... [IIT, 2011] 31. If y (x) satisfies the differential equation y¢ – y tan x = 2x sec x and y (0) = 0, then

(  ) p p  (b) y¢ ​( __ ​   ​  )​ = ___ ​   ​  4 18 p p  (c) y ​( __ ​   ​  )​ = ___ ​   ​  3 9 p 4p 2p  (d) y¢ ​( __ ​   ​  )​ = ___ ​   ​ + ____ ​   ​  3 3 3​÷3 ​   p p 2 (a) y ​ __ ​   ​   ​ = ____ ​  __  ​  4 8​÷2 ​    2

2

2

__



[IIT, 2012] p 32. A curve passes through the point ​ 1, ​ __ ​   ​. Let the 6 y y slope of the curve at each point (x, y) be ​ __x ​ + sec ​ __ ​ x ​  ​,

(  )



(  )

x > 0. The eaquation of the curve is y 1 (a) sin ​ __ ​ x ​  ​ = log x + __ ​   ​  2 y (b) cosec ​ ​ __x ​  ​ = log x + 2 2y (c) sec ​ ___ ​  x ​   ​ = log x + 2 2y 1 (d) cos ​ ___ ​  x ​   ​ = log x + __ ​   ​  2 [IIT-JEE, 2013]

(  ) (  )

(  ) (  )

33. The function y = f (x) is the solution of the differential dy xy x4______ + 2x equation ​ ___  ​ + ​ _____     ​ = ​ _______    ​  in (–1, 1) satisfying 2 dx x – 1 ÷ ​ 1    –  x2 ​  __

​ 3 ​    ÷ ___ ​   ​  2

f (0) = 0, then Ú​ __  ​ ​   f (x) = dx is

​ 3 ​    p ÷ (b) ​ __ ​  – ___ ​   ​  3 4

p (c) ​ __ ​  – 6

p (d) ​ __ ​  – 6

__

​ 3 ​    ÷ ___ ​   ​   4

Py ≤ + Qy ¢ + 1 = 0, where P, Q are functions of x, y and y ​ dy dy Here y ¢ = ​ ___  ​, y ≤ = ​ ___  ​  ​, which of the following dx dx

( 

)

statements (is/are) true?

(a) P (b) P (c) P (d) P

= = + –

y+x y–x Q = 1 – x + y + y + (y ¢)2 Q = x + y – y ¢ – (y ¢)2

[IIT-JEE, 2015] 36. A solution curve of the differential equation dy (x2 + xy + 4x + 2y + 4) ___ ​    ​ – y2 = 0, x > 0 dx

passes through the point (1, 3). The solution curve (a) intersects y = x + 2 exactly at one point (b) intersects y = x + 2 exactly at two points (c) intersects y = (x + 2)2 (d) does not intersect y = (x + 3)2 [IIT-JEE, 2016]

Answers 198. c (4x – c)2 = 64 y

190. (y – cex) (y + x – ce– x) = 0

199. y2 = 2cx + c3

191. (x – y + c) (x2 + y2 + c) = 0

200. y = cx – 1 + 1/c

192. (xy – c) (x2 – y2 – c) = 0

–1 203. y = 2 ​÷cx    ​ + tan (c)

193. (y – cx) (y2 – x2 – c) = 0

2 204. y = 2 ​÷cx    ​ + c c 205. y = c2 – __ ​ x ​ 206. x = sin + c

196. ln y = cx + c2. 197. y2 = 2cx + c2

__

​ 3 ​    ÷ ___ ​   ​  2 [IIT-JEE, 2014] 34. Let y (x) be a solution of the differential equation (1 + ex) y ¢ + yex = 1. If y (0) = 2, which of the following statements (is/are) true? (a) y (– 4) = 0 (b) y (2) = 0 (c) y(x) has a critical point in (–1, 0) (d) y(x) has no critical point in (–1, 0). [IIT-JEE, 2015] 35. Consider the family of all circles whose centres lie on the straight line y = x. If this family of circles is represented by the differential equation

​ 3 ​    ÷ – ​ ___ ​  2

LEVEL I

__

​ 3 ​    p ÷ (a) ​ __ ​  – ___ ​   ​   3 2

__ __

Differential Equation 

24. (x y – c) (x2 – y2 – c) = 0

Level II

1. (d) 2. (b) 3. (c) 4. (c) 5. (b) 6. (a) 7. (d) 8. (b) 9. (c) 10. (b) 11. (c) 12. (a) 13. (b) 14. (a) 15. (d) 16. (a) 17. (a) 18. (b) 19. (b) 20. (b) 21. (d) 22. (b) 23. (a) 24. (b) 25. (d) 26. (b) 27. (c) 28. (a) 29. (d) 30. (a) 31. (a) 32. (b) 33. (c) 34. (d) 35. (b) 36. (c) 37. (c) 38. (a) 39. (b) 40. (a, c) 41. (a, b, c, d) 42. (a, c) 43. (a, b) 44. (a, b, c, d) 45. (b) 46. (a, b, c, d) 47. (a, b, c) 48. (a, b, c) 49. (a, b, c, d) 50. (b, c, d)

| 

Level III

______

|)



_____ 1  + ​÷1  – y2   ​ ______ 1. ​÷1  – y2   ​ ln ​ ​ __________    ​  ​ = ± x + c 2 1–÷ ​ 1    –  y    ​ 3 3 1 4 –1 –1 3. ​ __ ​  tan  ​ __ ​   ​  tan ​ 4x + tan  ​ __  ​  ​ – __ ​   ​   ​ – 3 4 5 5 4 4. ​ __ ​  sq.u. 3 5. x2 + y2 = 2x



7. y + ÷ ​ x  2  +  y2   ​ = cx2





[  ( 

]

–1

5x ___ ​   ​  3

}

tan y

10. x​e​

]

–1

–1

tan y

​ + c = (tan y –1)  ​e​



x2 1 __ 11. ​ __ y ​  + 2 ln y – ​ y ​ = c. 2

3

( 

)

x 2x __ 2 12. – ​ __2 ​  = ___ ​   ​  ​    ​   ​  + ln x  ​ + c 3 3 y 13. tan x . tan y = c ________ ________ 2 14. x + c = 2 ​÷x  +  y  + 1 ​   + __ ​    ​ ln (​÷x  +  y  + 1 ​  – 1) 3 _____ 8 –  ​ __ ​  ln ​÷x  + y   ​+ 1 + 2 3 15. x + y ◊ ex/y = c

16. (x + y + z)5 = c (y – 2x – 1)2 –1

17. x​etan ​ y​ = c (y – 2x –1)2 1 18. ln y = __ ​ xy  ​ + c ___

  ​  20. x = c​e ± 2 ​ ​ ÷y/x  ​ 2

2

______

28. y2 + ​÷y  4  –  1 ​  = e± 2x 29. x2 – y2 = kx dy 30. Q ​ x + y ___ ​    ​, 0  ​, x2 + y2 = 2k2 dx

( 

)

31. y = x2 32. y2 = 2x2 + 16 33. x2 + y2 – 8 (x + y) + 16 = 0

LEVEL IV

1. 5

(  )



d 2y 2. 2a ___ ​  2 ​ + dx



3. y = x2 4. xy = 8.



5. cx = e – ​e– ​ ​ ​ 



6. ((ln y + 1) + ey) x = 1



y 7. log  |(x2 – y2)| + ​ tan–1 ​ __ ​ x ​  ​  ​ = C



8. y ◊ x2 = – x2cos x + 2x sin x + 2cos x

dy 2 ​​ ___ ​    ​  ​​ ​ = 0 dx

(  )​

x2 + y2 _____ ​  ​ x   

(  (  ) )

x3 x3 + __ ​   ​  log x – __ ​   ​  + C 3 9

9. (xy) sin (xy) = C

( 

)

4y +  sin x 2 ___ 10. ​ ____    ​ tan–1 ​ _________ ​  ___   ​   ​ = log |sin x| + C ​÷15 ​     ​÷15 ​     sin x

(  )

y p 11. y sin ​ ​ __x ​  ​ = ___ ​     ​ 2x 2 12. y – log |y + 1| = __ ​    ​ R1 + x3 + C 3 3 14. y – __ ​   ​  log |(x + y)2 + 1| = x + C 2 15. y = x – 1 16. y = x log |x|

2

21. x ± y = a x

2

27. y = C​ex​ /2​ – 1

35. y = cx3, x = cy3

y y 1 8. log x = c + __ ​   ​  e– y/x  ​ sin ​ __x ​ + cos ​ __x ​  ​ 2 1 4 __ 9. x + c = ​   ​  ​   x + 2y + __ ​   ​  ln (3x + 6y – 1)  ​ 3 3

[ 

26. (y + 3) = (x + 4)2

34. (x – 1)2 + (y – 1)2 = 25

______

{ 

25. x2 – y2 + 4 = 0

– x

22. (y – e + c) (y + e

+ c) = 0

23. (2y – x2 – c) (2y + 3x2 – c) = 0

(  )

(  )

y x 1 17. – cos ​ __ ​ y ​  ​ + sin ​ __ ​ x ​  ​ + x – __ ​ y ​ = c 18. (1 + y2) (1 + y2) = c2 x2

4.27

4.28  Integral Calculus, 3D Geometry & Vector Booster

( 

)

35. x2 + y2 = cx

sin (4xy) 1 1 19. ​ __ ​    (xy – sin (2xy)) + __ ​   ​  ​   xy + _______ ​   ​    ​ 4 8 4

( 

36. x2 + y2 = 25, y = x + 1

)

sin2 (xy) 1 + __ ​   ​  ​   xy + _______ ​   ​    ​ = log |x| + c 2 2



Integer Type

y3 20. ​ __ ​  + y + x2y = c 3



1 _______ 1 21. ​ __ ​  2   2    ​ = c x ​ – (x +y)

23. y ◊ ep(x)x = Ú (ep(x)x ◊ q (x)) dx + c __

y 24. 2 ​ ​ __x ​ ​  + log |x| = c 1 – x ____



(  )

31. x2 ± y2 = a2 32. y2 = 2x 33. x + y = cx

( 



)

34. ​ ​÷x  2 +  y2 ​   ​ = 2x + c

Hints

P-I : P-II : P-III : P-IV : P-V :

1. (c) 1. (b) 1. (b) 1. (b) 1. (a)

1. Clearly, the order is 2 and the degree is 1. 2. Clearly, the order is 1 and the degree is 3. 3. Clearly, the order is 2 and the degree is 1. 4. We have,

÷  (  ) ÷  (  (  ) ) (  ) (  (  ) ) (  ) _________

_____

d2y dy 2 3 ___ ​ 1  + ​​ ___ ​    ​  ​​ ​ ​  = ​ c ◊ ​  2 ​ ​   dx dx fi fi

2 1/2

2

1/3

dy dy ​ 1 + ​​ ___ ​    ​  ​​ ​  ​​ ​ = ​​ c ​ ___2   ​  ​​ ​ dx dx dy 2 3 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​​ ​ = ​​ c dx

d2y 2 ___ ​   ​  ​​ ​ dx

Thus, order is 2 and degree is also 2.

2. (a) 2. (a) 2. (a) 2. (a) 2. (b)

1. (A)Æ(P); 2. (A)Æ(P); 3. (A)Æ(S), 4. (A)Æ(Q),

and

1. (d) 6. (a)

3. (b) 3. (b) 3. (a) 3. (b) 3. (a)

(B)Æ(Q); (B)Æ(P); (B)Æ(P), (B)Æ(S),

2. (c)

5. (5) 10. (8)

4. (b) 4. (c)

5. (a)

(C)Æ(R); (C)Æ(S); (C)Æ(Q), (C)Æ(P),

(D)Æ(S) (D)Æ(R) (D)Æ(R) (D)Æ(R)

5. We have,

(  ) ) (  (  ) )

3. (d)

4. (b)

5. (a)

solutions fi



4. (4) 9. (6)

Assertion and Reason

2

_______

3. (3) 8. (5)

Matrix Match

25. f (x) = x3​e​(​ ​  x   ​  )​​ y 27. j  ​ __ ​ x ​  ​ = cx 30. xy = c

2

2. (2) 7. (4)

Comprehensive Link Passages

22. y ◊ ep(x)x = Ú (ep(x)x ◊ q (x)) dx + c

÷ 

1. (2) 6. (3)

dy x2 + 2x ___ ​    ​ = 1 dx

So, the order is 1 and the degree is also 1.

6. We have,

÷  (  ) ) (  (  ) ) _________



dy dy 2 y = x ___ ​    ​ + a ​ 1  + ​​ ___ ​    ​  ​​ ​ ​  dx dx



dy 2 dy 2 ​ y – x ​ ___  ​  ​​ ​ = a2 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ dx dx

( 

So, the order is 1 and the also degree is 1.

7. We have,

(  ) (  ) (  ) (  )

d 4y d3y ​ ___4 ​ + sin ​ ___ ​  3 ​  ​ = 0 dx dx



dy dy 2 x + ___ ​    ​ = R1 + ​​ ___ ​    ​  ​​ ​ dx dx

d 4y ​ ___4 ​ + dx



dy 2 dy 2 ​ x + ___ ​    ​  ​​ ​ = ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ dx dx

So, the order is 4 and the degree is not defined.

( 

d3y ​ ___ ​  3 ​  ​ – dx

3

3

dy 1 d3 5 1 ​​ ___ ​  3 ​  ​​ ​ __ ​   ​ ! + ​​ ___ ​  3  ​  ​​ ​ __ ​    ​! + ... 3 5 dx dx

Differential Equation 



8. We have,

(  ) (  ) 2

2

(  ) 2

dy dy dy ​​ ___ ​  2 ​  ​​ ​ + ​​ ___ ​    ​  ​​ ​ = x sin ​ ___ ​  2 ​  ​ dx dx dx So, the order is 2 but the degree is not defined.

2

9. We have, dy ___ ​    ​

​e​dx ​ = (x + 1)

(  )

dy x + y ___ ​    ​ = a. dx Thus, the required differential equation is fi

(  )

( 

)

dy 2 dy 2 ​​ y ___ ​    ​  ​​ ​ + y2 = ​​ x + y ​ ___  ​  ​​ ​ dx dx dy 2xy ​ ___  ​ = y2 – x2. dx 14. The equation of all parabolas whose axes parallel to x-axis is (y – k)2 = 4a (x – h) Here, h and k are two arbitrary constants. Differentiating both sides, we get dy (y – k) ​ ___  ​ = 2a ...(i) dx Differentiating again w.r.t. x, we get fi

(  )

(  )

dy 1 dy 2 __ 1 dy 3 1 + ​ ___ ​    ​  ​ + __ ​    ​! ​​ ___ ​    ​  ​​ ​ + ​    ​! ​​ ___ ​    ​  ​​ ​ + ... 2 dx 3 dx dx

So, the order is 1 and the degree is not defined. 10. We have,

(  ) ( (  ) (  ( 

4.29

(  ) (  ) (  ) ) ) (  ) (  ) )

dy dy sin ​ ___ ​    ​  ​ + cos ​ ___ ​    ​  ​ dx dx

dy 1 dy 3 __ 1 dy 5 ​    ​! ​​ ___ ​    ​  ​​ ​ + ​    ​! ​​ ___ ​    ​  ​​ ​ – ...  ​ = x ​ ​ ___ ​    ​  ​ – __ 3 dx dx 5 dx

1 dy 2 __ 1 dy 4 __ 1 dy 6 ​    ​  ​​ ​ + ​   ​ ! ​​ ___ ​    ​  ​​ ​ – ​    ​! ​​ ___ ​    ​  ​​ ​ + ...  ​ = x + ​ 1 – __ ​   ​ ! ​​ ___ 2 dx 4 dx 6 dx So, the order is 1 and degree is not defined. 11. Let the equation of the family of non-vertical lines in a plane is y = mx + c, where m and c are arbitrary constants. dy d2y ​  2 ​ = 0. Now ​ ___  ​ = m and ___ dx dx From the above three equations, we should eliminate m. Thus, the required differential equation is d2y ​ ___2 ​ = 0. dx 12. Let the equation of the parabola be y2 = 4ax. where a is an arbitrary constant. Differentiating w.r.t. x, we get dy 2y ___ ​    ​ = 4a dx y dy __ fi ​    ​ ___ ​    ​ = a 2 dx Thus, the required differential equation is dy y2 = 2xy ​ ___  ​. dx 13. The equation of the circle be (x – a)2 + y2 = a2, where a is an arbitrary constant. fi x2 + y2 – 2ax = 0 dy fi 2x + 2y ___ ​    ​ – 2a = 0 dx



(  )

d2y dy 2 (y – k) ​ ___2 ​ + ​​ ___ ​    ​  ​​ ​ = 0 dx dx

...(ii)

Eliminating k from Eq. (i) and (ii), we get

(  ) (  )

d2y dy 3 2a ​ ___ ​  2 ​  ​ + ​​ ___ ​    ​  ​​ ​ = 0 dx dx which is the required differential equation.

15. The given curve is y = c(x – c)2 Differentiating w.r.t. x, we get dy ​ ___  ​ = 2c (x – c) dx

...(i)

...(ii)

(  )

1 dy 2 From Eq. (i) and (ii), we get, c = ___ ​    ​ ​​ ___ ​    ​  ​​ ​ 4y dx Put the value of c in Eq. (ii), we get

(  ) (  (  ) ) (  (  ) ) (  )

dy 1 dy 2 1 dy 2 ​ ___  ​ = 2 ◊ ​ ___  ​ ​​ ___ ​    ​  ​​ ​ ​ x – ___ ​     ​ ​​ ___ ​    ​  ​​ ​  ​ 4y dx 4y dx dx fi

dy 1 dy 2 2y = ___ ​      ​​ x – ___ ​     ​ ​​ ___ ​    ​  ​​ ​  ​ 4y dx dx



dy dy 3 8y2 = 4xy ​ ___  ​ – ​​ ___ ​    ​  ​​ ​ dx dx

which is the required differential equation. 16. The given curve is 2 x2 y ​ __2  ​ + __ ​  2  ​ = 1 a b Differentiating w.r.t. x, we get

2x 2 yy ≤ ​ ___2 ​ + _____ ​  2 ​   = 0 a b fi

yy ¢ x ​ __2  ​ + ___ ​  2 ​ = 0 a b

...(i)

4.30  Integral Calculus, 3D Geometry & Vector Booster Again differentiating w.r.t. x, we get 1 ​ __2  ​ + a fi

yy ≤ ____ ​  2 ​ + b

(y ¢)2 ____ ​  2 ​   = 0 b

x yy ≤ _____ x (y ¢)2 1 ​ __2  ​ + _____ ​  2 ​   + ​  2 ​   = 0 a b b 2



yy ¢ – ​ ___  ​ + b2

x yy ≤ _____ x (y ¢) _____ ​  2 ​   + ​  2 ​   = 0 b b



d2y dy 2 dy xy ___ ​  2 ​ + x ​​ ___ ​    ​  ​​ ​ – y ​ ___ ​    ​  ​ = 0 dx dx dx

(  ) (  )

which is the required differential equation. 17. Given curve is y = mx dy fi ​ ___  ​ = m dx y = __ ​ x ​ which is the required differential equation. 18. Given curve is y = A cos x + B sin x

fi fi

dy ___ ​    ​ = – A sin x + B cos x dx d2y ___ ​  2 ​ = – A cos x – B sin x = – y dx

Hence, the required differential equation is d 2y ​ ___2 ​ + y = 0 dx 19. We have, y = aex + be– x fi

dy ___ ​    ​ = aex – be– x dx 2

dy ​ ___2 ​ = aex + be– x = y dx Hence, the required differential equation is fi

d2y ​ ___2 ​ – y = 0 dx 20. We have, y = sin (bx + c) fi

y¢ = b cos (bx + c)



y≤ = – b2sin (bx + c)





y ≤ (1 – y2) + y (y ¢)2 = 0

(  )

d2y dy 2 (1 – y2) ___ ​  2 ​ + y ​​ ___ ​    ​  ​​ ​ = 0 dx dx which is the required differential equation. fi

21. We have,

y = ae2x + be3x



dy ​ ___  ​ = 2ae2x + 3be3x dx



d 2y ​ ___2 ​ = 4ae2x + 9be3x dx



= 2 (2ae2x + 3be3x) + 3be3x





d2y dy ___ ​  2 ​ = 2 ___ ​    ​ + 3be3x dx dx



dy dy = 2  ​ ___  ​ + 3 ​ ___ ​    ​ – 2y  ​ dx dx



dy 2 d2y 1 + ​​ ___ ​    ​  ​​ ​ + (y – a) ​ ___ ​  2 ​  ​ = 0 dx dx



d2y dy ___ ​  2 ​ = 5 ​ ___  ​ – 6y dx dx



d 2y dy ___ ​  2 ​ – 5 ___ ​    ​ + 6y = 0 dx dx

( 

(  )

(  )

22. Let the equation of the circle be

x2 + (y – a)2 = a2



x2 + y2 – 2ay = 0



dy dy 2x + 2y ​ ___  ​ – 2a ___ ​    ​ = 0 dx dx

dy dy x + y – ___ ​    ​ = a ___ ​    ​ dx dx dy x  + y  ___ ​    ​ x +  y y dx _______1 ________ fi a = ​   ​    = ​  y  ​    dy 1 ___ ​    ​ dx Hence, the required differential equation is x  + yy1 fi x2 + y2 = 2 ​ _______ ​  y  ​    ​ y 1 dy ___ fi ​    ​ (x2 + y2 – 2y2) = 2xy dx fi

( 

dy 2xy ​ ___  ​ = ​ _______     ​ dx (x2 – y2)

= – b2y



2 y ¢ = – ​​ _______ ​  ______     ​  ​​ ​  y ​÷1  – y2   ​

(b) Do yourself.

(  )

)

)

Differential Equation 

23. Let the equation of the circle be 2

2

2

(x – h) + (y – k) = r

where h and k are parameters but not r. dy fi 2 (x – h) + 2(y – a) ​ ___  ​ = 0 dx dy fi (x – h) + (y – k) ​ ___  ​ = 0 dx 2 dy d 2y fi 1 + ​​ ​ ___  ​  ​​ ​ + (y – k) ​ ___2 ​ = 0 dx dx

(  )

24. Let the equation of the circle be

(x – a)2 + (y – a)2 = a2



x2 + y2 – 2a (x + y) + a2 = 0



2x + 2y – 2a (1 + y1) = 0



x + y – a (1 + y1) = 0 x+y    ​ fi a = ​ _____  1 + y1 Hence, the required differential equation is x+y x+y 2      ​  ​ (x + y) + ​​ _____ ​       ​  ​​ ​ = 0 x2 + y2 – 2 ​ _____ ​  1 + y1 1 + y1

(  )

(  )



fi (1 + y1)2 (x2 + y2) – 2 (x + y)2(1 + y1) + (x + y)2 = 0

25. Do yourself 26. Let the line be y = mx + c dy ___ fi ​    ​ = m dx

fi fi fi fi



27.



dy (y – k)  ​ ___  ​ = 2a dx

(  ) (  )



d2y (y – k)  ​ ___2 ​ + dx



d2y 2a ___ ​  2 ​ + dx

y d2y __ ​  2  ​ ___ ​   ​ = 0 b dx2

(  )

y ___ dy 1 dy 2 – ​ ___    ​ ​    ​ + __ ​  2  ​  ​​  ___ ​    ​  ​​ ​ + 2 dx bx b dx

y d2y __ ​  2  ​ ___ ​   ​ = 0 b dx2

y dy – ​ __x ​ ___ ​    ​ + dx

(  )

which is the required differential equation. 30. Given curve is

d2y ___ ​  2 ​ = 0 dx which is the required differential equation. Let the equation of the parabola be (y – k)2 = 4a (x – h), where h and k are parameters. dy fi 2 (y – k)  ​ ___  ​ = 4a dx



(  )

dy 2 d2y ​​ ___ ​    ​  ​​ ​ + y ___ ​  2 ​ = 0 dx dx which is the required differential equation. 29. Let the equation of the parabola be (x – h)2 = 4a (y – k) where h and k are parameters dy fi 2 (x – h) = 4a  ___ ​    ​ dx dy fi (x – h) = 2a  ​ ___  ​ dx 2 dy fi 1 = 2a ​ ___2 ​  dx 2 d y 1 ___ fi ​  2 ​ = ___ ​    ​  2a dx fi





dy 2x 2y ___ ​ ___2 ​ + ___ ​  2 ​ ​    ​ = 0 a b dx y dy x __ ​  2  ​ + __ ​  2  ​ ___ ​    ​ = 0 a b dx 1 1 dy 2 __ ​  2  ​ + __ ​  2  ​ ​​ ___ ​    ​  ​​ ​ + a b dx

dy 2 ​​ ___ ​    ​  ​​ ​ = 0 dx



__

y2 = 2c (x + ​÷c    ​)  dy 2y  ​ ___  ​ = 2c dx dy y  ​ ___  ​ = c dx d 2y y  ​ ___2 ​ + dx

(  )

dy 2 ​​ ___ ​    ​  ​​ ​ = 0 dx

which is the required differential equation. 31. Do yourself. 32. Given differential equation is x2 – 1 dy = ______ ​  2  ​   dx. x +1 Integrating, we get

x2  – 1



 ​     dx Ú dy = Ú ​ x______ 2 +1

which is the required differential equation 28. Let the equation of the ellipse be



1–2 y = Ú ​ ​ _____      ​  ​ dx x2 + 1

y x2 ​ __2  ​ + __ ​  2  ​ = 1 a b



dy 3 ​​ ___ ​    ​  ​​ ​ = 0 dx

(  )

= x – 2tan–1x + c

which is the required solution.

4.31

4.32  Integral Calculus, 3D Geometry & Vector Booster 33. Given differential equation is



1 dy = _____ ​       ​  dx ex + 1

which is the required solution.

Integrating, we get

36. The given differential equation is



1 ​  x      ​ dx Ú dy = e_____ +1



ex y = Ú ((ex + 1) – __ ​  x ​  + 1) dx e



( 

____

)

1 – ex y = Ú ​ ​ _____x   ​  ​ dx 1+e = x – log |e + 1| + c,

( 

)

cos 2x –  cos x         ​  ​ dx dy = ​ ____________ ​  1 – cos x

Integrating, we get cos 2x – cos x



        ​dx Ú dy = Ú  ​ ____________ 1 – cos x



(2cos x  +  1) (1 – cos x) y = – Ú  ​ ___________________      ​    dx (1 – cos x)



= – Ú (2cos x + 1) dx



= – (2 sin x + x) + c

which is the required solution of the given differential equation. 35. The given differential equation is dy 1 4 ​ ___  ​ = __ ​   ​ (x + 1) dx x dx fi dy = ​ ________      ​ 4 x (x + 1) Integrating, we get



____



dx ________      ​ Ú dy = Ú ​ x (x 4 + 1) 3

x dx y = Ú  ________ ​  4 4     ​ x (x + 1)



dt 1 = __ ​   ​  Ú  _______ ​      ​ 4 t (t + 1)

____



​÷sin x    ​   ​       ​  dx Ú dy = Ú  ________ sinx cos x



​ sin x    ​   ÷ y = Ú ​ ________      ​  dx sin x cos x



2 sec x ____  = Ú ​ _____  ​    dx ​ tan x    ​   ÷

____

(Dividing the numerator and the denuminator by cos2x) ____

fi y = 2 ​÷tan x    ​ + C which is the general solution. 37. The given differential equation is dy ​ ___  ​ = x2 (3x + 2x)2 dx x2 fi dy = ________ ​       ​  dx (3 + 2x)2 Integrating, we get ________      ​  dx Ú dy = Ú ​ (3 + 2x)2



x2dx y = Ú ​ ________     ​ (3 + 2x)2

Let

3 + 2x = t



1 1 t – 3 2 __ = __ ​   ​    Ú ​​ ​ ____  ​    ​​ ​ ◊ ​  2  ​   dt 2 2 t



1 t–3 2 = __ ​   ​    Ú ​​ _____ ​      ​  ​​ ​  dt t 8





1 1 __ 1 = __ ​   ​  Ú ​ __ ​   ​   – ​   ​  + 1  ​ dt t t 4







t 1 = __ ​    ​ log ​ ____ ​       ​  ​ + c 4 t+1



|  |

)

x2





( 

​ sin x    ​   ÷ dy = ​ ________      ​  dx sin x cos x

Integrating, we get

34. The given differential equation is dy cos 2x  –  cos x ​          ​ ​ ___  ​ = ____________ 1 – cos x dx



dy ​÷sin x    ​  ​ ___  ​ = ________ ​       ​  dx dx sin x cos x

x

which is the required solution.



|  |

x4 1 = __ ​   ​    log  ​ _____ ​  4      ​  ​ + c 4 x +1

(  )

(  ) 3 1 = __ ​   ​  Ú ​​( 1 – __ ​   ​  )​​ ​  dt t 8 2

( 

)

6 9 1 = __ ​   ​  Ú ​ 1 – __ ​   ​  + __ ​  2  ​   ​ dt t 8 t 1 1 = ​ __ ​  ​   1 – 6log t – __ ​   ​   ​ + c t 8

( 

( 

)

)

1 1 = __ ​   ​ ​ (3 + 2x) – 6 log (3 + 2x) – _______ ​     ​   ​+ c 8 (3 + 2x)

Differential Equation 

which is the required differential equation. 38. The given differential equation is

Let

sin x – cos x = t

÷  1 – ​ x ​ dy = ​ ​ ______ ÷1  + ​ x   ​ ​ ​dx



(cos x + sin x) dx = dt

Also,

1 – sin 2x = t 2



sin 2x = 1 – t2 __ dt _____ =÷ ​ 2 ​      Ú  ​ ______     ​  ​ ÷​ 1  – t2 

Ú dy = Ú ÷ 



= ​÷2 ​     sin–1(t) + c



= ​÷2 ​     sin–1 (sin x – cos x) + c

______ __

dy 1 – ​÷x ​    ​ ___  ​ = ​ ______ ​   ​ ​  __  1+÷ ​ x    ​  dx fi

______ __ ÷    __   ÷   

Integrating, we get

______ __ 1 – ​÷x    ​   ​ ​ ______  ​ ​    dx __  1+÷ ​ x    ​ 

÷ 

fi Let

x = cos22q



dx = – 2sin 4q  dq



Integrating, we get

÷ 

_________



1– cos 2q y = Ú ​ ​ _________   ​ ​    × – 2sin 4q dq 1 + cos 2q = Ú  tanq × – 2 sin 4q dq



= – 2 Ú cos 2q (1 – cos 2q ) dq



= – 2 Ú (2cos 2q – 1– cos 4q ) dq



sin 4q = – 2 ​ sin 2q – q – ​ _____  ​    ​ + c 4



= (– 2 sin 2q + 2q + sin 2q cos 2q ) + c



= – 2 ​÷1  – x   ​ + cos–1 ​÷x     ​ + ÷ ​ x    ​  (1 – x) + c

( 

)

_____

__

__

which is the required solution of the given differential equation. 39. The given differential equation is ____ ____ dy ​ ___  ​ = (​÷tan x    ​+ ÷   ​ cot x    ​)   dx fi

____

____ ____  (​÷tan x    ​ + ÷ ​ cot x    ​)  dx

Ú



y=



sin x + cos x ________ = Ú ​ ​ __________    ​  ​ dx ​ sin x cos x    ​   ÷



__ sinx + cos x _________ = ​÷2 ​      Ú ​ ​ __________       ​  ​ dx ​ 2sin x cos x      ​ ÷



__ sin x + cos x =÷ ​ 2 ​        ​ ___________ ​  _____    ​   ​ dx ​ sin 2x    ​   ÷

( 



dx = Ú ​ ____________      ​ 3 sin x  +  cos3x



dx = Ú ​ ________________________         ​ (sin x +  cos x) (1 – sinx cosx)



sin x + cos x 1 2 = __ ​   ​    Ú ​ ___________ ​       ​ + ​ _____________        ​  ​ dx 3 (sin x + cos x) (1 – sin x cos x)



dx 2 = __ ​   ​    Ú ​ ___________       ​ 3 (sin x + cos x)



____

  ​ + ÷ ​ cot x    ​)  dx Ú dy = Ú (​÷tan x 

)

(  Ú ( 

dx dy = ____________ ​  3      ​ sin x  +  cos3x

dx Ú  dy = Ú ​ ____________      ​ 3 sin x +  cos3x



Integrating, we get

__

Integrating, we get

____ ____ (​÷tan x    ​ + ÷ ​ cot x    ​)  dx

dy =

__

which is the required differential equation. 40. The given differential equation is dy 1 ​ ___  ​ = ___________ ​       ​ dx sin3x + cos3x

______ __

1–÷ ​ x     ​ y = Ú ​ ______ ​   ​ ​   dx __  1+÷ ​ x     ​

4.33



( 

)

1 sin x + cos x + __ ​   ​    Ú ​ _____________        ​  dx 3 (1 – sin x cos x) dx 2 = ____ ​  __    ​ Ú ​ _________      ​ p 3​÷2 ​     sin ​ x + __ ​   ​   ​ 4

( 

)

2 sin x + cos x + ​ __ ​    Ú ​ __________    ​dx 3 (2 – sin 2x)

|  |

x p 2__ = ​ ____    ​ log ​ __ ​    ​ + __ ​   ​   ​ 2 8 3​÷2 ​    2 + ​ __ ​  tan–1(sin x – cos x) + c 3

)

which is the required solution of the given differential equation. 41. The given differential equation is

)

dy 1 ​ ___  ​ = ______________ ​  ____     4 ​ ____ dx (​÷sin x    ​+ ÷   ​ sin x    ​)  

4.34  Integral Calculus, 3D Geometry & Vector Booster fi

dx dy = ​ _______________     4 ​ ____ _____ (​÷sin x    ​+ ÷   ​ cos x    ​)  

Integrating, we get fi

dx

____     4 ​ Ú dy = Ú ​ _______________ _____ (​÷sin x    ​ + ​÷cos x      ​)

sec x dx = Ú ​ ___________    ​ ____    (​÷tan x    ​ + 1)4  



2t dt = ______ ​      ​, (Let tan x = t2) (t + 1)4



(t + 1) – 1 = 2  Ú ​  _________  ​  dt     (t + 1)4



1 1 = 2 Ú ​ ______ ​       ​ – ______ ​       ​  ​ dt (t + 1)3 (t + 1)4



1 1 = 2 ​ _________ ​    2   ​ + ________ ​       ​  ​ + c – 2(t + 1) 3 (t + 1)3



1 1 = 2 ​ _____________ ​   ​+ ​ ____________  ​  ​+ c ____    ____    – 2(​÷tan x    ​+ 1)2 3(​÷tan x        ​+ 1)3

)

fi 

Ú e dy = Ú (e + x ) dx y

x

_____________ dy ​÷(1   + x2)(1    + x2) ​ + xy  ​ ___  ​ = 0 dx



_______ _______ dy ​÷(1   + x2) ​    + y2) ​  = – xy ​ ___  ​ ÷​ (1 dx

)

​÷(1   + x2) ​  y _______   ​  dx = – ​ ________      ​ dx ​ ________ x      + y2) ​  ÷​ (1 Integrating, we get _______

  + x2) ​  y ÷​ (1 _______   ​ dx = – Ú  ​ _________    ​  dy Ú  ​ ________ x    ​÷(1   +  y2) ​  fi

x

44. The given differential equation is

______ ​÷1  + x2 ​  +

| 

|

_____

______

1  + x2   ​  –  1 ÷​ _____ 1 __     ​  ​ + ​÷1  + y2 ​  =c ​    ​ log ​ ​ __________ 2 2 ​÷1  + x    ​ + 1

which is the required solution of the given differential equation. 46. The given differential equation is dy sin y + cos y        ​ ​ ___  ​ = ​ ___________ dx x (2log x + 1) fi

dy dx __________ ​        ​ = ___________ ​        ​ sin y + cos y x (2 log x +  1)

Integrating, we get dy dx ​ __________       ​ =  ​ ___________       ​ Ú  sin y + cos y Ú x (2log x + 1) fi fi

2

x3 fi  e = e + __ ​   ​  + c, 3 which is the required solution. y



_______

which is the required solution of the given differential equation. 42. Given differential equation is dy ______     ​ =  (1 + x) dx Ú ​ (1 + y) Ú

dy   ​ = Ú (ex + x2) dx Ú ​ ___ e– y

sec2y 3ex _______ _____  ​       ​  d x =  ​   dy Ú (1 – ex) Ú tan y ​ 

_______________ dy ​÷1  + x2 + y2 +     x2y2 ​ + xy ___ ​    ​ = 0 dx

)

dy fi ​ ___   ​ = (ex + x2) dx e– y Integrating, we get

sec2y 3ex _______ _____ ​       ​  d x = ​   ​    dy tan y (1 – ex)

fi – 3 log  |1 – e x| = log |tan y| + c which is the required solution of the given differential equation. 45. The given differential equation is



Integrating, we get dy ​ ______     ​ = (1 + x) dx. (1 + y) x2 fi log |1 + y| = x + __ ​   ​  + c, 2 which is the required solution. 43. Given differential equation is dy ​ ___  ​ = e– y(ex + x2) dx





2

(  ( 

3ex tan y dx + (1 – ex) sec2y dy = 0

On Integrating, we get

dx ____ y = Ú ​ _______________     4 ​ _____ (​÷sin x    ​+ ÷   ​ cos x    ​)  

( 



dy dx 1 ___ ​  __  ​ Ú ​ _________      ​ = Ú  ___________ ​        ​ p x (2log x + 1) __ ​ 2 ​     sin ​ y + ​   ​   ​ ÷ 4 y p 1 1 ___ ​  __  ​ log ​ tan ​ __ ​    ​ + __ ​   ​   ​  ​ = __ ​    ​ log |2 log x + 1| 2 8 2 ​÷2 ​   

( 

| 

( 

)

)|

which is the required solution of the given differential equation. 47. The given differential equation is

( 

)

dy dy x ​ ___  ​ = a ​ y2 + ___ ​    ​  ​ dx dx

Differential Equation 

dy (x – a) ​ ___  ​ = ay2 dx a fi y – 2dy = ______ ​       ​ dx (x – a) Integrating, we get 1 fi – ​ __ y ​ = a log |x – a| + C

Integrating, we get



)



y2 1 – x2 ​ _______  2    ​ dy = ​ ​ _____ ​  ​ dx x    (1 + y )



1 1 ​ 1 – _____ ​       ​  ​ dy = ​ __ ​ x ​ – x  ​ dx 1 + y2

( 

)

( 

)

Integrating, we get

x2 y – tan–1y = log |x| – __ ​   ​  + c 2

which is the required solution of the given differential equation. 49. Given differential equation is dy (x + 1)  ​ ___  ​ = 2xy dx dy 2x ___ fi ​  y ​ = ​ _____ ​      ​  ​ dx x+1 dy 1 ___ fi ​  y ​ = 2 ​ 1 – _____ ​       ​  ​ dx x+1 Integrating, we get

(  ) (  )



tan–1(y) + tan–1(e x) = tan–1 c



y + ex tan–1 ​ ​ _______    ​   ​ = tan–1c 1 – exy

( 

log |y| = 2x – 2log |x + 1| + c

(  )

dy ​ ___  ​ = e x + y + x2ey dx fi

dy ___ ​    ​ = (ex + x2)ey dx



e– ydy = (ex + x2) dx

Integrating, we get x3 – e– y = ex + __ ​   ​  + c 3



which is the required differential equation. 53. Given differential equation is ______ ______ dy ___ y  ​÷1  + x2 ​  + x  ​÷1    +  x2 ​  ​    ​ = 0 dx dy y + x ___ ​    ​ = 0 dx dy dx ___ ​  x ​ + ___ ​  y ​ = 0

fi fi

Integrating, we get

log |x| + log |y| = logc

fi xy = c which is the required solution. 54. Given differential equation is _____

_____

​÷ 1 + x2   ​  dy + ÷ ​ 1  + y2   ​  dx = 0

which is the required solution. 50. Given differential equation is

dy dx ______ ​ _______     ​ + _______ ​  ______     ​ = 0 2 ​÷1  + y  ​  ​÷1  + x2 ​ 



sec2x tan y dx + sec2y tan x dy = 0





sec2y sec2x _____ ​   ​    dx + _____ ​   ​    dy = 0 tan x tan y

Integrating, we get

| 



log |tan x| + log |tan y| = log c



tan x tan y = c

which is the required solution. 51. Given differential equation is 2

_____

|

| 

_____

|

log ​ y + ​÷y  2 + 1 ​    ​ + log ​ x + ​÷x  2 + 1 ​   ​ = logc

Integrating, we get

2x

)

y + ex ​ ​ ______      ​  ​ = c 1 – exy which is the required solution. 52. Given differential equation is fi

which is the required solution of the given differential equation. 48. The given differential equation is dy xy2 ​ ___  ​ = 1 – x2 + y2 – x2y2 dx dy fi xy2 ​ ___  ​ = (1 – x2) (1 + y2) dx

( 



x



(1 + e ) dy + (1 + y ) e dx = 0



dy ex    _____ ​   2   ​ + _______ ​       ​dx = 0 1+y 1 + ex2x

( 

_____

)

_____

)​ = c fi ​y + ÷ ​ y  2 + 1 ​  ​ ​( x + ​÷x  2 + 1 ​    which is the required solution. 55. Given differential equation is ________________ dy ​÷1  + x2 + y2  +     x2y2 ​ + xy  ​ ___  ​ = 0 dx



______________ dy ​÷(1   + x2) (1     +  y2) ​ + xy  ​ ___  ​ = 0 dx

4.35

4.36  Integral Calculus, 3D Geometry & Vector Booster fi

______________ dy xy  ___ ​    ​ = – ​÷(1    +  x2) (1 +   y2) ​ dx

Integrating, we get

______



ydy ​÷1  + x    ​ _______ ​  ______     ​ = – ​ _______ ​   dx x    2 ÷​ 1  + y  ​  2

| 

Intergrating, wet get _____ 1 + y2   ​ =

​÷ 

_____ ​÷x  2 + 1 ​  +



_____

|

x  2 + 1 ​  – 1 ÷​ _____ 1 __ ​   ​  log  ​ ​ __________     ​  ​ + c 2 ​÷x  2 + 1 ​  + 1

which is the required solution. 56. Given differential equation is dy xy ​ ___  ​ + 1 + x + y + xy = 0 dx dy xy ​ ___  ​ + (1 + x)(1 + y) = 0 dx y 1+x fi ​ _____ ​       ​  ​ dy + ​ ​ _____ ​  ​ dx = 0 x    1+y

log |x + a| + logc = log |y| – log |1 – ay| y c (x + a) = ______ ​       ​ 1 – ay

which is the required solution. 60. We have,

dx xy  ​ ___  ​ = dy

y dy (1  +  x  + x2) fi ​ _____ 2   ​ = ​ ___________       ​ dx 1+y (1 + x2) x

(1 +  x  + x2) = ​ __________       d​ x (1 + x2) x



dx dx = ___ ​  x ​ + _____ ​   2   ​ 1+x



(  ) (  ) (  ) (  )

1 1 fi ​ 1 – _____ ​       ​  ​ dy + ​ 1 + __ ​ x ​  ​ dx = 0 1+y Integrating, we get y – log |1 + y| + x + log |x| = c fi

|  |

x (x + y) – log ​ _____ ​       ​  ​ = c 1+y

57. Given differential equation is

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0

) (  )

( 

1+y 1+x fi ​ ​ _____     ​  ​ dx + ​ ​ _____     ​  ​ dy = 0 2 1+x 1 + y2 Integrating, we get 1 tan–1 x + tan–1 y + __ ​   ​  log |(x2 + 1) (y2 + 1)| = c 2 58. Given differential equation is _____

_____

x ​÷1  – y2   ​ dx + y ​÷1  – x2   ​ dy = 0 y x _____ fi ​ ______      ​ dx + ______ ​  _____      ​ dy = 0 2  ​ ​÷1  – y2   ​ ÷​ 1  – x   Integrating, we get

______

_____

​÷ 1 –  x2   ​ + ​÷1  – y2   ​ = c which is the required solution. 59. Given differential equation is dy dy ​ y – x ​ ___  ​  ​ = a ​ y2 + ___ ​    ​  ​ dx dx dy fi y(1 – ) = (x + a) ​ ___  ​ dx dy dx fi ​ _____     ​ = ________ ​       ​ x + a y (1 – ay)

( 

) ( 

( 

)

)

dx a 1 fi ​ _____     ​ = ​ __ ​ y ​ + _____ ​       ​  ​ x+a 1 – ay

1 + y2 ​ _____2   ​ (1 + x + x2) 1+x

1 fi ​ __ ​  log |1 + y2| = log |x| + tan–1 x + c 2 which is the required solution. 61. We have,

(x2 – yx2) dy + (y2 + xy2) dx = 0



x2 (1 – y) dy + y2 (1 + x) dx = 0

(1 – y) (1 + x) fi ​ ______  ​ dy     + ​ ______  ​ dx     =0 2 y x2 Integrating, we get 1 1 __ – ​ __ y ​ – log |y| – ​ x ​ + log |x| = c

|  |

( 

)

x 1 1 log ​ __ ​ y ​  ​ = c + ​ __ ​ x ​ + __ ​ y ​  ​ which is the required solution. 62. The given differential equation is fi

Let

dy ___ ​    ​ = (x + y + 1)2 dx x+y+1=v

dy fi ​ ___  ​ = dx dv ​ ___  ​ – dx

dv ___ ​    ​ – 1 dx 1 = v2

dv fi ​ _____     ​ = dx 2 v +1 Integrating, we get

dv     ​ = Ú  dx Ú  ​ _____ 2 v +1

fi  fi 

tan–1 (v) = x + c tan–1 (x + y + 1) = x + c

...(i)

Differential Equation 

is the required solution. 63. The given differential equation is dy ​ ___  ​ = sin (x + y) + cos (x + y) dx

...(i)

dy dv Put x + y = v fi 1 + ___ ​    ​ = ___ ​    ​ dx dx dy dv fi ​ ___  ​ = ___ ​    ​ – 1 dx dx



dv ​ ___  ​ – 1 = sin v + cos v dx

Integrating, we get

(v + log |v|) = 2x + c



(x + y + log |x + y|) = 2x + c



(y + log |x + y|) = x + c

which is the required solution of the given differential equation. 65. The given differential equation is dy tan y ​ ___  ​ = sin (x + y) + sin (x – y) dx

tan y fi ​ ____  ​   dy = 2 sin x dx cos y 

dv       ​ = x + c Ú  ​ ______________ 1 + sin v  +  cos v

dv fi Ú  ​ ________________________________          ​ = x + c 2 1 – tan  (v/2) 2tan(v/2) ___________ ___________ 1 + ​​         ​  ​ + ​ ​        ​  ​ 1 + tan2 (v/2) 1 + tan2 (v/2)

) ( 



dy sin (x  + y) + sin (x – y) fi ​ ___  ​ = ____________________ ​          ​ tan y dx 2 sin x cos y = ​ _________      ​  tan y

dv fi ​ ______________      ​ = dx 1 + sin v + cos v

( 

Ú  ​( 1 + __​ 1v ​ )​ dv = 2x + c



dv fi ​ ___  ​ = 1 + sin v + cos v dx





)

sin y fi ​ _______     ​ = 2 sin x dx cos2 y dy

sec2 (v/2)dv fi Ú  ​ ____________        ​ = x + c 2(1 + tan(v/2))

Integrating, we get sin y     ​ = Ú  2 sin x dx Ú  ​ _______ cos2y dy

fi log |1 + tan(v/2)| = x + c

1 fi ​ ____    ​ = c – 2 cos x cos y

fi log |1 + tan(v/2)| = x + c

| 

(  ) |

x+y fi log ​ 1 + tan ​ ​ _____  ​    ​  ​ = x + c 2 which is the required solution of the given differential equation. 64. The given differential equation is

(x + y) (dx – dy) = (dx + dy)



(x + y – 1) dx = (x + y + 1) dy

dy fi ​ ___  ​ = dx Let

(x +  y – 1) ​ __________     ​ (x + y + 1)

dy dv x + y = v fi ___ ​    ​ = ___ ​    ​ – 1 dx dx

dv v–1 fi ​ ___  ​ – 1 = ​ _____   ​ v+1 dx dv v – 1 2v fi ​ ___  ​ = ​ _____   ​ + 1 = _____ ​      ​ v+1 dx v + 1

( 

)

v+1 fi ​ ​ _____ ​  ​ dv = 2 dx v    Integrating, we get

4.37

which is the required solution of the given differential equation. 66. The given differential equation is dy ​ ___  ​ – x tan (y – x) = 1 dx dy fi ​ ___  ​ = 1 + x tan (y – x) dx dy dv Let  y – x = v fi ___ ​    ​ = ___ ​    ​ + 1 dx dx



...(i)

dv fi ​ ___  ​ + 1 = x tan v + 1 dx dv fi ​ ___  ​ = x tan v + 1 dx fi

cot v dv = x dx

Intergrating, we get

Ú cot v dv = x + c

x2 log |sin v| = __ ​   ​  + c 2 x2 fi log |sin(x – y)| = __ ​   ​  + c 2 which is the required solution of the given differential equation. fi

4.38  Integral Calculus, 3D Geometry & Vector Booster fi

67. We have, dy (x  – y) + 3 ​ ___  ​ =​  ___________        ​ dx 2(x – y) + 5

...(i)



Let x – y = v



dy dv fi 1 – ___ ​    ​ = ___ ​    ​ dx dx



dy dv fi ​ ___  ​ = 1 – ___ ​    ​ dx dx

( 

)

– cosec (x + y) + cot (x + y) = 2x + y + c

which is the required solution. 70. We have,

(  )

dy sin–1 ​ ___ ​    ​  ​ = x + y dx dy fi ​ ___  ​ = sin(x + y) dx dv fi ​ ___  ​ – 1 = sin v,   (Let  v = x + y) dx



dv v+3 fi ​ 1 – ​ ___  ​  ​ = ​ ______     ​ dx 2v + 5

dv fi ​ ___  ​ = 1 + sin v dx

dv v+3 fi ​ ___  ​ = 1 – ​ ______     ​ dx 2v + 5

dv fi ​ _________      ​ = dx (1 + sin v)



(  ( 

2v + 5 – v – 3 ______ v+2 = _____________ ​      ​    = ​       ​ 2v + 5 2v + 5

)

2v + 5 fi ​ ​ ______ ​  ​ dv = dx v + 2  1 fi ​ 2 + _____ ​       ​  ​ dv = dx v+2

)

Integrating, we get (2v + log |v + 2|) = x + c fi

(2(x – y) + log |x – y + 2|) = x + c



(x – 2y + log |x – y + 2|) = c

which is the required solution. 68. We have, (x + y) (dx – dy) = dx + dy

(1 – sin v)dv fi ​ __________      ​  = dx cos2v fi

(sec2v – sec v tan v) dv = dx

Integrating, we get

tan v – sec v = x + c



tan (x + y) – sec (x + y) = x + c

which is the required solution. 71. We have dy ​ ___  ​ = cos (x + y + 1) dx dv fi ​ ___  ​ – 1 = cos v, (Let x + y + 1 = v) dx

d(x + y) fi ​ _______ ​  = d (x – y) (x + y) Integrating, we get log |x + y| = (x – y) + c

dv fi ​ ________      ​ = dx 1 + cos v

dy 69. We have ​ ___  ​ = sec (x + y) dx



dv fi ​ ___  ​ – 1 = sec v   (Let  v = x + y) dx

= 1 + sec v

dv fi ​ _______     ​ = dx 1 + sec v cos v dv fi ​ ________     ​ = dx 1 + cos v cos v(1 – cos v) dv fi ​ ________________        ​ = dx sin2v fi [cosec v cot v – (cosec v – 1)] dv = dx Integrating, we get

– cosec v + cot v – v = x + c

1 – cos v fi ​ _______  ​  = dx sin2v dv (cosec2v – cosec v . cot v) dv = dx

Integrating, we get cosec v – cot v = x + c fi

cosec (x + y + 1) – cot (x + y + 1)

72. We have, dy 2(x + y) ​ ___  ​ = ​ __________       ​ dx 1 + (x + y)2 dv 2v fi ​ ___  ​ – 1 = _____ ​   2 ​  ,v=x+y dx 1+v dv 2v fi ​ ___  ​ = 1 + _____ ​       ​ dx 1 + v2

2v = 1 + _____ ​       ​ = 1 + v2

(1 + v)2 ​ _______2 ​   1+v

Differential Equation 

(  ( 

)

)

2 2 fi ​ 1 – _____ ​       ​ + _______ ​       ​  ​ dv = dx 1 + v (1 + v)2 Integrating, we get 2 v – 2 log |1 + v| – ​ ______      ​ = x + c (1 + v) 2 fi y – 2 log |1 + x + y| – _________ ​       ​ = c (1 + x + y) which is the required solution. 73. We have, dy ​ ___  ​ = sin (10x + 6y) dx

)

1 dv fi ​ __ ​ ​  ___ ​    ​ – 10  ​ = sin v 6 dx dv fi ​ ___  ​ = 6 sin v + 10 dx dv fi ​ __________      ​ = dx 6 sin v  +  10 dv fi ​ __________________        ​ = dx 2 tan(v/2) 6 ​ ___________ ​         ​  ​ + 10 1 + tan2(v/2)

( 

)

5 tan (5x + 3y)  +  3 5 fi ​ __ ​  tan–1 ​ ​ _______________  ​       ​ = 5x + c 4 4

2 fi ​ 1 – ​ _______      ​  ​ dv = dx (1 + v)2

( 

)

5 tan(v/2) + 3 5 fi ​ __ ​  tan–1 ​ ​ ___________  ​       ​ = 5x + c 4 4

1 + v2 fi ​ _______     ​  dv = dx (1 + v)2

(  ( 

)

which is the required solution. 74. We have, y dy 2(x2 + y2) –  1 ​ __x ​ ​ ___  ​ + ​ ____________       ​ = 0 dx x2 + y2 + 1 2v – 1 1 dv fi ​ __ ​ ​  ___  ​ – 1 + ______ ​   ​  = 0 2 dx v+1 2v –  1 1 dv fi ​ __ ​ ​  ___  ​ = 1 – ______ ​   ​  2 dx v+1 2–v = ​ _____   ​ v+1



(  ) v+1 fi ​( ​ _____   ​  ​ dv = – 2dx v – 1) v  –  2 + 3 fi ​( ​ ________  ​     ​ dv = – 2dx v–2 ) 3 fi 1 + ​( _____ ​       ​  ​ dv = – 2dx v – 2) v  +  1 fi ​ ​ _____   ​  ​ dv = 2dx 2–v

Integrating, we get

(x2 + y2) + log |(x2 + y2) – 2| = c – 2x

sec2(v/2)dv fi ​ __________________________         ​ = dx 10 (1 + tan2(v/2)) + 12 tan (v/2)

which is the required solution.

2 dt fi ​ _____________       ​ = dx, t = tan(v/2) 10(1 + t2) + 12t

dy x2y ​ ___  ​ = ______ ​  3  3   ​. dx x + y

dt fi ​ ___________       ​ = dx 5(1 + t2) + 6t

y ​ __ ​ x ​  ​ dy  ​, fi ​ ___  ​ = _______ ​  y 3  dx 1 + ​​ __ ​    ​  ​​ ​ 3

dt fi ​ __________       ​ = dx 5t2 + 6t  +  5 dt fi ​ __________       ​ = 5dx 6 2 __ t + ​   ​  t +  1 5 dt fi ​ _____________     2 ​ = 5dx 3 2 4 __ ​​ t + ​   ​   ​​ ​ + ​​ __ ​    ​  ​​ ​ 5 5

(  ) (  )

Integrating, we get

( 

)

t + (3/5) 5 ​ __  ​ tan–1 ​ ​ _______  ​    ​ = 5x + c 4 4/5

( 

)

4.39

5 5t + 3 fi ​ __  ​ tan–1 ​ ​ _____  ​    ​ = 5x + c 4 4

75. The given differential equation can be written as

(  )

(  )

y Let ​ __x ​ = v fi y = v x



dy dy fi ​ ___  ​ = v + x ​ ___  ​. dx dx

fi fi

dv v v + x ​ ___  ​ = ​ _____      ​ dx 1 + v3 dv v x ​___     ​ = _____ ​       ​ – v dx 1 + v3

(  )



v3 + 1 dx ​ ​ _____     ​  ​ dv = – ​___   x ​  v4



dx 1 ​ __ ​ v ​ + v– 4   ​ dv = – ​___   x ​ 

( 

)

4.40  Integral Calculus, 3D Geometry & Vector Booster

( 

dy 1 __x fi ​ ___  ​ = __ ​   ​ ​  ​   ​ – dx 2 y

Integrating, we get

1 log |v| – ___ ​   3 ​ = c – log |x| 3v



y x3 log ​ __ ​ x ​  ​ – ___ ​  3  ​ = c – log |x| 3y

|  |

1 log |v| – ___ ​   3 ​ = c, 3v which is the required fi

y Let ​ __x ​ = v fi y = vx



dy dv fi ​ ___  ​ = v + x ​ ___  ​ dx dx





x dy – y dx = ​÷x  2 + y2   ​ dx



______ dy x ​ ___  ​ – y = ​÷x  2 + y2   ​ dx



______

x  2 + y2   ​ dy y ​÷_______ ​ x ​ = ​  x    ​  fi ​ ___  ​ – __ dx



_______

÷  (  )

y y 2 __ ​ x ​ = ​ 1 + ​​ __ ​ x ​  ​​   ​ ​

...(i)



y Let ​ __x ​ fi y = vx



dy dy fi ​ ___  ​ = v + x ​ ___  ​ dx dx _____



dy v + x ​ ___  ​ – v = ÷ ​ 1  + v2   ​ dx



_____ dy x ​ ___  ​ = ÷ ​ 1  + v2   ​ dx

( 

)

dv 1 __ 1 v + x ​ ___  ​ = __ ​   ​ ​  ​   ​ – v  ​ dx 2 v dv 3v 1 – 3v2 1 x ​ ___  ​ = ___ ​    ​ – ___ ​   ​ = ​ ______     ​  2 2v dx 2v

2v dx fi ​ _______    ​   dv = ___ ​  x ​  1 – 3v2 Integrating, we get

______

dy fi ​ ___  ​ – dx





solution of the given differential equation. 76. The given differential equation is

)

y __ ​ x ​  ​



2v dx  2   ​ dv = Ú  ​ ___ Ú ​ 1______ x ​  – 3v 1 – ​ __ ​  log |1 – 3v2| = log c + log |x| 3 y 2 1 – ​ __ ​  log ​ 1 – 3​​ __ ​ x ​  ​​ ​   ​ = log c + log|x| 3

| 

(  ) |

which is the required solution of the given differential equation. 78. The given differential equation is

(1 + 2e x/y) dx + 2e x/y (1 – x/y) dy = 0

dy fi ​ ___  ​ = dx

(1 + 2ex/y) ​ __________     ​ x    2e x/y ​ __ ​ y ​ – 1  ​

(  ) x 2e  ​( __ ​ y ​ – 1 ) ​ ___________ x/y

dv dx _____ fi ​ _______     ​ = ___ ​  x ​  2  ​ ÷​ 1  + v  

dy fi ​ ___  ​ = ​        ​ dx (1 + 2ex/y)

Integrating, we get





dv dx _____     ​ = Ú  ​ ___ Ú  ​ _______ x ​  2

| 

_____

|

fi ​( v + ​÷1  + v    ​ )​ = cx 2

(  ÷  (  ) ) ______

)

dv v + y ​ ___  ​ = dy



dv y ​ ___  ​ = dy



2vev – 2ev – v – 2vev = __________________ ​         ​ 1 + 2ev



2ev + v = ​ ______v     ​ 1 + 2e

fi ​ y + ​÷x  2 + y2   ​  ​ = cx2 which is the required solution of the given differential equation. 77. The given differential equation is

(x2 – y2) dx = 2xy dy



______ dy x ​ ___  ​ – y = ÷ ​ x  2 + y2   ​ dx

...(i)

2ev (v  – 1) _________ ​   ​    (1 + 2ev)



_______

y y 2 fi ​ __ ​ x ​ + ​ 1 + ​​ __ ​ x ​  ​​  ​ ​  ​  = cx

( 

dv dx fi ​ ___  ​ = v + y ​ ___  ​ dy dy



log ​ v + ÷ ​ 1  + v2   ​  ​ = log|x| + log c _____

x Let ​ __y ​ = v fi x = vy



​÷1  + v    ​

...(i)

2ev (v – 1) ​ _________  ​   –v (1 + 2ev)

dy 1 + 2ev fi ​ _______v   ​    dv = – ​ ___ y ​  v + 2e

Differential Equation 

fi fi

log |v + 2ev| + log|y| = log c

81. We have,

v



y (v + 2e ) = c x y ​ __ ​ y ​ + 2ex/y   ​ = c



(x + 2yex/y) = c

( 

dy ​ ___  ​ = dx

)

which is the required solution of the given differential equation. 79. The given differential equation can be written as dy ​ ___  ​ = dx

y–x ​ _____     ​ y+x y (Let ​ __x ​ = v fi y = vx)



dy dv fi ​ ___  ​ = v + x ​ ___  ​ dx dx



dv v + x ​ ___  ​ = dx

v–1 ​ _____   ​ v+1

v–1 = ​ _____     ​ – v v  + 1



v –  1 – v2 – v = _____________ ​      ​   v+1



1 + v2 = ​ _____ ​  v+1



dv v – 1 x  ​ ___  ​ = ​ _____   ​ – v v+1 dx v–1 = ​ _____   ​ – v v+1



1 fi ​ __ ​  log |v2 + 1| + tan–1 (v) = c – log |x| 2 y 1 fi ​ __ ​  log |x2 + y2| + tan–1 ​ ​ __x ​  ​ = c 2 which is the required solution of the given differential equation.

(  )

80. We have,

dy x + y y fi ​ ___  ​ = _____ ​  x    ​ = 1 + __ ​ x ​ dx dv fi v + x ​ ___  ​ = 1 + v, v = dx dv fi x ​ ___  ​ = 1 dx dx fi dv = ___ ​  x ​  Integrating, we get

y __ ​ x ​

log |v – 1| + log |x| = log c

y fi ​ __x ​ = log |x| + c which is the required solution.

1+v dx fi ​ ______2   ​   dv = – ​ ___ x ​  1+v Integrating, we get 1 tan–1 (v) + __ ​   ​  log |1 + v2| = c – log |x| 2 y 1 tan–1 ​ __ ​ x ​  ​ + __ ​   ​  log |x2 + y2| = c 2 which is the required solution. 82. We have, dy 2xy ​ ___  ​ = x2 + y2 dx

(  ) (  )

y 2 2 + ​​ ​ __x ​  ​​​ dy x______ + y2 1_______ ___ fi ​    ​ = ​       ​ = ​    x  ​  2xy dx 2 ​ __ ​ y ​  ​ fi

dv 1  +  v2 v + x ​ ___  ​ = ​ _____     ​  2v dx



dv 1 + v2 1 – v2 x ​ ___  ​ = ​ _____     ​ – v = ​ _____       ​ 2v 2v dx

2v dv dx fi ​ _____      ​ = – ​ ___ x ​  v2 – 1 Integrating, we get

dy x ​ ___  ​ = x + y dx

2

1 + v2 = – ​ ______ ​  1+v





v+1 dx fi ​ _____      ​ dv = – ​ ___ x ​  v2 + 1



dv v – 1 v + x ​ ___  ​ = ​ _____   ​ dx v + 1

(  )





(y/x) – 1 ​ _______   ​ (y/x) + 1



...(i)



y–x ​ _____   ​ = y+x



log |v2 – 1| + log |x| = log c



(v2 – 1) x = c

fi (y2 – x2) = cx which is the required solution. 83. We have, dy ​ ___  ​ = dx

y2 – 2xy ​ _______    ​ x2 – 2xy

(  )

(  ) (  )

y 2 y ​​ __ ​ x ​  ​​ ​ – 2​ __ ​ x ​  ​ dy fi ​ ___  ​ = ​ __________      y  ​ dx 1 – 2​ __ ​ x ​  ​ fi

dv v2 – 2v v + x ​ ___  ​ = _______ ​   ​  1 – 2v dx

4.41

4.42  Integral Calculus, 3D Geometry & Vector Booster fi

dv 3v2  –  3v x ​ ___  ​ = ​ _______     ​ 1 – 2v dx

1 – 2v fi ​ ________      ​ dv = 3v(v – 1)



dx ___ ​  x ​ 

(  ( 

)

dx 1 1 2 fi ​ __ ​ ​  _______ ​       ​ – ______ ​       ​  ​ dv = ___ ​  x ​  3 v(v – 1) (v – 1)

)

dx 1 1 1 2 fi ​ __ ​ ​  _____ ​       ​ – __ ​   ​ – ​ ______      ​  ​ dv = ___ ​  x ​  3 v – 1 v (v – 1) fi

( 

)

dx 1 1 1 – ​ __ ​ ​  _____ ​       ​ + __ ​   ​  ​ dv = ___ ​  x ​  3 v–1 v

Integrating, we get fi

1 – ​ __ ​    log |v(v – 1)| = log |cx| 3 y y 1 – ​ __ ​  log ​ __ ​ x ​ ​ __ ​ x ​ – 1  ​  ​ = log |cx| 3

|  ( 

fi fi

x2y dx – (x3 + y3) dy = 0



1  – 3v2 – v4 + 3v2 = ​  _______________         ​ v3 – 3v



1 – v4 = ​ _______    ​  v3 – 3v

(  ) (  )

Integrating, we get

|  |

v2 – 1 3 1 – ​ __ ​  log |1 – v4 | + __ ​   ​  log ​ ​ _____    ​  ​ = log |x| + log c 4 4 v2 + 1

( 

)

y dv v v + x ​ ___  ​ = _____ ​       ​,  ​ Let v = __ ​ x ​  ​ dx 1 + v3 dv v x ​ ___  ​ = _____ ​       ​ – v dx 1 + v3 v  –  v – v4 = ​ _________  ​     1 + v3 4

v = – ​ _____     ​ 1 + v3

(  )

x3 – ​ ___3  ​ + log |y| = c 3y which is the required solution 85. Given differential equation is fi

(x3 – 3xy2) dx = (y3 – 3x2y) dy

dy x   –  3xy fi ​ ___  ​ = ________ ​   ​  dx y3 – 3x2y

dv 1 – 3v2 x ​ ___  ​ = ​ ______    ​ – v dx v3 –  3v

v3 3v dx fi ​ _____ ​   4   ​  ​ dv – ​ _____ ​   4   ​  ​ dv = ___ ​  x ​  1–v 1–v

(  )

2



Integrating, we get

y __ ​ x ​ = _______ ​     ​ y 3  1 + ​​ __ ​ x ​  ​​ ​

3

)

v3 3v dx fi ​ _____ ​   4   ​  ​ dv – ​ _____ ​   4   ​  ​ dv = ___ ​  x ​  1–v 1–v

1 + v3 dx fi ​ ​ _____  ​    ​ dv = – ​ ___ x ​  4 v Integrating, we get 1 – ​ ___ 3 ​ + log |v| = c – log |x| 3v



dv v + x ​ ___  ​ = dx

(  ) (  ) (  )

)|

dy x2y fi ​ ___  ​ = ​ ______     ​ dx x3 + y3

( 

y 1 – 3v2 _______ ​  3    ​,  ​ Let  v = __ ​ x ​  ​ v – 3v



v3 – 3v dx fi ​ _______ ​   ​   ​ dv = ___ ​  x ​  1 – v4

which is the required solution. 84. Given differential equation is

(  ) (  ) (  )

y 2 1 – 3​​ __ ​ x ​  ​​ ​ __________ = ​  y 3     ​ y  ​​ __ ​    ​  ​​ ​ – 3​ __ ​ x ​  ​ 3



 | | (  ) (  )

y 2 ​​ __ ​ x ​  ​​ ​ – 1 y 4 3 1 __ __ __ _______ fi – ​   ​  log ​ 1 – ​​ ​ x ​  ​​ ​   ​ + ​   ​  log ​ ​  y 2    ​ ​ = log |xc| 4 4 ​​ __ ​ x ​  ​​ ​ + 1

| 

(  ) |

which is the required solution. 86. The given differential equation is

÷ 

_____

dy ​ ___  ​ = dx

y __ ​ x ​ –

y2 ​ __ ​  2 ​  – 1 ​   x



_____ y dv v + x ​ ___  ​ = v – ​÷v  2 – 1 ​  ​   Let ​ __x ​ = u  ​ dx



dv x ​ ___  ​ = – ​÷v  2 – 1 ​  dx

( 

_____

dv dx _____ fi ​ ______     ​ = – ​ ___ x ​  2 ÷​ v  – 1 ​  Integrating, we get

_____

|  _____ | fi log ​| v + ​÷v  – 1 ​   |​ = log ​| __​ cx ​ |​ _____ )​ = ​( __​ cx ​ )​ fi ​( v + ÷ ​ v  – 1 ​   _______ y y fi ​( __ ​ x ​ + ÷ ​ ​​(   __ ​ x ​ )​​ ​ – 1 ​   )​ = ​( __​ cx ​ )​

log ​ v + ​÷v  2 – 1 ​  ​ = log c – log c 2

2

2

)

Differential Equation  ______

fi ​ y + ÷ ​ y  2 – x2   ​  ​ = c



which is the required solution. 87. The given differential equation is

vev  –  ev – v – vev = ________________ ​         ​ 1 + ev



– ev  – v = ​ _______v   ​ 1+e

( 

dy fi ​ ___  ​ = dx fi fi

)

(  )

y y __ ​ x ​ + sin ​ __ ​ x ​  ​

( 

)

y dv v + x ​ ___  ​ = v + sin (v)  ​ Let ​ __x ​ = u  ​ dx dv x ​ ___  ​ = sin (v) dx

dv dx fi  ​ _____    ​  = ___ ​  x ​  sin (v)



| 

)

dv 1 + ev fi ​ ​ _____v   ​  ​ dv = – ​ ___ y ​  v+e Integrating, we get

log |v + ev| = log c – log|y|

( 

) (  )

x c fi ​ ​ __y ​ + ex/y   ​ = ​ __ ​ y ​  ​ fi (x + y ex/y ) = c which is the required solution. 90. The given differential equation is

Integrating, we get fi

( 

(  ) |

v log ​ tan ​ __ ​    ​  ​  ​ = log c + log |x| 2 y tan ​ ​ ___  ​   ​ = cx 2x

(  )

dy x + 2y + 3 ​ ___  ​ = ​  __________        ​. 2x + 3y  +  4 dx Let

which is the required solution. 88. The given differential equation is dy y x ​ ___  ​ = y – x tan ​ __ ​ x ​  ​ dx

x = X + a and y = Y + b

dY (X + a)  +  2(Y + b) + 3 Thus, ​ ___  ​ = _____________________ ​           ​ dX 2(X + a)  + 3(Y + b) + 4

(  ) dy y y fi ​ ___  ​ = ​( __ ​ x ​ )​ – tan ​( __ ​ x ​ )​ dx

(X + 2Y) + (a + 2b + 3) dY ​ ___  ​ = ​  _______________________          ​ dX (2X + 3Y) + (2a + 3b +  4)

( 

)

y dv v + x ​ ___  ​ = v – tan (v)  ​ Let ​ __x ​ = u  ​ dx dv fi x ​ ___  ​ = – tan (v) dx dv dx fi ​ _____   ​  = – ​ ___ x ​  tan(v)

Let us choose a and b in such a way that

Integrating, we get

dY X + 2Y ​ ___  ​ = ​ ________     ​ 2X  +  3Y dX which is a homogeneous equation.



fi fi

|  | 

(  ) | p v c log ​ tan ​( __ ​   ​  + __ ​    ​  ​  ​ = log ​| __ ​ x ​ |​ 4 2 )|

p v log ​ tan ​ __ ​   ​  + __ ​    ​  ​  ​ = log c – log|x| 4 2

( 

)

(  )

( 

x x __ __ ​   ​ ​   ​ x ​( 1 + ​e​y ​  )​ dx + e​ ​y ​ ​ 1 – ​ __y ​  ​ dy = 0

( 

)

x __ ​   ​ 1  ​ ​e​y ​

)

x ​ __ ​ y ​ – dx ___ ________ fi ​    ​ = ​   ​   dy (​  1 + ​e__​ ​xy ​​  )​ fi

v dv (v – 1) e v + x ​ ___  ​ = ​ ________   ​, v = v    dy 1+e



v dv (v – 1) e x ​ ___  ​ = ​ ________   ​– v v    dy 1+e



Solving, we get a = 1, b = – 2. Equation (i) reduces to

Equation (ii) reduces to dV 1  +  2V V + X ​ ___  ​ = _______ ​   ​  dX 2 + 3V 2 + 3V dX fi ​ _______2   ​    dV = ___ ​   ​  X 1 –  3V Integrating, we get

x __ ​ y ​

...(i)

a + 2b + 3 = 0 and 2a + 3b + 4 = 0

Y Put ​ __ ​ = V X dV dY fi ​ ___  ​ = V + X ​ ___  ​. dX dX

y p c tan ​ __ ​   ​  + ___ ​    ​   ​ = ​ __ ​ x ​  ​ 4 2x which is the required solution. 89. The given differential equation is fi

4.43

2 + 3V dX    ​   dV = Ú ___ ​   ​  Ú ​ _______ 2 X 1 –  3V

| 

__

|

1 + ​÷3 ​  V   1__ 1 __  ​  fi ​ ___   ​ log ​ ​ ________   ​ – __ ​   ​  log |(1 – 3V 2)| 2 ​ 3 ​    1 – ​÷3 ​  V   ÷

= log C + log |X|

...(ii)

4.44  Integral Calculus, 3D Geometry & Vector Booster

|  | __



X + ​÷3    ​Y   1 1 ___ __   ​  __  ​  log ​ ​ _______  ​ ​– __ ​   ​ log |(X2 – 3Y2)| = log c 2 ​ 3     ​ X – ​÷3    ​Y   ÷



(x – 1) + ÷ ​ 3     ​(y + 2) 1 ___ __    ​  ​  __  ​  log ​ _________________ ​     ​ ​ 3     ​ (x – 1) – ​÷3    ​(  y + 2) ÷

| 

__

|

1 – ​__    ​ log|(x2 – 3y2 – 2x – 12y – 11)| = log c 2 which is the required solution of the given differential equation. 91. The given differential equation is



dy (x + y)2 ___ ​    ​ = ​ ____________      ​ (x + 2)(y – 2) dx

Let

X = x + 2 and Y = y + 2

...(i)

Equation (i) reduces to 2 (X + Y)2 dY (X – 2 + Y + 2) ​ ___  ​ = ​  ______________        ​ = ​  _______     ​  ...(ii) XY XY dX Let

dV dY Y = V X fi ___ ​    ​ = V + X ​ ___  ​ dX dX

Equation (ii) reduces to 2 dV (1 + V) V + X  ​ ___  ​ = ​ _______     ​  V dX



dy y – x ​ ___  ​ + ln x = 0 dx



dy x ​ ___  ​ – y = ln x dx

dy y ___ ln x fi ​ ___  ​ – __ ​   ​ = ​  x     ​ dx x

...(i)

which is a linear differential equation. dx ___ 1 IF = e​ –  ​ Ú  ​  x ​ ​ = e– log x = __ ​ x ​ Multiplying both sides of Eq. (i) by IF and integrating, we get

y ◊ (IF) = Ú Q . (IF) dx + c

ln x 1 ___ y ◊ ​ __ x ​ = Ú  ​  x2 ​  dx + c log x __ y 1 fi ​ __x ​ = – ​ ____ ​  x     ​ + ​ x ​  ​ + c fi

( 



)

y = – (log x + 1) + c

which is the required solution of the given differential equation. 98. The differential equation is



2 dV (1 + V) X ​ ___  ​ = ​ _______     ​ – V V dX





dV (1 + 2V) X ​ ___  ​ = ​ _______     ​  V dX

dy y fi ​ ___  ​ – 3 ​ __x ​ = 4x2 + 2 dx



Integrating, we get

)

dX 1 1 fi ​ __ ​  Ú ​ 1 – _______ ​       ​  ​ = Ú  ​ ___ ​  X 2 (2V + 1) 1 fi ​ __ ​  (V – log (2V + 1)) = log |X| + c 2

( 

| 

|)

1 Y Y fi ​ __ ​ ​  __ ​   ​ – log ​ 2 ​ __ ​ + 1  ​  ​ = log |X| + c X 2 X

( (  ) |  (  ) | )

y–2 1 y–2 fi ​ __ ​ ​  ​ ​ _____   ​  ​ – log ​ 2 ​ ​ _____   ​  ​ + 1  ​  ​ 2 x+2 x+2

= log |x + 2| + c

which is the required solution of the given differential equation. 97. The given differential equation is

dx ___ 1 IF = e​ – 3  ​ Ú  ​  x ​ ​ = e – 3 log x = __ ​  3  ​  x

Multiplying both sides of Eq. (i) by IF and integrating, we get

VdV dX _______ ​      ​ =  ​ ___ ​  Ú (2V + 1) Ú X

( 

...(i)

which is a linear differential equation.

VdV dX fi ​ _______     ​ = ___ ​   ​  X (2V + 1)



dy x2 ​ ___  ​ – 3xy = 4x4 + 2x2 dx

y dx – x dy + ln xdx = 0



y ◊ (IF) = Ú  Q.(IF) dx + c



4x2 + 2 1 y ◊ ​ __3  ​  = Ú  ​ ​ ______  ​    ​ dx + c x x3

( 

( 

)

) )

y 4 2 fi ​ __3  ​  = Ú  ​ __ ​ x ​ + __ ​  3  ​   ​ dx + c x x

( 

1 = ​ 4 log x – __ ​  2  ​   ​ + c x

which is the required solution of the given differential equation. 99. The given differential equation is dy ​ ___  ​ = y tan x – sin x dx dy fi ​ ___  ​ + (– tan x) y = – sin x dx

...(i)

Differential Equation 

which is a linear differential equation.

Multiplying both sides of Eq. (i) by IF and integrating, we get

IF = e– Ú  tan xdx = elog(cos x) = cos x

Multiplying both sides of Eq. (i) by I.F and integrating, we get



x ◊ (IF) = Ú  Q.(IF) dy + c x ◊ e– y = Ú  (3y + 2) e– y dy + c



y ◊ (I.F.) = Ú  Q.(I.F) dx + c





y (cos x) = – Ú  (sin x cos x) dx + c







1 = – ​ __ ​  Ú  sin 2 x dx + c 2

cos 2 x = ______ ​   ​   + c 4 which is the required solution of the given differential equation. 100. The given differential equation is

dy y 2 ​ ___  ​ + ​ ______    ​  = __ ​    ​   dx x log x x2

...(i)

which is a linear differential equation.

dx      ​ Ú  ​ ______

IF = e​ ​ x log x ​ = elog(log x) = log x

Multiplying both sides of Eq. (i) by IF and integrating, we get y (IF) = Ú  Q (IF) dx + c 2 fi y ◊ log x = Ú  ​ __2  ​   log x dx + c x 2 = – ​ __ ...(i) x ​ (1 + log x) + c which is the required solution of the given differential equation. 101. The given differential equation is x x dx = ​ __ ​  2  ​  – y  ​ dy y

(  )



dx x ​ ___  ​ + y = xy2 dy

dy y fi ​ ___  ​ + __ ​   ​ = y2 dx x

...(i)

which is a linear differential equation.

IF = e– Ú  dy = e– y

x = – 3 (y + 2) + cey

which is the required solution of the given differential equation. 103. The given differential equation is dy ​ ___  ​ + 2y = e3x ...(i) dx which is a linear differential equation. IF = e Ú 2 dx = e2x Multiplying both sides of Eq. (i) by IF and integrating, we get

y ◊ (IF) = Ú  Q.(IF) dx + C



y (ex) = Ú  (e2x ◊ ex) dx + c



= Ú  (e3x) dx + c

(  ) (  )

e3x = ​ ___ ​   ​  ​ + c 3

e3x y = ​ ___ ​   ​  ​ + ce– x 3

which is the required solution. 104. The given differential equation is dy x ​ ___  ​ = x + y dx dy y fi ​ ___  ​ = 1 + __ ​ x ​ dx

dy y fi ​ ___  ​ – __ ​   ​ = 1 dx x

...(i)

which is a linear differential equation. dx ___ 1 IF = e​ –  ​ Ú  ​  x ​ ​ = e– log x = __ ​ x ​ Multiplying both sides of Eq. (i) by IF and integrating we get

dy (x + 3y + 2)  ​ ___  ​ = 1 dx

dx fi ​ ___  ​ – x = 3y + 2 dy

= 3 (– ye– y + 2e– y) + c

Thus,

which is a linear differential equation. 102. The given differential equation is

4.45

...(i)

y ◊ (IF) = Ú  Q ◊ (IF) dx + c

y dx fi ​ __x ​ = Ú  ​ ___ x ​ + c y fi ​ __x ​ = log |x| + c which is the required solution.

4.46  Integral Calculus, 3D Geometry & Vector Booster

105. The given differential equation is



dy x ​ ___  ​ + y = xe x dx

dy fi ​ ___  ​ + dx

which is the required solution. 108. The given differential equation is dy ​ ___  ​ = y tan x – 2 sin x dx

y __ ​ x ​ = ex

dy fi ​ ___  ​ + (– tan x) y = – 2 sin x dx

which is a linear differential equation.

Thus,

which is a linear differential equation

dx

___ IF = e​ Ú​   ​  x ​ ​ = elog x = x

Multiplying both sides of Eq. (i) by IF and integrating we get

y ◊ (IF) = Ú  Q.(IF) dx + c



y ◊ x = Ú  xex dx + c

fi (xy) = ex (x – 1) + c which is the required solution. 106. The given differential equation is dy x ​ ___  ​ + y = x log x dx dy fi ​ ___  ​ + dx

y __ ​ x ​ = log x

...(i)

which is a linear differential equation. Thus,

dx

___ IF = e​ Ú​   ​  x ​ ​ = elog x = x

Multiplying both sides of Eq. (i) by IF and integrating we get

y ◊ (IF) = Ú  x log x dx + c



y ◊ x = Ú  x log x dx + c



– IF = e Ú  tan x dx = e– log(sec x) = x

Multiplying both sides of Eq. (i) by IF and integrating we get

y ◊ (IF) = Ú Q ◊ (IF) dx + c



y ◊ cos x = Ú (– sin x ◊ tan ◊ x) dx + c



1  –  cos2x = – Ú  ​ _________ ​  cos x      ​  ​ dx + c



= – Ú  (sec x – cos x) dx + c



( 

)

= – log |sec x + tan x| + sin x + c

which is the required solution. 109. The given differential equation is dy y ​ ___  ​ – __ ​   ​ = 2x2 dx x

...(i)

which is a linear differential equation. dx ___ 1 I.F. = e​ –  ​ Ú  ​  x ​ ​ = e– log x = __ ​ x ​ Multiplying both sides of Eq. (i) by IF and integrating we get



(  )

Thus,

Thus,

Thus,

1 = Ú  x log x dx – __ ​    ​ Ú  x dx + c 2

x2 x2 = ​ __ ​   ​   ​ log x – __ ​   ​  + c 2 4 which is the required solution. 107. The given differential equation is dy y ​ ___  ​ + __ ​   ​ = x3 dx x which is a linear differential equation.

...(i)

y ◊ (I.F) = Ú  Q ◊ (IF) dx + c

1   y ◊ ​ __ x ​ = 2 Ú  x dx + c y fi ​ __x ​ = x2 + c which is the required solution. 110. The given differential equation is dy 2 x log x ​ ___  ​ + y = __ ​ x ​ log x dx fi

...(i)

dx ___

IF = e​ ​Ú  ​  x ​ ​ = elog x = x

Multiplying both sides of Eq. (i) by IF and integrating we get

dy y 2 fi ​ ___  ​ + ​ ______    ​  = __ ​    ​   dx x log x x2

...(i)

which is a linear differential equation. dx – Ú  ​ ______    ​  x log x ​ =



y ◊ (IF) = Ú  Q.(I.F.) dx + c

Thus,



xy = Ú  x4 dx + c

Multiplying both sides of Eq. (i) by IF and integrating we get



x5 = __ ​   ​  + c 5



IF = e​ ​

elog (log x) = x

y ◊ (IF) = Ú  Q ◊ (IF) dx + c

Differential Equation 



log x y ◊ log x = 2 Ú  ​ ____  ​ dx     +c x2

which is the required solution. 113. The given differential equation is



= 2 Ú  (te– t) dt + c, t = log x





= – 2 (te– t – e– t) + c



log x – 1 = – 2 ​ ​ _______ ​  ​ + c x   

dy a 1 __ fi ​ ___  ​ + ​ – ​ __ x ​  ​ y = x + ​ x ​ dx

( 

y dx – (x + 2y2) dy = 0



dx y ​ ___  ​ + (x – y2) = 0 dy



dx y ​ ___  ​ + x = y2 dy

dx x fi ​ ___  ​ + __ ​   ​ = y dy y

Thus,

Thus,

IF =



elog y = y

Multiplying both sides of Eq. (i) by IF and integrating we get x ◊ (I.F) = Ú  y2dy + c



x ◊ y = Ú  y2dy + c

y = __ ​   ​  + c 3 which is the required solution. 112. The given differential equation is fi

dx y ​ ___  ​ + (x – y3) = 0 dy dx y ​ ___  ​ + x = y3 dy



dx fi ​ ___  ​ + dy

x __ ​ y ​ = y2



...(i)

Multiplying both sides of Eq. (i) by IF and integrating we get



x ◊ y = Ú  y3 dy + c



y4 = __ ​   ​  + c 4

)

...(i)

dx

– n    ​ _____     ​ I.F. = ​e​ Ú x + 1 ​ = e– n log (x + 1)

( 

)

1 log ​ _______ ​       ​  ​ (x + 1)n ​ =

= ​e​

1 _______ ​       ​ (x + 1)n

y ◊ (IF) = Ú  Q ◊ (IF) dx + c

y fi ​ _______      ​ = Ú  ex dx + c (x + 1)n

dy

x ◊ (IF) = Ú  Q ◊ (IF) dy + c

( 

Multiplying both sides of Eq. (i) by IF and integrating we get

  ​ ___ ​  IF = e​ Ú​ y ​ = elog y = y



)

dy n fi ​ ___  ​ – ​ _____ ​       ​  ​ y = ex (x + 1) n x+1 dx



which is a linear differential equation Thus,

( 

x– a + 1 x– a = ​ _____ ​   ​   – a + ___ ​ – a  ​ + c  ​ 1

which is the required solution. 114. The given differential equation is dy (x + 1) ​ ___  ​ – ny = ex (x + 1) n + 1 dx

Thus,



y dx + (x – y3) dy = 0



which is a linear differential equation

3



y ◊ (IF) = Ú  Q.(IF) dx + c

y fi ​ __a  ​  = Ú  (x– a + x– a –1) dx + c x ...(i)



dx – a ___ 1 ) IF = e​ – a  ​ Ú  ​  x ​ ​ = e– a log x = e​ log(x ​ ​ = __ ​  a   ​ x

Multiplying both sides of Eq. (i) by IF and integrating we get

which is a linear differential equation. dy   ​ ___ ​  e​ Ú​ y ​ =

...(i)

which is a linear differential equation

which is the required solution. 111. The given differential equation is

dx x ​ ___  ​ – ay = x + 1 dy

(  )

)

4.47



= ex + c

which is the required solution. 115. The given differential equation is

(1 + y2) dx = (tan–1 y – x) dy

–1 dx (tan  y – x) fi ​ ___  ​ = ​ __________     ​  dy 1 + y2

dx x fi ​ ___  ​ + _____ ​       ​ = dy 1 + y2

tan–1 y ______ ​   ​   1 +y2

which is a linear differential equation

...(i)

4.48  Integral Calculus, 3D Geometry & Vector Booster dy

Thus,

 2   ​ Ú  ​ _____ –1 IF = e​ ​ 1 + y ​ = e​ tan ​ y​



Multiplying both sides of Eq. (i) by IF and integrating we get

x ◊ (IF) = Ú  Q ◊ (IF) dy + c



–1 tan–1y tan–1 y x ◊ ​etan ​ y​ = Ú  ​ _____ ​     ​  ​ ​e​ ​ dy 1 + y2



x ◊ ​etan ​ y​ = Ú  tet dt + c, t = tan–1y



x ◊ ​etan ​ y​ = et (t – 1) + c



x ◊ ​etan ​ y​ = e​ tan ​ y​ (tan–1y – 1) + c

–1

DIviding both the sides by y (log y)2, we get dy 1 1 __ 1 1 ​ _______   2 ​   ◊ ​ ___  ​ + ____ ​       ​ ◊ ​ x ​ = __ ​  2  ​  dx log y y(log y) x

–1

which is the required solution. 116. The given differential equation is dx (x + 3y + 2)  ​ ___  ​ = 1 dy dx fi ​ ___  ​ = (x + 3y + 2) dy dx fi ​ ___  ​ – x = (3y + 2) dy which is a linear differential equation

...(i)

Thus, IF = e  Ú  dy = e– y Multiplying both sides of Eq. (i) by IF and integrating we get –



x ◊ (IF) = Ú  Q.(IF) dy + c



x ◊ e– y = Ú  {3(ye– y) + 2(e– y)} dy + c – y

– y



= 3 (– ye



= – 3 (y + 1) e– y – 2e– y + c



– e ) – 2e

+c

ydy – Ú  ​ _____   ​  y2 +1 ​ =

1 – ​ __ ​  log |y2 + 1|

we get

​e​ 2

dv 1 __ 1 – ​ ___  ​ + v ◊ ​ __ x ​ = ​ x2  ​  dx dv v 1 fi ​ ___  ​ – __ ​   ​ = – ​ __2  ​  dx x x which is a linear differential equation. fi

1 –1 __ 1 IF = e​ –  ​ Ú  ​ x ​ dx​ = e– log x = e​ log x ​ ​ = __ ​ x .​ Hence the solution is

Thus,

v ◊ (IF) = Ú  Q.(IF) dx + c



1 1 1 v ◊ ​ __ ​ x ​  ​ = Ú  – ​ __2  ​  ◊ ​ __ ​   ​  ​ dx + c x x

...(i)

1 ​ = _______ ​  _____      ​ 2 ÷​ y  + 1 ​  Multiplying both sides of Eq. (i) by IF and integrating IF = e​ ​

dy dv 1 fi ​ _______   2 ​   ◊ ​ ___  ​ = – ​ ___  ​ dx dx y(log y)



which is a linear differential equation Thus,



(  )

(  )

x 1 dy fi ​ __6  ​ ​  ___  ​ + __ ​  5  ​  = x3 dx y y

(1 + y2) dx = (xy + y3 + y) dy xy dx fi ​ ___  ​ = _____ ​  2      ​ + y dy y + 1

)

1 Let ​ ____      ​= v log y

119. The given differential equation is dy ​ ___  ​ + xy = x3y6 dx

which is the required solution. 117. The given differential equation is

( 



1 1 fi ​ ______    ​  – ___ ​    ​ = c x log y 2x2

x = – 3(y + 1) – 2 + cey

y dx fi ​ ___  ​ + ​ – ​ _____      ​  ​ x = y 2 dy y +1

_____

which is the required solution. 118. The given differential equation is dy y y ​ ___  ​ + ​ __x ​  log x = __ ​  2  ​   (log y)2 dx x

–1

– y

(  ) ( ÷  )

ydy x _____ fi ​ _______ ​  _____      ​  ​ = Ú  ​ _______     ​ + c ÷​ y  2 + 1 ​  ​÷y  2 + 1 ​  x fi ​ _______ ​  _____      ​  ​ = ÷ ​ y  2 + 1 ​ + c 2 ​ y + 1 ​  

(  )

–1

x ◊ (IF) = Ú  Q ◊ (IF) dy + c

...(i)

1 1 dy 1 dv Let ​ __5  ​  = v fi __ ​  6  ​ ​  ___  ​ = – ​ __  ​  ​ ___ ​  dx 5 dx y y

1 dv – ​ __ ​ ​  ___  ​ + vx = x3 5 dx dv fi ​ ___  ​ – 5vx = 5x3 dx which is a linear differential equation. fi



5x2 – ​ ___ ​   2 ​

IF = e– 5 Ú  xdx = e​ ​

...(ii)

Differential Equation 

Multiplying both sides of Eq. (ii) by IF and integrating, we get

v ◊ (IF) = Ú  Q ◊ (IF) dx + C



v . ​e​

5x2 – ​ ___ ​   2 ​= 2

5x – ​ ___ ​  

5x2 – ​ ___ ​   2 ​ dx

– 5 Ú  x3 ◊ ​e​

( 

)

+C

2

5x – ​ ___ ​   5x2 ​e​ 2 ​ __ 2 ___ 2 ​+ C fi ​ ____  ​     = ​     ​ ​ ​   ​     + 1  ​ ​ e​ 5 2 y5

which is the required solution of the given differential equation. 120. The given differential equation is dy sin 2 y ​ ___  ​ + _____ ​  x    ​ = x3cos2y   dx fi

dy 2 tan y sec2y ​ ___  ​ + ______ ​  x    ​ = x3   dx

...(i)

Let tan y = v



dy dv fi sec2y ​ ___  ​ = ___ ​    ​ dx dx

dv 2v fi ​ ___  ​ + ___ ​  x ​ = x3 dx

...(ii)

which is a linear differential equation

dx ___

IF = e​ 2  ​ Ú  ​  x ​ ​ = e2 log x = x2

Multiplying both sides of Eq. (ii) by IF and integrating, we get

v ◊ (IF) = Ú  Q ◊ (IF) dx + c



v ◊ x2 = Ú  x5 dx + c



which is a linear differential equation. IF = e– 2 Ú  xdx = e​ – x ​ ​ Multiplying both sides of Eq. (ii) by IF and integrating, we get 2



v ◊ (IF) = Ú  Q ◊ (IF) dx + c



v ◊ ​e– x ​ ​ = Ú  x3 ​e– x ​ ​ dx + c



2 1 v ◊ ​e– x ​ ​ = – ​ __  ​  (x2 + 1) + c 2

6

x x2 tan y = ​ __ ​  + c 6

which is the required solution of the given differential equation. 121. The given differential equation is dy ​ ___  ​ – x3y3 + xy = 0 dx dy fi ​ ___  ​ + xy = x3y3 dx 1 dy fi ​ __3  ​  ​  ___  ​ + xy– 2 = x3 ...(i) y dx

2

2

2

2 ​e– x ​ ​ 1 fi ​ ____  ​ = – ​ __ ​  (x2 + 1) ​e– x ​ ​+ c 2 2 y

which is the required solution of the given differential equation. 122. The given differential equation is



4.49

dy (1 – x2)  ​ ___  ​ + xy = xy2 dx

dy xy xy2 fi ​ ___  ​ + _____ ​   2   ​ = _____ ​      ​ dx 1 – x 1 – x2 x 1 dy x fi ​ __2  ​  ​  ___  ​ + __ ​   ​ (1 – x2) = _____ ​       ​ y dx y 1 – x2

dy dv 1 1 ___ __ ___ Let ​ __ y ​ = v fi ​ y2  ​ ​  dx  ​ = – ​ dx ​ 



...(i)

dv vx x ___ ​    ​ – _____ ​       ​ = _____ ​       ​ dx 1 – x2 1 – x2

...(ii)

which is a linear differential equation.

x – Ú  ​ ______    ​   dx 1 – x2 2 ​ =

IF = e​ ​

1 ​ __ ​  log |1 – x2|

e​ ​2

_____

​ = ​÷1  – x2   ​

Multiplying both sides of Eq. (ii) by IF and integrating, we get, fi

v ◊ (IF) = Ú  Q ◊ (IF) dx + C _____

_____

x ​÷1  – x2   ​ v ​÷1  – x    ​ = – Ú  ​ ________  ​ dx     1 – x2 2



x _____ = – Ú  ​ ______      ​ dx  ​ ÷​ 1  – x2 



= ​÷1  – x2 ​  +C

_____

_____ 1 dy 1 dv Let  y –2 = v fi __ ​  3  ​ ​  ___  ​ = – ​ __ ​ ​  ___ ​  = ​÷1  – x2   ​ + C 2 dx y dx which is the required solution of the given differential dv 1 ___ 3 __ equation. fi – ​    ​ ​    ​ + vx = x 2 dx 123. The given differential equation is dy dv fi ​ ___  ​ – 2vx = – 2x3 ...(ii) x ​ ___  ​ + y = x3y6. dx dx



4.50  Integral Calculus, 3D Geometry & Vector Booster dy fi ​ ___  ​ + dx

y __ ​ x ​ = x2y6

–1



– 5 1 dy y fi ​ __6  ​ ​  ___  ​ + ___ ​  x   ​ = x2 y dx

put

...(i)

y– 5 = v

dy – 5 ___ fi ​ ___  ​ ​     ​ = 6 dx y

1 dv v – ​ __ ​ ​  ___  ​ + __ ​   ​ = x2 5 dx x

1 dx fi ​ __2  ​ ​  ___  ​ – x dy ...(ii)

which is a linear differential equation dx – 5Ú  ​ ___ x ​ 

IF = e​ ​

​ = e– 5 log x

1 = __ ​  5  ​  x

Multiplying both sides of Eq. (ii) by IF and integrating, we get

v ◊ (IF) = Ú  Q ◊ (IF) dx + c

...(i)

which is a linear differential equation dx   ​  –1 Ú  ​ _____ I.F = e​ ​ x2 + 1 ​ = e​ tan ​  x​

Multiplying both sides of Eq. (i) by IF and integrating, we get

(​​  ​e​ ​ )​​ ​ –1 y ◊ ​etan ​  x​ = Ú  ​ _______  ​  dx + c (x2 + 1) tan  x 2 –1



= Ú  e2t dt + c, t = tan–1 x



e2t = Ú  ​ ___ ​ + c 2



1 Let v = – ​ __ x ​



dv fi ​ ___  ​ = dy

dv fi ​ ___  ​ + vy = y3 dx which is a linear differential equation

y2 __ ​   ​ 

v ◊ ​e​2 ​ = Ú  y3 ​e​2 ​ dy + c



​   ​  y y2 __ ​   ​  e​ ​2 ​ __ 2 ​ dy + c – ​ ___     ​ = 2     y  ​ ​   ​    ​ ​ e​ Ú x 2

(  )

...(ii)

(  )

2

y2

__ ​   ​  e​ ​2 ​ 2 fi – ​ ___     ​ = (y – 2) ​ e ​2 ​ dy + c x which is the required solution.

126. The given differential equation is (y log – 1) y dx = x dy

y2 log x dx – y dx = x dy



dy x ​ ___  ​ + y = y2 log x dx

dy ​ ___  ​ + dx

y y2 log x __ ​ x ​ = ______ ​  x    ​ 

log x 1 dy 1 ​ __2  ​ ​  ___  ​ + __ ​ xy   ​ = ____ ​  x     ​ y dx

x log |x2 + c1| + 2a tan–1 ​ ___ ​    ​  ​ + y = c2 C1

1 dx __ ​  2  ​ ​  ___  ​ x dy

y2 __ ​   ​ 



y2 __ ​   ​ 

2

Thus,



y2 __

which is the required solution. 124. The given differential equation is



...(i)

y2

5 ___ ​   2 ​ + c 2x

–1 dy (1 + x ) ​ ___  ​ + y = ​etan ​ x​ dx –1 dy y ​etan ​  x​ fi ​ ___  ​ + _______ ​  2      ​ = _______ ​  2      ​ dx (x + 1) (x + 1)

y __ ​ x ​ = y3

__ ​   ​  Thus, IF = e Ú  y dy = ​e​2 ​ Multiplying both sides of Eq. (ii) by IF and integrating, we get

dx 1 fi ​ ____  5 ​ = – 5 Ú  ​ ___3 ​ + c x (xy) 1 fi ​ ____    ​ = (xy)5

which is the required solution of the given differential equation. 125. The given differential equation is

dx fi ​ ___  ​ = x2y3 + xy dy dx fi ​ ___  ​ – xy = x2y3 dy

dv 5v fi ​ ___  ​ – ___ ​  x ​ = – 5x2 dx

Thus,



dy ​ ___  ​ (x2y3 + xy) = 1 dx

dv ___ ​    ​ dx

1 dy 1 dv fi ​ __6  ​ ​  ___  ​ = – ​ __ ​ ​  ___  ​ dx 5 dx y fi

–1 ​e2tan ​  x​ y ◊ ​etan ​  x​ = ______ ​   ​   + c 2

dv – ​ ___  ​ + dx

( 

)

v log x 1 __ ​ x ​ = ____ ​  x    , ​   ​ Let  v  = ​ __ y ​  ​

log x dv v ​ ___  ​ – __ ​ x ​ = – ​ ____ ​   x    dx

...(i)

Differential Equation 

which is a linear differential equation 1 __ 1 I.F. = e​ –  ​ Ú  ​ x ​ dx​ = e– log x = __ ​ x ​ Multing both sides of Eq. (i) IF and integrating, we get

Thus,

log x 1 ____ v ◊ ​ __     x ​ = – Ú  ​  x2 ​ dx v fi ​ __x ​ = – Ú  te– t dt,   (Let  t = log x)



)

log x +1 1 ________ fi ​ __ ​  ​ + c xy  ​ = ​ ​  x   

1 Let ​ __2  ​  = v y 2 dy dv fi – ​ __3  ​ ​  ___  ​ = ___ ​    ​ y dx dx



1 dv – ​ __  ​ ​ ___  ​ + vx = x2 2 dx

dv fi ​ ___  ​ – 2vx = – 2x3 dx which is a linear differential equation Thus,

...(i) __

Let ​÷y    ​  = v



dy dv 1 ___ fi ​ ____  __ ​ ​     ​ = ___ ​    ​ 2 ​÷y     ​dx dx



dy dv 1__ ___ fi ​ ___   ​ ​     ​ = 2 ​ ___  ​ ​÷y     ​dx dx



dv vx 2 ​ ___  ​ + ​ _____     ​ = x dx 1 – x2

( 

)

dv x x fi ​ ___  ​ + ​ ________ ​       ​  ​v = __ ​    ​ 2 dx 2(1 – x2)

which is the required solution of the given differential equation. 127. The given differential equation is dy ​ ___  ​ = x3y3 = xy dx dy fi ​ ___  ​ + xy = x3y3 dx x 1 dy fi ​ __3  ​ ​  ___  ​ + __ ​    ​  = x3y3 ...(i) y dx y2

__

x ​÷y     ​ _____ ​      ​ = x 1 – x2





= (t + 1) e– t + c

( 

dy 1__ ___ fi ​ ___   ​  ​     ​ + ​÷y     ​ dx

...(ii)

IF = e– 2 Ú  x dx = e​ – x ​ ​

4.51

...(ii)

which is a linear differential equation. Thus,

xdx  2    ​ Ú  ​ ________

1 – ​ __ ​  log |1 – x2|

IF = e​ ​ 2(1 – x ) ​ = e​ ​ 4

1 ​ = _______ ​ 4 _____      ​  ​ 1 – x2   ​ ÷ 

Multiplying both sides of Eq. (ii) by IF and integrating, we get

1 _____ v ◊ ​ _______      ​ = 4 ​÷1  – x2   ​

x dx 1 __ _____ ​   ​  Ú  ​ _______     ​ + c 2 4​÷1  – x2   ​

__

​÷y     ​ (1 – x2)3/4 _____ fi ​ 4_______    ​  = ​ ________  ​    +c 3  ​ ÷​ 1  – x2  which is the required solution. 129. The given differential equation is dy y y ​ ___  ​ + __ ​   ​ ◊ log y = __ ​  2  ​  (log y)2 dx x x dy 1 1 1 ___  ​ + _______ fi ​ ________    ​ ​   ​     ​  = __ ​    ​   y (log y)2 dx x (log y) x2

...(i)

2

Multiplying both sides of Eq. (ii) by IF and integrating, we get

v (IF) = Ú  Q (IF) dx + c



v ◊ ​e– x ​ ​ = Ú  2x3 e​ – x ​ ​ dx + c



= (1 + x2) ​e– x ​ ​+ c



v = (1 + x2) + c​ex​ ​

2

1 Let ​ ______    ​  =v (log y) fi

dy 1 ___ – ​ ________   2 ​ ​     ​ = y (log y) dx

dv ___ ​    ​ dx

2

2

2

2 1 fi ​ __2  ​  = (1 + x2) + c​ex​ ​ y which is the required solution of the given differential equation. 128. The given differential equation is

dy xy __ ​ ___  ​ + _____ ​       ​ = x ​÷y    ​.  dx 1 – x2

dy dv 1 ___ fi ​ _______   2 ​ ​     ​ = – ​ ___  ​ dx y(log y) dx fi

dv v __ 1 – ​ ___  ​ + __ ​   ​ = ​    ​  dx x x2

dv v 1 fi ​ ___  ​ – __ ​   ​ = – ​ __2  ​   dx x x which is a linear differential equation. Thus,

dx ___ 1 IF = e​ –  ​ Ú  ​  x ​ ​ = e– log x = __ ​ x ​

...(ii)

4.52  Integral Calculus, 3D Geometry & Vector Booster Multiplying both sides of Eq. (ii) by IF and integrating, we get dx v ​ __x ​ = – Ú  ___ ​  3 ​ + c x

3

​e1/x ​ ​ 1 dv v fi ​ __ ​ ​  ___  ​ – __ ​ x ​ = – ​ ____  ​    2 dx x2 3

dv 2v 2​e1/x ​ ​ fi ​ ___  ​ – ___ ​  x ​ = – ​ _____  ​     dx x2

1 = ___ ​   2 ​ + c 2x

...(ii)

which is a linear differential equation dx ___ 1 IF = e​ – 2  ​ Ú  ​  x ​ ​ = e– 2 log x = __ ​  2  ​  x

1 1 fi ​ _______    ​  = ___ ​    ​ + c x (log y) 2x2

Thus,

which is the required solution. 130. The given differential equation is

Multiplying both sides of Eq. (ii) by IF and integrating, we get

dy 1 ​ ___  ​ + __ ​   ​ ◊ sin2y = x3 ◊ cos2y dx x

​e1/x ​ ​ v ​ __2  ​  = – 2 Ú  ____ ​  4 ​    dx + c x x

3



dy 2 tan y ​  x    ​ = x3   sec2y ​ ___  ​ + ______ dx



...(i)

Let tan y = v dy dv ​    ​ fi sec2y ​ ___  ​ = ___ dx dx

dv 2v fi ​ ___  ​ + ___ ​  x ​ = x3 dx

...(ii)

which is a linear differential equation Thus,

IF = e​ 2  ​ Ú  ​  x ​ ​ = e2 log x = x2 dx ___

Multiplying both sides of Eq. (ii) by IF and integrating, we get fi

v ◊ x2 = Ú  x5 dx + c

x6 (tan y) x2 = __ ​   ​  + c 6 which is the required solution of the given differential equation. 131. The given differential equation is fi

3



(xy2 – e​ 1/x ​ ​) dx – x2 ydy = 0



3 dy x2y ​ ___  ​ = xy2 – e​ 1/x ​ ​ dx

dy y ​ ___  ​ = dx

y ​e1/x ​ ​ __ ​ x ​  – ____ ​  2 ​    x



y2 – __ ​ x ​  =

​e1/x ​ ​ ____ ​  2 ​     x



dy ​ ___  ​ + x(x + y) = x3 (x + y)3 – 1 dx

(  ( 

) )

dy + dx x 1 ​ _______   3   ​ ​ ​ _______       ​  ​ + _______ ​       ​ = x3 dx (x + y) (x + y)2 d(x + ) x 1 ​ _______   3   ​ ​ ​ _______     ​  ​ + _______ ​       ​ = x3 ...(i) dx (x + y) (x + y)2 1 put ​ _______      ​ = v (x + y)2 d(x + ) ___ dv 2 fi – ​ _______   3   ​ ​ _______     ​  = ​    ​ dx dx (x + y)



d(x + ) 1 1 dv fi ​ _______   3   ​ ​ _______     ​ = – ​ __  ​ ​ ___  ​ 2 dx dx (x + y)



1 dv – ​ __ ​ ​  ___  ​ + vx = x3 2 dx

dv fi ​ ___  ​ – 2x v = – 2x3 dx which is a linear differential equation Thus,

3





which is the required solution. 132. The given differential equation is



x6 = __ ​   ​  + c 6

2

(  )

y 2 2 1/x3 fi ​​ ​ __x ​  ​​ ​ = __ ​    ​ ​e​ ​ + c 3

IF = e– 2Ú  x dx = e​ – x ​ ​ 2

Multiplying both sides of Eq. (ii) by IF and integrating, we get

3

...(i) Let y2 = v dy 1 ___ dv fi y ​ ___  ​ = __ ​    ​ ​    ​ dx 2 dx



v ◊ ​e– x ​ ​ = – 2 Ú  x3 ​e– x ​ ​ dx + c 2

2

2

= (x2 + 1) ​e– x ​ ​+ c 2

v = (x2 + 1) + c​ex​ ​

Differential Equation  2 1 fi ​ _______      ​ = (x2 + 1) + c​ex​ ​ 2 (x + 1)



(  )

(  )

1 __x d ​ – ​ __ xy  ​   ​ = – d ​ ​ y ​  ​

which is the required solution of the given differential equation. 133. The given differential equation is

Integrating, we get



1 fi ​ __ xy  ​ =

x dx + y dy = x dy – y dx

1 fi ​ __ ​  d (x2 + y2) = x dy – y dx 2 fi

d (x2 + y2) = 2(x dy – y dx)

d (x2  +  y2) ____________ 2(x dy – y dx) fi ​ _________  ​    = ​         ​ 2 2 (x + y ) (x2 + y2)

(  ) (  )

y d ​ __ ​ x ​  ​ = 2 ​ _______    ​ 2 y  1 + ​​ __ ​ x ​  ​​ ​

Integrating, we get

(  )

y log |x2 + y2| = 2 tan–1 ​ __ ​ x ​  ​ + c

which is the required solution of the given differential equation. 134. The given differential equation is

x dy – y dx = x4 dx



y d ​ __ ​ x ​  ​ = x2 dx

(  )



4.53

1 __y – ​ __ xy  ​ = – ​ x ​ – c y __ ​ x ​ + c

which is the required solution of the given differential equation. 137. The given differential equation is

x dy + y dx + xy2 dx – x2y dy = 0.



d (xy) = xy (x dx – y dx)

d (xy) (x dy – y dx)  ​ = ​ __________      ​  fi ​ _____ xy 2 2 xy fi

(  ) ( 

dy 1 ___ d ​ – ​ __ xy  ​   ​ = ​ ​  y ​ –

)

dx ___ ​  x ​   ​

Integrating, we get

(  ) 1 __y fi ​ __ xy  ​ + log ​( ​ x ​ )​ + c = 0 fi

1 __y – ​ __ xy  ​ = log ​ ​ x ​  ​ + c

which is the required solution of the given differential equation. 138. The given differential equation is

(4x – 3y) dx + (2y – 3x) dy = 0

y x3 fi ​ __x ​ = __ ​   ​  + c 3



4x dx + 2y dy – 3 (x dy + y dx) = 0



4x dx + 2y dy – 3d (xy) = 0

which is the required solution of the given differential equation. 135. The given differential equation is

Integrating, we get



x dy + y dx = sin y dy



d(xy) = sin y dy

which is the required solution of the given differential equation. 139. The given differential equation is

Integrating, we get

Integrating, we get fi

xy = c – cos y

which is the required solution of the given differential equation. 136. The given differential equation is

x dy + y dx + y2 (x dy – y dx) = 0.



d(xy) = y2 (y dx – x dy)

d(xy) ____________ y2 (y dx – x dy) fi ​ _____  ​   = ​   ​      x2y2 x2y2



2x2 + y2 – 3xy = c

( 

)

1 ​ sin y + y sin x + __ ​ x ​  ​ dx

( 

)

1 +  ​ x cos y – cos x + __ ​ y ​  ​ dy = 0 fi (sin y dx + x cos y dy) – (cos x dy – y sin x dx)  

( 

dx + ​ ___ ​  x ​ +

)

dy ___ ​  y ​   ​ = 0

( 

dx fi d (x sin y) – d (y cos x) + ​ ___ ​  x ​ + Integrating, we get

)

dy ___ ​  y ​   ​ = 0

4.54  Integral Calculus, 3D Geometry & Vector Booster fi x sin y – y cos x + log (xy) = c

Integrating, we get

which is the required solution of the given differential equation. 140. The given differential equation is

which is the required solution of the given differential equation. 143. The given differential equation is

d(x2 + y2) y ______  ​ fi ​ _________     = 2d ​ __ ​ x ​  ​ 2 2 ​÷x  + y    ​

(  )

______ y d ​ ​÷x  2 + y2   ​  ​ = 2d ​ __ ​ x ​  ​

( 

(  )

)



Integrating, we get ______ y fi ​ ​÷x  2 + y2   ​  ​ = 2 ​ __ ​ x ​  ​ + c

( 

(  )

)

which is the required solution of the given differential equation. 141. The given differential equation is

( 

)

( 

2

)

sin 2 x sin x ​ _____ ​  y    ​ + x  ​ dx + ​ y – _____ ​  2 ​    ​ dy = 0 y

( 

)



sin 2 x sin2x (x dy + y dy) + ​ _____ ​  y    ​  dx – _____ ​  2 ​ dy      ​= 0 y



sin2x d (xy) + d ​ ​ _____ ​  ​ = 0 y   

(  )

which is the required solution of the given differential equation. 142. The given differential equation is

2 2

x dx + y dy _____________ x + 2x y + y fi ​ _________    ​  = ​   ​      y dx – x dy x2 2 2

(x + y ) = ​ ________  ​    x2



x dy + y dx _________ y dx  –  x dy fi ​ _________     ​  = ​   ​    .  2 2 2 (x + y ) x2 2

2

(  )







and x dx + y dy = r dr, x dy – y dx = r2 dq



y x2 + y2 = r2, tan q = __ ​ x ​

a2 ◊ r2 dq r dr = _______ ​  2 ​    . r

Integrating, we get

Ú r dr = Ú a2 ◊ dq

d(x + y ) y fi ​ _________  ​  = – 2d ​ __ ​ x ​  ​, 2 2 2 (x + y )

(x2 + y2) y fi ​ _______  ​   = a2 tan–1 ​ __ ​ x ​  ​ + c 2 fi

4

...(i)

Let x = r cos q and y = r sin q,

(x2

(  ) y + y ) = 2 a  tan  ​( __ ​ x ​ )​ + k 2

2

–1

which is the required solution. 144. The given differential equation is

dy x + y ​ ___​   y4 dx ​ _______   ​ = x2 + 2y2 + __ ​  2 ​ . dy x y – x ​ ___  ​ dx

2

)

r2 fi ​ __ ​  = a2 q + c 2

sin2x xy + _____ ​  y    ​ = c

4

( 

dy a2 ​ x ​ ___  ​ – y  ​ dy dx x + y ​ ___  ​ = ​ __________     ​   2 dx x + y2





Integrating, we get fi

y 1 – ​ _______   2   ​ = c – __ ​ x ​ 2 (x + y )

y 1 fi ​ __x ​ – _______ ​  2   2    ​ = c (x + y )

x dx  +  y dy _________ y dx  –  x dy ______ ​ __________    ​  = ​   ​      x2  ​ ÷​ x  2 + y2 





x dx + y dy = (x2 + y2) y dy

x dx + y dy fi ​ _________     ​  = y dy x2 + y2 1 fi ​ __ ​    d (log(x2 + y2)) = y dy 2 Integrating, we get y2 c 1 ​ __ ​  (log (x2 + y2)) = __ ​   ​  + __ ​    ​ 2 2 2 fi

log(x2 + y2) = y2 + c

which is the required solution. 145. The given differential equation is

Differential Equation 



(x + y) dx + (x – y) dy = 0





(x dx – y dy) + (x dy – y dx) = 0

Integrating, we get



(x dx – y dy) + d (xy) = 0



d (x + y) = d (xy) (x + y) = xy + c

Integrating, we get

which is the required solution. 150. The given differential equation is

2 x2 y ​ __ ​  – __ ​   ​  + xy = c 2 2



which is the required solution. 146. The given differential equation is

y dx + x (x – 1) dy = 0



y dx – xdy = – x2 dy



xdy – ydx = x2 dy

xdy – ydx fi ​ _________  ​    = dy x2 y fi d ​ __ ​ x ​  ​ = dy

(  )

Integrating, we get

(  )

xdy – ydx = (x2 + y2) dx

xdy – ydx fi ​ _________  ​    = dx (x2 + y2) ydx –  xdy fi ​ _________  ​  = – dx (x2 + y2) ydx – xdy  ​    ​ ________ x2 _________ fi ​       ​ = – dx y 2 ​ 1 + ​​ __ ​ x ​  ​​ ​  ​

(  (  ) ) x d ​( __ ​ y ​ )​ fi ​ _________     ​ = – dx y ​( 1 + (​​  __ ​ x ​ )​​ ​ )​ 2

y ​ __ ​ x ​  ​ = y + c

Integrating, we get

which is the required solution. 147. The given differential equation is





which is the required solution. 151. The given differential equation is

ydx – x (1 – xy) dy = 0

ydx  – xdy fi ​ _________  ​    = ydy x2 fi

(  )

y d ​ __ ​ x ​  ​ = ydy

Integrating, we get

(  )

2

y y ​ __ ​ x ​  ​ = __ ​   ​  + c 2 which is the required solution. 148. The given differential equation is

(x + y) (dx – dy) = (dx + dy)



(x + y) d (x – y) = d (x + y)



d(x + y) d (x – y) = _______ ​   ​     (x + y)

Integrating, we get

(x – y) = log |(x + y)|

which is the required solution. 149. The given differential equation is dx + dy = xdy + ydx

(  )

y tan–1 ​ __ ​ x ​  ​ = c – x

(  ) x+y fi ​( ​ _____ ​  )​ (xdy + ydx) = d(x + y) xy   

1 1 ​ __ ​ x ​ + __ ​ y ​  ​ (xdy + ydx) = dx + dy

(  )

x+y fi ​ ​ _____ ​  ​ d (xy) = d (x + y) xy    d (xy) fi ​ _____ ​ = xy   

d (x + y) ​ _______ ​  (x + y)

Integrating, we get

log |xy| = log |x + y| + log c



(xy) = c(x + y)

which is the required solution. 152. The given differential equation is ______



(xdy + ydx) ​÷x  2 + y2   ​ = x2ydx + xy2dy

xdy  +  ydx xdx +  ydy ______  ​  fi ​ _________ ​  = ​ _________ xy     ​ ÷​ x  2 + y2 

4.55

4.56  Integral Calculus, 3D Geometry & Vector Booster d(xy) __ d(x2 + y2) 1 _________ ______  ​  fi ​ _____       ​ = ​   ​    ​    xy 2 ​ x  2 + y2   ​

÷



( 

)

d ​ ÷ ​ x  + y    ​  ​ ______ = ​ __________    ​  2 2 ​÷x  + y    ​

Integrating, we get

______ 2

2

______

log |xy| = ÷ ​ x  2 + y2   ​ + c

which is the required solution. 153. The given differential equation is

(x – y3) dy = y (dx + x2dy)



xdy – y3dy = ydx + x2ydy

xdy – ydx fi ​ ________ ​ = y2dy + x2dy y    xdy – ydx fi ​ _________  ​  = y dy (x2 + y2)

(  ) (  (  ) )

x d ​ __ ​ y ​  ​ _________ fi ​      ​ = y dy y 2 ​ 1 + ​​ __ ​ x ​  ​​ ​  ​ Integrating, we get

y y2 tan–1 ​ __ ​ x ​  ​ = __ ​   ​  + c 2

(  )

which is the required solution. 154. The given differential equation is

(x + 2y) dy + ydx = 0



(eydx + xe ydy) = 2y dy



d (xey) = 2y dy

Integrating, we get

y2 (xey) = __ ​   ​  + c 2

which is the required solution. 157. The given differential equation is 2ydy + (cos x ◊ cot y – y2) dx = (2xy + sin x ◊ cosec2y) dy



2ydy – d (xy2)



– (sin x cosec2y dy – cos x cot y dx) = 0



2ydy – d (xy2) + d (sin x cot dy) = 0

Integrating, we get

y2 – xy2 + (sin x cot dy) = c

which is the required solution. 158. The given differential equation is dy ​ ___  ​ = dx

2x  – 3y + 1 ​ __________       ​ 3 – 2y – 2



3xdy – 2(y + 1) dy = 2xdx – 3ydx + dx



3 (xdy + ydx) – 2(y + 1) dy = (2x + 1) dx



3d (xy) – 2(y + 1) dy = (2x + 1) dx

Integrating, we get

(  ) (  )

y2 x2 3(xy) – 2 ​ __ ​   ​  + y  ​ = ​ __ ​   ​  + x  ​ + c 2 2



(xdy + ydx) + 2y dy = 0





d (xy) + 2y dy = 0

which is the required solution. 159. The given differential equation is

Integrating, we get

(xy) + y2 = c

which is the required solution. 155. The given differential equation is

(x + sin y) dy + ydx = 0



(xdy + ydx) + sin y dy = 0



d (xy) + sin y dy = 0

Integrating, we get

(xy) – cos y = c

which is the required solution. 156. The given differential equation is

eydx + (xe y – 2y) dy = 0



x (dy + dx) = y (dx – dy)

xdy  –  ydx xdx + ydy fi ​ _________  ​    = _________ ​  2  ​     2 2 (x + y ) (x + y2) xdy – ydx _________ ​   ​    2 y d(x2 + y2) 1 _________ fi ​ _________   ​ = ​ __ ​  ​    2  ​     2 x 2 ​ 1 + ​​ __ ​ y ​  ​​ ​  ​ 2 (x + y )

(  (  ) ) x d ​( __ ​ y ​ )​ 1 d(x + y ) _______ fi ​   ​ = __ ​   ​ ​   ________   ​ x__   1 + ​​( ​ y ​ )​​ ​ 2 (x + y ) 2

Integrating, we get

2

2

2

2

Differential Equation 



(  )

ydx – xdy ​ ________  ​    y2 d(xy) _________ fi ​     ​ = _____ ​  2 ​  x2 __ ​ 1 + ​​ ​ y ​  ​​ ​  ​ (xy)

x 1 tan–1 ​ __ ​ y ​  ​ = __ ​   ​  log |(x2 + y2)| + c 2

which is the required solution. 160. The given differential equation is

( 

)

xy x (log x – tan–1 x) dy + ydx = ​ _____ ​   2   ​  ​ dx 1+x



dy xy x (log x – tan–1 x)  ​ ___  ​ + y = _____ ​   2   ​ dx 1+x



dy xy x(log x – tan  x) ​ ___  ​ = _____ ​       ​ – y dx 1 + x2



( 



dy x x(log x – tan–1 x) ​ ___  ​ = y ​ _____ ​    2   ​ – 1  ​ dx 1+x



dy x 1 (log x – tan–1 x) ​ ___  ​ = y ​ _____ ​    2   ​ – __ ​ x ​  ​ dx 1+x

d fi ​ ___  ​  {y(log x – tan–1 x)} = 0 dx Integrating, we get

y (tan  x – log x) = C



x (dy – x dx) + ydx = 0



xdy + ydx = x2dx 2

d (xy) = x  dx

Integrating, we get

)

)

2

x xy = __ ​   ​  + c 3

which is the required solution. 162. The given differential equation is dy y  –  x ​ ___  ​ dx 1 fi ​ ________   ​ = __ ​  2  ​  + dy x y + x ​ ___  ​ dx

1 __ ​  2  ​  y

ydx  –  xdy _______ x2 +  y2 fi ​ _________ ​  = ​   ​    ydx + xdy (xy)2 ydx – xdy ydx + xdy fi ​ _________  ​     = _________ ​   ​    2 2 (x + y ) (xy)2

2

(  )

x 1 tan–1 ​ __ ​ y ​  ​ + __ ​ xy  ​ = c

which is the required solution. 163. The given differential equation is

x3 xdy – x2y2dx = x4dy + x3ydx

x2y(xdy – ydx) fi ​ ____________  ​      = (xdy + ydx) x3

( 

)



xdy – ydx xy ​ ​ ________  ​     ​ = d (xy) x2



y d(xy) d ​ – ​ __x ​  ​ = _____ ​   ​  (xy)

–1

which is the required solution. 161. The given differential equation is



2

Integrating, we get

–1

( 

(  (  ) ) x d ​( __ ​ y ​ )​ d(xy) _______ fi ​   ​ = _____ ​   ​  x__   1 + ​​( ​ y ​ )​​ ​ (xy)

(  )

Integrating, we get

y log |xy| – ​ __x ​ = c

which is the required solution. 164. The given differential equation is

dx + x (ydx + xdy) = e– xy dx



dx + x d (xy) = e– xy dx



(1 – e– xy)dx + x d(xy) = 0

d(xy) dx ________ fi ​ ___     ​ = 0 x ​ + ​ (1 – e– xy ) Integrating, we get

log |x| + log |e xy – 1| = log c



x (exy – 1) = c

which is the required solution. 165. The given differential equation is x – ​ __ ​



y (y2 dx + (x2dy – xydx)) = e​ ​ y ​ dy



y3dx + xy(xdy – ydx) = e​ ​ y ​ dy



x xdy – ydx – ​ __y ​ y3dx + xy3 ​ ​ ________  ​      ​ = e ​ ​ ​ dy y2

x – ​ __ ​

( 

)

4.57

4.58  Integral Calculus, 3D Geometry & Vector Booster fi

x – ​ __ ​

Integrating, we get

y3 dx + xy3 d (– xy) = e​ ​ y ​ dy

(xy)2 ​ ____  ​   + 2

166. The given differential equation is

ydx – xdy + xy2dx = 0



xdy – ydx = xy2dx

(  )

x d ​ __ ​ y ​  ​ = xdx

Integrating, we get

(  )

(1 + xy) ydx + x (1 – xy) dy = 0



ydx + xdy + xy (ydx – xdy) = 0



d (xy) + xy (ydx – xdy) = 0

d(xy) fi ​ _____ ​ = (xdy – ydx) (xy)

which is the required solution. 167. The given differential equation is

(  ( 



d(xy) fi ​ _____ ​ + (ydx – xdy) = 0 (xy)

x x2 ​ __ ​ y ​  ​ = __ ​   ​  + c 2



a2y2 __ x4 a2x2 ____ ​   ​   = ​   ​  – ____ ​   ​   + c 2 4 2

which is the required solution. 169. The given differential equation is

xdy – ydx fi ​ _________  ​    = xdx x2 fi

y4 __ ​   ​  + 2

( 

)

)

dy dy 2 ​ x – y ​ ___  ​  ​ (x2 + y2) = (x2 – y2) ​ y – x ​ ___  ​  ​ dx dx

) ( 

)

( 

)

d(xy) xdy – ydx dy dx     ​   ​ = ___ ​  y ​ – ___ ​  x ​  fi ​ _____2 ​ = ​ ​ ________ xy (xy) Integrating, we get

|  |

1 __y – ​ __ xy  ​ = log ​ ​ x ​  ​ + c

dy dy 2​ x – y ​ ___  ​  ​ ​ y – x ​ ___  ​  ​ dx dx fi ​ _________    ​   = ​ ________    ​ 2 2 2 (x – y ) (x + y2)



2(xdx – ydy) (ydx – xdy) fi ​ ___________     ​  = ​ __________    ​   2 2 2 (x – y ) (x + y2)

xdy y  2   ​ = ​ ______ ​  2   2   ​ – 1  ​ dx ​ ______ 2 x +y x +y

( 

)

which is the required solution. 170. The given differential equation is

( 

)

ydx – xdy ​ ​ ________  ​     ​ 2 2 y2 d(x   –  y ) _________ __________ fi ​  2  ​    = ​     ​  x2 (x – y2) ​ 1 + ​​ __ ​ y ​  ​​ ​  ​



xdy = ydx – (x2 + y2) dx



xdy – ydx = – (x2 + y2) dx



xdy – ydx ​ ________  ​    x2 ________ fi ​     ​ = – dx y2 ​ 1 + ​​ __ ​ x ​  ​​ ​  ​

(  (  ) ) x d ​( __ ​ y ​ )​ ________ = ​      ​ x ​( 1 + ​​( __ ​ y ​ )​​ ​ )​ 2

Integrating, we get

(  )

x log |x2 – y2| = tan–1 ​ __ ​ y ​  ​ + c

(x2 + y2 + a2)y dy = (x2 – y2 – a2)x dx

fi x2ydy + y2xdx + (y3 + a2y) dy = (x3 – a2x) dx fi xy (xdy + ydx) + (y3 + a2y)dy = (x3 – a2x) dx 3

2

3

(  (  ) ) x d ​( __ ​ y ​ )​ fi ​ ________     ​ = – dx y __ ​( 1 + (​​ ​ x ​ )​​ ​ )​ 2

which is the required solution. 168. The given differential equation is

xdy  –  ydx  ​  = – dx fi ​ ________ (x2 + y2)

2

fi xyd (xy) + (y + a y) dy = (x – a x) dx

Integrating, we get

(  )

y tan–1 ​ __ ​ x ​  ​ = c – x

which is the required solution. 171. The given differential equation is

Differential Equation 

dy x + y ​ ___  ​ y4 dx ​ ________ ​  = x2 + 2y2 + __ ​  2 ​  dy x y – x ​ ___  ​ dx 2

2 2

xdx + ydy (x + y ) fi ​ _________ ​  = ​ ________  ​    ydx – xdy x2 2 2 ydx – xdy 1 d(x + y ) _________ fi ​ __ ​  ​ ________    ​ = ​   ​    2 2 2 2 (x + y ) x2 2



2

Integrating, we get y 1 ​ __x ​ – ________ ​  2   2    ​ = c 2(x + y )

x dx + y dy = m (x dy – y dx)

xdx + ydy ____________ m (xdy  –  ydx) fi ​ ________  ​  = ​         ​ 2 2 (x + y ) (x2 + y2)

(  ) (  (  ) )

y m d ​ __ ​ x ​  ​ d (x2  +  y2) 1 _________ __ _________ fi ​   ​  ​  2  ​     = ​       ​ y 2 2 (x + y2) ​ 1 + ​​ __ ​ x ​  ​​ ​  ​ Integrating, we get y 1 tan– 1 ​ __ ​ x ​  ​ + _________ ​  2   2    ​ = c 2 (x + y ) which is the required solution. 173. The given differential equation is

(  )

dy x +  y ​ ___ ​  x sin2 (x2 + y2) dx ​ ________ ​  = ____________ ​   ​      dy y3 ___ y – x ​    ​ dx xdx + ydy ____________ x sin2(x2  +  y2) fi ​ _________   ​ = ​   ​      ydx – xdy y3 xdx + ydy x (ydx  + xdy) fi ​ __________        ​ = ____________ ​   ​      2 2 2 sin (x + y ) y3 2 2 y x 1 d (x + y ) fi ​ __ ​  ​ ___________        ​ + __ ​   ​ d ​ __ ​ x ​  ​ 2  sin2(x2 + y2) y

(  )

Integrating, we get

(  )

1 x2 ​ __ ​  ​​ __ ​   ​  ​​ ​ + 2 y

a2(x dy –  y dx) x dx + ydy = ____________ ​         ​ (x2 + y2)

 ​ fi

( 

)

x dy – y dx a2 ​ _________ ​   ​     ​ y2 _____________ = ​         ​ x 2 ​ 1 + ​​ __ ​ y ​  ​​ ​  ​



(  (  ) ) x a d ​( __ ​ y ​ )​ = ________ ​      x ​( 1 + ​​( __ ​ y ​ )​​ ​ )​ x a d ​( __ ​ y ​ )​ + y ) = ________ ​      x ​( 1 + (​​ __ ​ y ​ )​​ ​ )​ 2





 ​

1 fi ​ __ ​  d (x2 2

2

2

which is the required solution. 172. The given differential equation is







)

dy a2 ​ x ​ ___  ​ – y  ​ dy dx x + y ​ ___  ​ = ___________ ​  2      dx x + y2

(  )

y 1 d (x + y ) fi ​ __ ​  _________ ​   ​  + d ​ __ ​ x ​  ​ = 0 2 (x2 + y2)2



( 

4.59

1 __ ​   ​  cot (x2 + y2) = c 2

which is the required solution. 174. The given differential equation is

2

2

 ​ Integrating, we get

(  )

x 1 fi ​ __ ​  (x2 + y2) = tan– 1 ​ __ ​ y ​  ​ + c 2 which is the required solution. 175. The given differential equation is

÷ 

___________

x dx  +  y dy a2  –  x2 – y2 ​ __________    ​  = ​ ​ __________        ​ ​   x dy – y dx x2 + y2

Let x = r cosq, y = r sinq



y fi x2 + y2 = r2, __ ​ x ​ = tanq



...(i)

x dy  –  y dx x dx + y dy = r dr, _________ ​   ​      = sec2 q dq x2

÷  ÷ 

_____

r dr 1 – r2 fi ​ ____   ​ = ​ ​ _____  ​ ​    2 r dq r2 _____



dr 1 – r2 fi ​ ___  ​ = ​ ​ _____  ​ ​    rdq r2



dr fi ​ ___ ​ = ÷ ​ 1  – r2  dq



dr _____  ​fi ​ ______     ​ = dq ÷​ 1  – r2   ​

_____

Integrating, we get

sin– 1(r) = q + c



______ y sin– 1 ​ ​÷x  2 + y2 ​   ​ = tan– 1 ​ __ ​ x ​  ​ + c

( 

)

(  )

which is the required solution. 176. The given differential equation is

4.60  Integral Calculus, 3D Geometry & Vector Booster

÷ 

__________

x dx – y dy 1 + x2 – y2 ​ _________    ​  = ​ ​ __________        ​ ​   x dy – y dx x2 + y2

...(i)



Let x = r secq , y = r tanq





x2 – y2 = r2





x dx – y dy = r dr, x dy – y dx = r2 secq dq ______

÷ 



x4 + exsin y = c

which is the required solution. 180. Let the equation be y = m x, where m is an arbitrary constant Differentiating w.r.t. x, we get,

...(i)

r dr 1 + r2 ______ fi ​ ________       ​ = ​ ​      r   r2sec q dq

dy ​ ___  ​ = m dx

dr ______  ​ ​ fi ​ _______    ​  = secq dq ÷​ 1   + r2   ​

Eliminating m, between Eqs (i) and (ii), we get dy ​ ___  ​ = dx

Integrating, we get

_____



log |r + ÷ ​ r  2 + 1 ​  | = log |secq + tanq | + log c

_____ fi ​ r + ​÷r  2 + 1 ​   ​ = c(secq + tanq) ______ ___________ x+y ______ fi ​ ​ x2 – y2   ​ + ​ (x2 – y2)    + 1 ​  ​ = c ​​ _______     ​  ​ ​ x2 – y2   ​

( 

)

( ÷ 

÷ 

)

( ÷  )

...(ii)

y __ ​ x ​

...(iii)

whcih is the differential equation of a family of lines. dy dx Now replacing ___ ​    ​ by – ​ ___  ​ in Eq. (iii), we get, dx dy

dx x – ​ ___  ​ = __ ​   ​ dy y

which is the required solution. 177. The given differential equation is x sin ​ __ ​ y ​  ​ ( y dx – x dy) = xy3(x dy + y dx)

dy dx ___ fi ​ ___ y ​ = – ​  x ​ 







​ dx Ú  ​ ___y ​ = – Ú  ___ x ​ 







c log |y| = log |c| – log |x| = log ​ __ ​ x ​  ​ xy = c

(  ) x y dx – x dy sin ​( __ ​ y ​ )​ ​ ​ _________   ( y  ​   )​ = x y d (x y) x x sin ​( __ ​ y ​ )​ d ​( __ ​ y ​ )​ = x y d (x y) 2

Integrating, we get (xy)2 x – cos ​ __ ​ y ​  ​ = ____ ​   ​   + c 2 which is the required solution. 178. The given differential equation is

(  )



x dy – y dx + y2 = y2(x dy + y dx) = 0 2





y  d (xy) = y dx – x dy





y dx  –  x dy d (x y) = _________ ​       y2

(  )

x = d ​ ​ __y ​  ​

 ​

Integrating, we get

( 

)

x fi ​ xy – __ ​ y ​  ​ = c

which is the required solution. 179. The given differential equation is

(4x3 + exsin y) dx + excos y dy = 0



(4x3) dx + (exsin y dx + excos y dy) = 0



fi (4x3) dx + d (exsin y ) = 0 Integrating, we get

Integrating, we get



dy

|  |

which is required orthogonal trajectories. 181. The given family of corves are

x2 + y2 = a2

Differentiaint w.r.t. x, we get

dy 2x + 2y ​ ___  ​ = 0 dx

dy x + y ​ ___  ​ = 0 dx dy ___ ​    ​ – tan 45° dy dx Replacing ___ ​    ​ by ​ ____________        ​ = dx dy ___ 1 + ​    ​  tan 45° dx dy ___ ​    ​ – 1 dx ______ ​     ​  in Eq. (i), we get dy ___ 1 + ​    ​ dx fi



(  )

dy ___ ​    ​ – 1 dx x + y  ​ ​ ______     ​  ​ = 0 dy ___ 1 + ​    ​ dx

...(i)

Differential Equation 

) (  )

( 

y2 __ ​   ​  + log |y| = c 2



dy dy x ​ 1 + ___ ​   ​  ​ + y ​ ___ ​    ​ – 1  ​ = 0 dx dx

x2 fi ​ __ ​  – 2





dy (x + y)  ​ ___  ​ = (y – x) dx

fi (x2 – y2) + 2 log |y| = c which is the required orthogonal trajectories.



dy fi ​ ___  ​ = dx

y–x _____ ​     ​ y+x

...(ii)

183. Given curve is

which is a homeogeneous differential equation. fi dy dv Put  y = v x fi ___ ​    ​ = v + x ___ ​   ​  dx dx dv _____ v–1 ___ fi v + x ​    ​ = ​     ​ dx v + 1 fi dv x ​ ___  ​ = dx

v–1 v  – 1 – v2 – v ​ _____   ​ – v = _____________ ​      ​   v+1 v+1







v+1 dx fi ​​ _____      ​  ​ dv = – ​ ___ x ​  v2 + 1

(  )

1 ​ __ ​  log |v2 + 1| + tan– 1v = c – log x 2 y fi log  |x2 + y2| + tan– 1 ​ __ ​ x ​  ​ = c which is the required trajectories of the given family of curves. 182. The given curve is

(  )



x2 + y2 = 1



dy 2a x + 2y ​ ___  ​ = 0 dx



dy a x + y ​ ___  ​ = 0 dx

...(i)

...(ii)

fi fi fi



dy xy ​ ___  ​ = 1 – y2 dx

dy 1 – y2 fi ​ ___  ​ = ​ _____   ​ xy    dx dy dx Replace ___ ​    ​ by – ​ ___  ,​ we get dx dy fi fi fi

2 dx 1 – y – ​ ___  ​ = ​ _____     ​ xy   dy 1 x dx = ​ y  – __ ​ y ​  ​  dy

( 

)

dy x dx – y dy + ___ ​  y ​ = 0

Integrating, we get

dy 2x  +  2y ​ ___  ​ dx a = __________ ​   ​      dy ___ ​    ​ dx

(  )

dy 2x + 2y ​ ___  ​ dx (x + y ) – ​ ​ _________  ​     ​ y = 0 dy ___ ​    ​ dx 2

2

( 

)

dy dy (x2 + y2) ​ ___  ​ – ​ 2x + 2y ​ ___  ​  ​ y = 0 dx dx dy (x2 + y2 – 2y2) ​ ___  ​ = 2xy dx dy (x2 – y2) ​ ___  ​ = 2xy dx

dy 2xy fi ​ ___  ​ = _______ ​  2  2    ​ dx (x – y ) Replace dy/dx by – dx/dy, we get

Solving Eqs (i) and (ii), we get dy xy ​ ___  ​ + y2 = 1 dx

dy dy 2x + 2y ​ ___  ​ – a ​ ___  ​ = 0 dx dx

Eliminating a between (i) and (ii), we get



Integrating, we get

x2 + y2 – ay = 0

2xy dx – ​ ___  ​ = _______ ​  2  2    ​ dy (x – y )

dy y2 – x2 fi ​ ___  ​ = ______ ​      ​  2xy dx y2 ​​ __ ​ x ​  ​​ ​  – 1 _______ = ​  y  ​    2 ​ __ ​ x ​  ​

(  )

(  )



y dv v2 –  1 v + x ​ ___  ​ = ______ ​        ,​ v = __ ​ x ​ 2v dx



dv v2 – 1 x ​ ___  ​ = ​ _____     ​ – v 2v dx



v2 – 1 = – ​ ______     ​  2v

2v dv dx fi ​ _______     ​ = – ​ ___ x ​  2 (v + 1) Integrating, we get

log |v2 + 1| + log |x| = log c

4.61

4.62  Integral Calculus, 3D Geometry & Vector Booster fi

x (v2 + 1) = c 2

Integrating, we get log |x| + log |y| = log (c2)

2

fi x + y – c x = 0 which is the required orthogonal trajectories. 184. The given curve is fi fi

y2 = 4ax dy 2y ​ ___  ​ = 4a dx y dy a = __ ​    ​ ​ ___  ​ 2 dx

Eliminating a from Eqs (i) and (ii), we get y dy y2 = 4x ​ ​ __  ​ ​ ___  ​  ​ 2 dx dy fi y = 2x ​ ___  ​ dx

(  )

Replacing dy/dx by – dx/dy, we get dy y = 2x × – ​ ___  ​ dx fi y dy + 2x dx = 0 Integrating, we get

...(i)

...(ii)

fi xy = c2 which is the required orthogonal trajectories. 187. The given equation is (x + y + p)(2x + p) = 0 fi

(x + y + p) = 0

...(i)

and

(2x + p) = 0

...(ii)

From Eq. (i), we get, dy ​ ___  ​ + y + x = 0 dx dy fi ​ ___  ​ + y = – x dx which is a linear differential equation.











y . ex = – Ú  x ex dx + c1 = – ex(x – 1) + c1 y = – (x – 1) + c1e– x

y2 ​ __ ​  + x2 = c 2 which is the required orthogonal trajectory. 185. Given curve is xy = c2 dy fi x ​ ___  ​ + y = 0 dx dy y fi ​ ___  ​ = – ​ __x ​ dx

Also, from Eq. (ii), we get,

Replacing dy/dx by – dx/dy, we get y dx – ​ ___  ​ = – ​ __x ​ dy fi x dx – y dy = 0



p2 – p (ex + e– x) + 1 = 0

fi fi

1 p2 – p ​ ex + ___ ​  – x   ​  ​ + 1 = 0 e p2 ex– p (e2x + 1) + ex = 0



p2 ex – pe2x – p + ex = 0



pex (p – ex) – 1(p – ex) = 0



(p – ex) (pex – 1) = 0



(p – ex) = 0

fi 2x dx – 2y dy = 0 Integrating, we get x2 – y2 = a2 which is the required orthogonal trajectories. 186. The given curve is x2 – y2 = c2. dy fi 2x – 2y ​ ___  ​ = 0 dx dy x fi ​ ___  ​ = __ ​   ​ dx y Replacing dy/dx by – dx/ , we get dx x – ​ ___  ​ = __ ​   ​ dy y dx dy ___ fi ​  x ​ + ___ ​  y ​ = 0

...(iii)

dy ​ ___  ​ + 2x = 0 dx fi

dy = – 2x dx



y = c2 – x2



...(iv)

Hence, the required solution is

(y + (x – 1) – ce– x) (y + x2 – c) = 0.

188. The given equation is

and

( 

x

( pe – 1) = 0

...(i)

)

...(ii) ...(iii)

From Eq. (i), we get, dy ​ ___  ​ = ex dx fi dy = ex dx Integrating, we get fi

y = ex + c1

From Eq. (iii), we get,

...(iv)

Differential Equation 

fi fi When

dy ​ ___  ​ ◊ ex – 1 = 0 dx fi ex dy = dx fi dy = e– xdx Integrating, we get fi y = c2 – e– x Hence, the general solution of Eq. (i) is (x – e– x – c) (y – e– x – c) = 0. 189. The given equation is fi

p2 + 2py cot x = y2 2

2

2

2

...(i)

2

( p + y cot x) = y (1 + cot x) 2

( p + y cot x) = y cosec x



( p + y cot x) = ± y cosec x



p = y (cosec x – cot x)

...(ii)

p = – y (cosec x – cot x)

...(iii)

and

From Eq. (ii), we get, dy ​ ___ ​ = y (cosec x – cot x) dx dy fi ​ ___ y ​ = (cosec x – cot x) dx

( 

)

dy 1_______ – cos x fi ​ ___ ​   ​ dx y ​ = ​​  sin x    dy x __ fi ​ ___ y ​ = tan ​ ​ 2  ​  ​ dx Integrating, we get x log |y| = 2 log |sec ​ ​ __  ​  ​ | + 2log (c1) 2 x fi y = ​c2​1​ ​​  sec2 ​ ​ __  ​  ​  ​ 2 From Eq. (iii), we get

(  )

(  ) (  (  ) )

dy ​ ___  ​ = – y (cosec x + cot x) dx dy fi ​ ___ y ​ = – (cosec x + cot x) dx

(  )

(  (  ) )

x log y = 2 logc2 – 2 log ​ sin ​ __ ​    ​  ​  ​ 2 x fi y ​ sin2 ​ __ ​    ​  ​  ​ = c2 2 Hence, the required solution is x x ​  y – c ​ sec2 ​ __ ​    ​  ​  ​  ​ ​ y sin2 ​ __ ​    ​  ​ – c  ​ = 0. 2 2



(  (  ) )

(  (  (  ) ) ) (  (  ) )

190. The given differential equation is fi



When

log |y| = x + c1 ( p + x + y) = 0,

dy fi ​ ___  ​ + (x + y) = 0 dx dy fi ​ ___  ​ + y = – x dx which is a linear differential equation Thus,

IF = eÚdx = ex

Thus, the solution is

y . e x = – Ú x ex dx + c



y . e x = – (x – 1)ex  + c2

Hence, the required solution is



(log |y| – x c1) ( y . ex + (x – 1) ex – c2) = 0

191. The given differential equation is p2y + (x – y) p – x = 0 fi p2y + px – py – x = 0 fi py( p – 1) + x( p – 1) = 0 fi ( py + x)(  p – 1) = 0 fi ( py + x) = 0, ( p – 1) = 0 When

( py + x) = 0

y dy fi ​ ____ ​ + x = 0 dx fi y dy + x dx = 0 Integrating, we get x2 fi ​ __ ​  + 2

Integrating, we get dy x __ fi ​ ___ y ​ = – cot ​ ​ 2  ​  ​ dx

( p – y) ( p + x + y) = 0 ( p – y) = 0, ( p + x + y) = 0 (p – y) = 0

dy fi ​ ___  ​ = y dx dy fi ​ ___ y ​ = dx Integrating, we get

fi fi

p2 + px – xy – y2 = 0 ( p2 – y2) + x( p – y) = 0

4.63

fi When

y2 c2 __ ​   ​  = __ ​   ​  2 2

x2 + y2 = c2 (p – 1) = 0

p=1 dy fi ​ ___  ​ = 1 dx fi dy = dx Integrating, we get y = x + c1 Hence, the solution is (x2 + y2 – c2) (y – x – c1) = 0

4.64  Integral Calculus, 3D Geometry & Vector Booster 192. The given differential equation is ( p2 – 1) xy = (x2 – y2) p



p2xy – xy – px2 + py2 = 0





p2xy – px2 + py2 – xy = 0





px ( py – x) + y ( py – x) = 0



( px + y) ( py – x) = 0

fi When

( px + y) = 0, ( py – x) = 0 ( px + y) = 0

( 

dy fi ​ ___ ​    ​ x dx dx fi ​ ___ x ​ +

)

+ y  ​ = 0 dy ___ ​  y ​ = 0



log x + log y = log c



x y = c

When

(py – x) = 0

( 

Integrating, we get



x2 – y2 = c​ 2​1​​ 

193. The given differential equation is x y p2 – (x2 + y2) p + x y = 0 2

2

2



x y p – x p – y p + x y = 0



px( py – x) – y( py – x) = 0



( px – y)( py – x) = 0



( px – y) = 0, ( py – x) = 0

When

( px – y) = 0 dy fi ​ ___ ​    ​ x – y  ​ = 0 dx dy dx ___ fi ​ ___ x ​ – ​  y ​ = 0 Integrating, we get log x – log y = log c fi x = c y

( 

)

(  )

log |1 – p2| = log c – 2 log |y| c fi log |1 – p2| = log ​ __ ​  2  ​  ​ y c fi (1 – p2) = __ ​  2  ​  y c 2 fi p = ​ 1 – ​ __2  ​  ​ ...(ii) y Eliminating p between Eqs (i) and (ii), we get _____ c x = a ± y ​ 1 – __ ​  2  ​   y

|  |

( 

Hence, the required solution is (xy – c) (x2 – y2 – ​c2​1​)​  = 0

)

(  )



xdx – ydy = 0 2 c​ 2​1​​  x2 y ​ __ ​  – __ ​   ​  = __ ​   ​  2 2 2

...(i)

– 2dy – 2p fi ​ _____ ​       ​  ​ dp = _____ ​  y    ​   2 1–p Integrating, we get

)



(xy – c) (x2 – y2 – a2) = 0 194. The given equation can be written as x = y p + a Differentiaing w.r.t. y, we get dp dx ___ ​    ​ = p + y ​ ___  ​ dy dy dp 1 ___ fi ​ __ p ​ = p + y ​ dy  ​ dp 1 fi ​ __ ​ p ​ – p  ​ = y ​ ___  dy dy p  ​ fi ​ ​ _____   2   ​  ​ dp = ___ ​  y ​  1–p

dy fi ​ y ​ ___  ​ – x  ​ = 0 dx fi

x2 – y2 = a2 Hence, the required solution is

( 

Integrating, we get

Integrating, we get

)

÷ 

 ​ which is the required solution of Eq. (i) 195. The given equation can be written as 1 y x = ​ __ ​ ​  ​ __  ​ – y2p2  ​ 2 p

( 

)

...(i)

Differentiaing w.r.t. y, we get

dx ___ ​    ​ = dy

(  (  ( 

)

y  dp dp 1 __ 1 __ ​   ​  ​   ​   ​  – ​ __  ​  ​ ___  ​ – 2yp2 – 2py2  ___ ​    ​  ​ 2 p p2 dy dy

)



y   ___ dp dp 1 __ 1 __ 1 __ 2 2  ___ fi ​ __ p ​ = ​ 2  ​  ​ ​ p ​ – ​ p2  ​ ​ dy  ​ – 2yp – 2py ​ dy  ​  ​





dp dp 2 p = ​  p  –  y ​ ___  ​ – 2yp4 – 2p3y2  ___ ​    ​  ​ dy dy





( py – x) = 0 dy fi ​ y ​ ___  ​ – x  ​ = 0 dx

dp dp p + 2 yp4 = – ​ y ​ ___  ​ – 2p3y2 ___ ​    ​  ​ dy dy





dp p (1 + 2yp3) = – y  ​ ___  ​  (1 + 2p3y) dy







dp (1 + 2yp3) ​  p + y ​ ___  ​  ​ = 0 dy



When

( 

)

xdx – ydy = 0

( 

( 

)

)

)

Differential Equation 

( 

)



dp fi ​  p + y ​ ___  ​  ​ = 0 dy





4.65

Differentiating, w.r.t. y, we get

( 

)

dp dp 2p ​ 1 – p2 – 2py ​ ___  ​  ​  – 2 (y – p2y) ​ ___  ​ dy dy dx ​        ​    ___ ​    ​ = ______________________________ 2 dy 4p

d ( py) = 0

Integrating, we get p y = c y fi p = __ ​ c ​

...(ii)

( 

)

dp dp p ​ 1 – p2 – 2py ​ ___  ​  ​ – (y – p2y) ​ ___ ​  dy dy 1 __ ​ p ​ = _____________________________ ​        ​    2 2p



Eliminating p between Eq. (i) and (ii), we get

c c3 y = 2 ​ __y ​ . x + __ ​  3 ​  . y2 y





dp dp dp 2p = p – p3 – 2p2y  ___ ​    ​ – y ​ ___  ​ + p2y ​ ___  ​ dy dy dy



y2 = 2c x + c3





dp dp p = – p3 – p2y ​ ___  ​ – y ​ ___  ​ dy dy



which is the required solution. 196. The given differential equation is

y2 log y = x yp + p2



y2 log y  –  p2 x = ___________ ​  ​ y p      



...(i)





dp fi ​ ___ p ​ +

Differentiaing w.r.t. y, we get

( 

dp p ( p2 + 1) = – ( p2 + 1) y  ___ ​    ​ dy dp p = – y ​ ___  ​ dy



( 

)

( 

)

dy ___ ​ p ​ = 0

fi p y = c ...(ii) dp dp yp ​ 2 y logy + y – 2p ​ ___  ​  ​ – (y2 log y – p2) ​  p + y ​ ___  ​  ​ Eliminating p between Eqs (i) and (ii), we get dy dy dy ​ ___  ​ = ___________________________________________ ​         ​     2 dx y2 + 2c x = c2 (yp) which is the required solution. dp 2 ___ fi y p = yp ​ 2y log y  +  y  –  2p ​    ​  ​ 198. c (4x – c)2 = 64y dy

)

( 

)

199. The given differential equation is dp – (y2 log y – p2) ​  p  +  y ​ ___  ​  ​ dy y p = 2p2x + y2p4



dp y ​ ___  ​ ( y2log y – p2) = p ( y2 log y – p2) dy



dp y ​ ___  ​ = p dy

dy fi ​ ___ p ​ =

y  –  y2p3 x = ________ ​      ​  2p



...(i)

Differentiating, w.r.t. y, we get

( 

)

dp dp p ​ 1 – 2yp3 – 3y2p2 ___ ​    ​  ​  –  (y – y2p3) ​ ___  ​ dy dy dx 1 ________________________________ fi ___ ​    ​ = __ ​   ​  ​          ​    2 dy 2 p

dp ___ ​  p ​ 

Integrating, we get



dp dp fi p + 2yp4 + 2y2p3 ___ ​    ​ + y ​ ___  ​ = 0 dy dy

Eliminating p between Eqs (i) and (ii), we get log y = c x + c2



dp fi p (1 + 2yp3) + y ​ ___  ​ (1 + 2 yp3) = 0 dy

which is the required solution of (i) 197. The given differential equation is p2y + 2px = y



dp fi ​  p + y ​ ___  ​  ​ (1 + 2yp3) = 0 dy



dp fi ​  p + y ​ ___  ​  ​ = 0 dy



dy dp ___ fi ​ ___ p ​ + ​  y ​ = 0



log p = log y + log c



p = c y



2p x = y – p2y



y – p2y x = _______ ​      ​   2p

...(ii)

...(i)

(  ( 

) )

4.66  Integral Calculus, 3D Geometry & Vector Booster



p y = c

...(ii)

Eliminating p between Eqs (i) and (ii), we get

Hence, the required solution of Eq. (ii) is

which is the required solution. 200. The given differential equation is 2



xp – yp – p + 1 = 0



yp  +  p – 1 x = ​ _________  ​      p2

...(i)



( 



x.e p = – 2a Ú  pe p dp = – 2ae p (p – 1) + c



x = – 2a (p – 1) + ce– p

...(iii)

Eliminating p between Eqs (i) and (iii), we get the required solution of Eq. (i). 202. The given equation is y = yp2 + 2px



Differentiating, w.r.t. y, we get



IF = e Údp = e p



y2 = 2c x + c3



which is a linear differential equation.

2p x y = ​ _____     ​ 1 – p2 Differentiaing w.r.t. x, we get



)

dp dp dp p2 ​ p    +  y ​ ___  ​ – ___ ​    ​  ​ – 2 (yp + p – 1) p ​ ___  ​ dy dy dy dx       ​    ___ ​    ​ = _________________________________ ​  4 dy p

2 dp dx ​ ________     ​ = ___ ​  x ​  p ( p2 – 1)



dp dp fi  p3 = p3 + p2y ​ ___  ​ – p2 ___ ​    ​ dy dy

( 

1 1 fi ​ _____ ​       ​  + ​ _____     ​ – p–1 p+1

)

dx 2 ___ ​ __ p ​  ​ dp = ​  x ​ 

dp dp dp   – 2p2y ​ ___  ​ – 2p2 ___ ​    ​ + 2p ​ ___ ​  dy dy Integrating, we get dy dp dp dp log | p – 1| + log | p + 1| – log | p2| = log |x| + log c fi  p2y ​ ___  ​ – p2 ___ ​    ​ – 2p2y ​ ___  ​ dy dy dy p2 – 1 dp dp fi log ​ ​ _____  ​    ​ = log |c x| 2  ___ ___   – 2p ​    ​ + 2p ​    ​ = 0 p2 dy dy p2  –  1 dp fi ​ ______  ​   = cx fi ​ ___  ​ = 0 dy p2

|  |



fi  dp = 0

fi  p = c

...(ii)

Eliminating p between Eqs (i) and (ii) we get

p2 – 1 = p2c x





p2 (1 – c x) = 1





1 p2 = ​ _______ ​       ​  ​ (1 – c x)

( 

)

÷ 

_______

2

201. The given equation is y = (1 + p) x + ap

...(i)

Differentiaing w.r.t. x, we get







dp (x + 2 ap)  ​ ___  ​ = – 1 dx



dx fi ​ ___  ​ = – (x + 2ap) dp



dx fi ​ ___  ​ + x = – 2ap dp

1 p = ​ _______ ​         ​ ​ (1 – c x)



...(ii)

Eliminating p between Eqs (i) and (ii), we get ______

2x ​÷1  – c x   ​ + c x y = 0.



which is the required solution.

dy dp dp fi ​ ___  ​ = (1 + p) ◊ 1 + x ​ ___  ​ + 2ap ​ ___  ​ dx dx dx dp dp p = (1 + p) ◊ 1 + x ​ ___  ​ + 2ap ​ ___  ​ dx dx





yc = c2x – c + 1

which is the required solution.





203. The given differential equation is y = 2 p x + tan– 1(xp2) Differentiating w.r.t. x, we get

...(ii)

dy dp ___ ​    ​ = 2p + 2x ​ ___  ​ + dx dx

( 

...(i)

dp p2  +  2px ​ ___  ​ dx __________ ​        1 + (xp2)2

)

  ​

dp dp fi ​ – p – 2x ​ ___  ​  ​ (1 + p4x2) = p2 + 2px ​ ___  ​ dx dx



dp dp dp fi – p – 2x ​ ___  ​ – p5x2 – 2x3p4 ___ ​    ​ = p2 + 2px ​ ___  ​ dx dx dx

Differential Equation 



dp dp dp fi – p – p5x2 – p2 = + 2x ​ ___  ​ + 2x ​ ___  ​ + 2x3p4 ___ ​    ​ dx dx dx dp fi – p (1 + p4x2 – p) = + 2x (p + 1 + x2p4) ​ ___  ​ dx dp fi – p = 2x ​ ___  ​ dx



2dp ___ dx fi ____ ​  p     ​ + ​  x ​ = 0



fi 2 log p + log x = log c



fi p2x = c





dy dp dp ___ ​    ​ + p + x ​ ___  ​ = 2px4  ___ ​    ​ + 4x3p2 dx dx dx





dp dp p + p + x ​ ___  ​ = 2px4  ___ ​    ​ + 4x3p2 dx dx













dp x (1 – 2px3) ​ ___  ​ = – 2p (1 – 2x3p) dx





dp x ​ ___  ​ = – 2p dx



dp ____ 2dx fi ​ ___  ​ = 0 p ​ + ​  x   

...(ii)

Eliminating p between Eqs (i) and (iii), we get the required solution of Eq. (i). __

( ÷  )



c y = 2 ​ ​ __ ​ x ​ ​   ​ x + tan– 1(c)



– 1 y = 2​÷c x    ​ + tan (c)

___



2 4

x p + 2xp = y 4 2

y = p x + 2px



dy dp dp fi ​ ___  ​ = 2x p4 + 4x2p3 ___ ​    ​ + 2p + 2x ​ ___  ​ dx dx









fi fi fi

dp (x – 2px4) ​ ___  ​ = 4x3p2 – 2p dx dp x (1 – 2px3) ​ ___  ​ = 2p (2x3p – 1) dx

Integrating, we get

which is the required solution. 204. The given differential equation is

...(i)

dp dp p = 2x p4 + 4x2p3 ___ ​    ​ + 2p + 2x ​ ___  ​ dx dp – 2x p4 – p = (4x2p3 + 2x) ​ ___  ​



log p + 2log x = log c



p x2 = c



dp 2x (2xp3 + 1)  ​ ___  ​ = – p (2xp3 + 1) dx dp 2x ​ ___  ​ = – p dx dp dx ___ 2 ​ ___ p ​ = – ​  x ​ 

...(ii)

Eliminating p between Eqs (i) and (iii), we get the required solution of Eq. (i) c y + __ ​ x ​ + c2 which is the required solution. 206. The given differential equation is



y = p sin p + cos p

...(i)

dy dp dp dp fi ​ ___  ​ = sin p ​ ___  ​ + p cos p ​ ___  ​ – sin p ​ ___  ​ dx dx dx dx dp fi p = p cos p ​ ___  ​ dx





dp cos p  ___ ​    ​ = 1 dx





cos p  dp = dx

Integrating, we get

Integrating, we get

2 log |p| = log c – log |x|





c 2 log |p| = log ​ ​ __x ​  ​

Eliminating p from Eqs (i) and (ii), we get

|  |

___

2 y = 2​÷c x    ​ + c



y + px = x4p2

Differentiating w.r.t. x, we get



...(ii)

y = (x + c) sin– 1(x + c) + ÷ ​ 1    –  (x +   c)2 ​

which is the required solution. 207. The given differential equation can be written as

which is the required solution. 205. The given differential equation is

sin p = x + c

__________

x p2 = __ ​ c ​ ...(ii) Eliminating p between Eqs (i) and (ii), we get

4.67

2 y = Px – ​ __  ​ – 1 P

...(i)

Differentiating w.r.t. x, we get ...(i)

dP dP ​ ___ ​ = P + x  ___ ​   ​ + dx dx

2 dP ___ ​  2  ​  ___ ​   ​  P dx

4.68  Integral Calculus, 3D Geometry & Vector Booster fi

dP 2 dP P = P + x ​ ___ ​ + __ ​    ​  ___ ​   ​  dx p2 dx

( 

)

211. The given differential equation is

2 dP fi ​ x + ___ ​  2  ​   ​  ​ ___ ​ = 0 P dx

( 

)

dP 2 fi ​ ___ ​ = 0 or ​ x + ___ ​  2  ​   ​ = 0 dx P fi

P = c

...(ii)

or

2 x = – ​ __2  ​   p

...(iii)



(x – a) P2 + (x – y) P – y = 0



P2x + Px – aP2 = ( P + 1) y



( P + 1) y = P (P + 1) x – aP2



aP2 y = Px – _______ ​      ​ ( P + 1)



which is a Clairaut differential equation. Hence, the solution is ac2 y = cx – ​ ______     ​ (c + 1)

Eliminating p between Eqs (i) and (ii), we get



2 y = cx – ​ __ c ​ – 1 which is the genral solution of Eq. (i).

212. The given differential equation is

Eliminating p between Eqs (i) and (iii), we get

which is a Clairaut differential equation. Hence, the solution is _____



(y + 1)2 + 8x = 0 which is the singular solution of Eq. (i). 208. The given differential equation is 3

2



Px–Py–1=0



P2y = P3x – 1



1 y = P x – ___ ​  2  ​  P





( y + 1) P – x P2 + 2 = 0



( y + 1) P = p2x – 2





2 ( y + 1) = Px – ​ __ p ​





2 y = P x – ​ __ ​    ​ + 1  ​ P

( 

)

which is a Clairaut differential equation. Hence, the solution is 2 y = c x – ​ ​ __ c ​ + 1  ​ 210. The given differential equation is

)



sin y cos P x – cos y sin Px – P = 0





sin (y – Px) = P





(y – Px) = sin– 1 (P)







y = Px + a ​÷1  + P2 ​ 

y = cx + a ​÷1  + c2 ​ 

213. The given differential equation is a  y = p (x – b) + __ ​ p ​  a fi y = px + ​ __ ​ p ​ – bp  ​

( 

which is a Clairaut differential equation. Hence, the solution is 1 y = c x – __ ​  2  ​  c 209. The given differential equation is

( 

______



– 1 

y = Px + sin (P)

which is a Clairaut differential equation. Hence, the solution is y = c x + sin– 1(c)

)

which is a Clairaut differential equation. Hence, the solution is a y = cx + ​ ​ __ c ​ – bc  ​ 214. The given differential equation is

( 

)

d 2y ​ ____2 ​ = x + sin x

(  )

d dy fi ​ ___  ​   ​ ___ ​    ​  ​ = x + sin x dx dx Integrating, we get dy x2 ___ ​    ​ = __ ​   ​  – cos x + c1 2 dx Again integrating, we get x3 y = __ ​   ​  – sin x + c1x + c2 6 which is the required solution. 215. The given differential equation is fi

d2y ___ ​  2 ​ = e2x + ex + 2014 dx







d dy fi ​ ___  ​  ​ ___ ​    ​  ​ = e2x + ex + 2014 dx dx

(  )

Integrating, we get

dy ___ ​    ​ = dx

e2x ___ ​   ​ + ex + 2014 + c1 2

Differential Equation 

Again integrating, we get 2x

e y = ​ ___ ​ + ex + 1007x2 + c1x + c2 4 which is the required solution. 216. The given differential equation is

d 2y ​ ___2 ​ = sin2x dx d dy fi ​ ___  ​  ​ ___ ​    ​  ​ = sin2x dx dx

(  )

Integrating, we get

(  ) Ú (  ) (  dy ​ ___ ​    ​  ​ = dx

1 __ ​   ​    2 sin 2x dx + c1 2







dy 2sin2x 1 fi ​ ___ ​    ​  ​ = __ ​   ​  ​ x – ______ ​   ​    ​ + c1 2 2 dx

)

Again Integrating, we get

( 

)

cos2x 1 x2 _____ y = __ ​   ​  ​ __ ​   ​  + ​   ​    ​ + c1x + c2 2 2 4

which is the required solution. 217. The given differential equation is d 2y ​ ___2 ​ = cos3x dx d dy fi ​ ___   ​ ​ ___ ​    ​  ​ = cos3x dx dx

(  )

(  ) (  )

dy ​ ___ ​    ​  ​ = Ú cos3x dx dx dy fi ​ ___ ​    ​  ​ = Ú cos3x dx dx

( 

)

)



x2 1 cos3x y = __ ​   ​  + __ ​    ​ ​ x + _____ ​   ​    ​ + c1x + c2 2 3 3

( 

)

which is the required solution. 218. The given differential equation is d 2y 1 ​ ___2 ​ = _________ ​  2   2    ​ dx sin x cos x

(  ) (  )

d dy sin2x +  cos2x fi ​ ___  ​  ​ ___ ​    ​  ​ = ____________ ​          ​ dx dx sin2x cos2x

d dy fi ​ ___  ​  ​ ___ ​    ​  ​ = sec2x + cosec2x dx dx

Integrating, we get

y = log (cos x) – log (sin x) + c1x + c2



y = log (cot x) + c1x + c2

which is the required solution. 219. The given differential equation is d2y ​ ___2 ​ = sin4x + cos4x dx = 1 – 2 sin2x cos2x 1 = 1 – __ ​   ​  sin2x 2 1 = 1 – __ ​   ​  (1 – cos4x) 4 3 __ 1 __ = ​   ​  + ​   ​  cos4x 4 4 3 1 d dy fi ​ ___  ​   ​ ___ ​    ​  ​ = __ ​   ​  + __ ​   ​  cos4x 4 4 dx dx

(  )

Integrating, we get dy 3x 1 ​ ___ ​    ​  ​ = ___ ​   ​ + ___ ​    ​  sin4x + c1 4 dx 16 Again Integrating, we get

(  )

3x2 cos (4x) y = ___ ​   ​  + ​ _______  ​   + c1x + c2 8 64

d 2y ​ ___2 ​ = x ex dx

sin3x y = Ú ​ x – _____ ​   ​    ​ dx + c1x + c2 3





which is the required solution. 220. The given differential equation is

sin3x = ​ x  – ​ _____  ​    ​ + c1 3 Again Integrating, we get

( 

Again Integrating, we get



Integrating, we get

(  )

dy ​ ___ ​    ​  ​ = tan x – cot x + c1 dx

(  )

d dy fi ​ ___  ​  ​ ___ ​    ​  ​ = x ex dy dx Integrating, we get

(  )

dy fi ​ ___ ​    ​  ​ = (x – 1)ex + c1 dx Again integrating, we get fi

y = (x – 2)ex + c1x + c2

which is the required solution. 221. The given differential equation is d 2y ​ ___2 ​ + y = 0 dx dp fi p ​ ___  ​ + y = 0 dy



dp p ​ ___  ​ = – y dy





2p dp = – 2y dy

On integrating, we get

4.69

4.70  Integral Calculus, 3D Geometry & Vector Booster p2 = c​ 2​1​​  – y2







dy 2 fi ​​ ___ ​    ​  ​​ ​ = c​ 2​1​​  – y2 dx



_______ dy fi ​ ___  ​ = ± ​÷(​   c2​1​​  – y2)   dx

 ​

(  )

(  )





dy 4p dp = ___ ​  __   ​ y     ​ ÷

1 ____ ​  __    ​  4​÷y     ​

__



2p2 = 2​÷y    ​  + 2c1



p2 = ​÷y    ​  + c1



which is the required solution. 222. The given differential equation is 1 __ ​  3  ​  y

dp p ​ ___  ​ = dy



Integrating, we get c1 2 sin– 1 ​ ​ __ y ​   ​ = c ± x

dy ​ ___2 ​ = dx



 ​ Integrating, we get

dy _______ fi ​ ________      ​ = ± dx ​÷(​   c2​1​​  – y2) ​ 

2







__

(  ) (  )

dy 2 __ fi ​​ ___ ​    ​  ​​ ​ = ​÷y    ​  + c1 dx _______ dy __ fi ​ ___ ​    ​  ​ = + ÷ ​ ​÷   y    ​  + c1   ​ dx dy ___ fi ​ ________  ​ = ±  dx __     ​÷​÷   y     ​ ​ + c1

Again integrating, we get dy ___ c2 ± x = Ú  ​ ________  ​ dy dp __ __     1 ___ ___ fi p ​    ​ = ​ y ​, ​ Let p = ​    ​  ​    ​ ​ + c1 ÷​ ÷​  y  dy dx 2t dt dy _____ = Ú  ​ ______     ​, where y = t2 fi p dp = – ​ ___3 ​  ​÷t  + c1   ​ y 2{(t + c1) – c1}dt Integrating, we get _____    = Ú  ​ _______________  ​    ​÷t  + c1   ​ 2 c p 1 1 _____ ​ __ ​  = ___ ​   2 ​ + __ ​   ​  = 2 Ú (​÷t  + c1   ​ – c1(t + c1)– 1/2) dt 2 2 2y fi

( 

c1y2 + 1 p2 = ​ _______  ​    y2

(  )

dy 2 c1y2 + 1 fi ​​ ___ ​   ​  ​ ​ ​ = ​ _______  ​    dx y2

÷ 

________ 2



c1y + 1 dy fi ​ ___  ​ = ± ​ _______ ​   ​      dx y2

 ​

y ____ fi ​ _____    ​  + 1dy = ± dx ÷​ c  1y2 ​ 

)

_______

which is the required solution. 223. The given differential equation is d2y ​ ___2 ​ = dx

1 ____ ​  __    ​  4​÷y     ​

(  ) (  )



d dy fi ​ ___  ​  ​ ___ ​    ​  ​ = dx dx



dy d dy ___ fi ​ ___  ​  ​ ___ ​    ​  ​ ​    ​ = dy dx dx

1 ____ ​  __    ​  4​÷y     ​ 1 ____ ​  __    ​  4​÷y     ​

__

÷   



1

3/2

which is the required solution. 224. The given differential equation is d2y a2  ​ ___ ​ – y = 0 dx2

Again integrating, we get ​÷c  1y2 + 1 ​  ​ ________   = c2 ± x c1 ​ 

[  1 = 4 ​[ __ ​    ​(​ y ​+ c ) 3

 ​

d2y y fi ​ ___2 ​ = __ ​  2   dx a y dp fi p ​ ___  ​ = __ ​    ​  dy a2

y dy p dp = ____ ​  2 ​  a Integrating, we get





p2a2 = y2 + c​ 2​1​​ 



y2  + ​c2​1​ ​ p2 = _______ ​  2 ​    a



] – c ​÷​  y ​+ c  ​ ]​+ c

_____ 1 = 4 ​ __ ​   ​  (t + c1)3/2 – c1​÷t  + c1   ​  ​ + c2 3



(  )

y2  + ​c2​1​​  dy 2 _______ ___ fi ​​ ​    ​  ​​ ​ = ​  2 ​    dx a

1

_______ __ ÷    1   2

Differential Equation 

(  ) ÷ 

______



y2 + ​c2​1​​  dy fi ​ ___ ​    ​  ​ = ±  ​ ​ ______  ​ ​      dx a2



dy dx ______ fi ​ _______     ​ = ± ___ ​  2 ​  2 2 a ​÷y  + c​ ​1  ​ ​​ 

| 

_______

|



2p dp = 3y2 dy

p2 = y3 + c1

(  ) (  )



______ dy fi ​ ___ ​    ​  ​ = ± ​÷y  3 + c1 ​  dx



When

\

(  )

dy x = – 2, y = – 1 and ​​ ___ ​    ​  ​​ ​ = – 1 dx x = – 2 c1 = 2

(  )

_____ dy Thus, ​ ___ ​    ​  ​ = ± ​÷y  3 + 2 ​  dx

dy _____ fi ​ _______     ​ = ± dx ÷​ y  3 + 2 ​ 

c1 p2 e2y __ ​ __ ​  = ___ ​   ​ + ​   ​  2 2 2

227. The given differential equation is

p2 = e2y c1

(  ) (  )

dy 2 fi ​​ ___ ​    ​  ​​ ​ = e2y + c1 dx _______ dy fi ​ ___ ​    ​  ​ = ± ​÷e  2y +  c1 ​  dx



(  )

d2y y3 ​ ___ ​  2 ​  ​ = – 1 dx

d2y 1 fi ​ ___2 ​ = – ​ __3  ​  dx y

dy _______ fi ​ ________      ​ = ± dx 2y ​÷e  + c1   ​



Again integrating, we get



dy 2 fi ​​ ___ ​    ​  ​​ ​ = y3 + c1 dx

d2y ​ ___2 ​ = e2y dx dp fi p ​ ___  ​ = e2y dy fi p dp = e2y dy Integrating, we get



dp 2p ​ ___  ​ = 3y2 dy



x log ​ y + ​÷y  2  + ​c2​1​ ​ ​   ​ = c2 ± __ ​  2  ​  a which is the required solution. 225. The given differential equation is





Integrating, we get

Again integrating, we get





dp 1 2p ​ ___  ​ = – ​ __3  ​  dy y

dy 2p dp = – ​ ___3 ​  y Integrating, we get 1 p2 = – ​ ___ 2 ​ + c1 2y

dy _______ c2 ± x = Ú  ​ ________      ​ ​÷e  2y + c1   ​







e– ydy _________ = Ú  ​ __________       ​ ​÷1  + c1e– 2y   ​



dt _______ = – Ú  ​ ________      ​, t = e– y 2 ​÷1  + c1t    ​



dy 2 1 fi ​​ ___ ​    ​  ​​ ​ = – ​ ___ 2 ​ + c1 dx 2y

dt 1__ __________ = – ​ ___    ​  Ú  ​  _________       ​ ​ c  1 ​  2 ÷ 1__ 2 ___ ​ t + ​​ ​     ​  ​​  ​ ​ ​÷c  1 ​ 



dy 2 2c1y2 – 1 fi ​​ ___ ​    ​  ​​ ​ = _________ ​   ​    dx 2y2







÷  (  ) |  ÷  |  ÷ 

_______



|



When



1__ 1 = – ​ ___    ​  log ​ t + ​ t2 + ___ ​  __    ​ ​  ​ ​÷c  1 ​  ​÷c  1 ​ 



1__ 1 = – ​ ___    ​  log ​ e– y + ​ e– 2y + ___ ​  __    ​ ​  ​ ​÷c  1 ​  ​÷c  1 ​ 

_________

226. The given differential equation is

d 2y 2 ​ ___2 ​ = 3y2 dx

(  ) (  )

\

|

(  )

dy x = – 1, y = – 1, ​​ ___ ​    ​  ​​ ​ = 0 dx x = –1 1 c1 = ​ __ ​  2

(  )

÷ 

______



dy y2 – 1 \ ​ ___ ​    ​  ​ = ± ​ ______ ​  2 ​ ​      dx 2y



y dy dx _____ fi ​ _______     ​= ± ___ ​   ​  2 ÷​ y  – 1 ​  2

4.71

4.72  Integral Calculus, 3D Geometry & Vector Booster

_____

x fi ​÷y  2 – 1 ​ = c2 ± __ ​    ​ 2

Again integrating, we get

which is the required solution. 228. The given differential equation is

d2y x ​ ___2 ​ + dx

dy ___ ​    ​ + x = 0 dx

dy d2y Let ​ ___  ​ = p fi ___ ​  2 ​ = dx dx







dp x ​ ___  ​ + p + x = 0 dx x dp + p dx + x dx = 0





d (xp) + xdx = 0



Integrating, we get

)

x2 y = – ​ __ ​  + c1 log |x| + c2 4 which is the required solution. 229. The given differential equation is

2

d y 1  dy ​ x ​​ ___  ​ + x ​ ___2 ​ = __ dx dx dp p ​   ​ + x fi ​ ___  ​ = __ dx x





x dp = p dx + x2dx

x dp  –  p dx fi ​ __________  ​      = dx x2 p fi d ​  ​ __ x ​  ​ = dx Integrating, we get p __ x2 ​ __   ​ = ​   ​  + c1 x 2

(  )



3

x p = __ ​   ​  + c1x 2 dy x3 fi ​ ___  ​ = __ ​   ​  + c1x 2 dx fi



dp y p ​ ___  ​ + p2 = 1 dy



( 

dy 2 ​​ ___ ​    ​  ​​ ​ = 1 dx

dp y p ​ ___  ​ = 1 – p2 dy dy p fi ​ _____   2   ​ dp = ___ ​  y ​  1–p fi

1 – ​ __ ​  log |1 – p2| = log y + log c1 2

1 fi ​ _____     ​ = (c1y)2 1 – p2



1 1 – p2 = ____ ​  2  2 ​  ​c1​ ​y​ 





1 p2 – 1 = ____ ​  2  2 ​  ​c1​ ​y​ 



dy 1 fi ​ ___  ​ = ​ 1 – ____ ​  2  2 ​ ​    dx c​ 1​ ​y​ 



c1y _______ fi ​ ________     ​ dy = dx 2 2 ​÷​c  1​ ​y​  – 1 ​  

÷ 

_______

Again integrating, we get _______





d2y y ​ ___2 ​ + dx







(  )



Integrating, we get

x x p = – ​ __ ​  + c1 2

( 



dp ___ ​   ​  dx

)

c1x2 ____ ​   ​    ​ + c2 2

which is the required solution. 230. The given differential equation is

2

dy x2 x ​ ___  ​ = – ​ __ ​  + c1 2 dx dy x c1 ​ x ​  fi ​ ___  ​ = – ​ __  ​ + __ 2 dx x c1 ​ x ​   ​ dx fi dy = ​ – ​ __  ​ + __ 2 Again Integrating, we get

...(i)

( 

x4 y = ​ __ ​   ​  + 6

​÷​c  2​1​ ​ y2 –  1 ​  ​ _________  ​    = x + c2 ​c2​1​​  which is the required solution. 231. The given differential equation is







dp y ​ ___  ​ – p = y2 dy





y dp – p dy = y2dy



)

x3 dy = ​ __ ​   ​  + c1x  ​ dx 2

(  )



(  )

d2y dy 2 dy y ​ ___2 ​ – ​​ ___ ​    ​  ​​ ​ = y2 ​ ___ ​    ​  ​ dx dx dx dp py ​ ___  ​ – p2 = y2p dy

ydp  – pdy fi ​ _________  ​    = dy y2 p fi d  ​  ​ __ y ​  ​ = dy

(  )

Differential Equation 

Integrating, we get p ​ __ y ​ = y + c1 fi p = y2 + c1y

dy fi ​ ___  ​ = y2 + c1y dx



dy fi ​ _______     ​ = dx 2 y + c1y



dy fi ​ ________     ​ = dx y(y + c1)



( 

Integrating, we get

(  )

x log |x2 + c1| + 2a tan– 1 ​ __ ​ c   ​   ​ + y = c2 1

which is the reqired solution. 233. Given differential equation is

)

1 1 fi ​ __ ​ y ​ – _____ ​       ​  ​ dy = dx y + c1

Again integrating, we get y log ​ _____ ​       ​  ​ = x + c2 y + c1

|  |

which is the required solution. 232. Given differential equation is

(  ) (  )

(  ) (  )



d2y 1 ___ dy dy x ​ ___2 ​ – __ ​    ​ ​ ​    ​  2​ = ​ ___ ​    ​  ​ 4 dx dx dx



dp 1 x ​ ___  ​ – ​ __ ​  p2 = p dx 4





dp p2 p x ​ ___  ​ = __ ​   ​  + p = p ​  ​ __ ​  + 1  ​ 4 4 dx



4 dp dx fi ​ _______     ​ = ___ ​  x ​  p(p + 4)



dx 1 1 fi ​ __ ​ p ​ – _____ ​       ​  ​ dp = ___ ​  x ​  p+4

( 

( 

)

Integrating, we get

|  |



d 2y dy 2 dy (x + a) ​ ___2 ​ + x ​​ ___ ​    ​  ​​ ​ = ​ ___ ​    ​  ​ dx dx dx







dp (x + a) ​ ___  ​ + xp2 = p dx



p fi ​ _____     ​ = c1x p+4

p log ​ _____ ​       ​  ​ = log |x| + log c1 p+4



p dp xp2 fi ​ ___  ​ + ______ ​      ​ = ​ _____     ​ dx (x + a) x + a



p  +  4 ___ 1 fi ​ _____ ​ = ​ c x  ​  p    1



dp p xp2 fi ​ ___  ​ – _____ ​       ​ = – ​ ______     ​ (x + a) dx x + a







x 1 dp ________ 1 fi ​ __2  ​   ___ ​    ​ – ​       ​ = – ​ ______      ​ (x + a) p dx p/(x + a)



4 ______ 1 fi ​ __    ​ p ​ = ​ c1x   – 1



– c1x 4 1______ fi ​ __   ​ p ​ = ​  c1x   



c1x p fi ​ __  ​ = ______ ​      ​ 4 1 – c1x







Put

1 – ​ __ p ​ = v

dv v x fi ​ ___  ​ + ______ ​       ​ = ______ ​       ​ dx (x + a) (x + a) which is a linear differential equation. \

dx _____ IF = ​eÚ​ ​ x +  a  ​​ = elog |x + a| = (x + a)





v (x + a) = Ú  x dx





x2 v(x + a) = _____ ​       ​ 2+c





x2 1 __ – ​ __ p ​ (x + a) = ​ 2 ​  + c



2 (x  + a) fi ​ ________  ​      dx + dy = 0 x2 + C1 2x 2a fi ​ ______     ​ dx + ______ ​  2      ​ dx + dy = 0 x2 + C1 x + C1

)

4 ___ 1 1 + ​ __ ​ p ​ = ​ c1x   

4c1x dy = ______ ​      ​ dx 1 – c1x

Again integrating, we get 1 y = – 4x + __ ​ c   ​    log |c1x – 1| + c2 1 which is the required solution. 234. Given differential equation is fi

(  )

d2y dy 2 ___ y ​ ____      ​ = 1 – ​​ ​    ​  ​​ ​ dx dx2 dp py ​ ___  ​ = 1 – p2 dx

dy 2p dp fi ​ _______      ​ = – 2 ​ ___ y ​  2 (p – 1)

4.73

4.74  Integral Calculus, 3D Geometry & Vector Booster Integrating, we get















2

log |p – 1| = log C1 – log |y |

|  |

C1 log |p – 1| = log ​ ___ ​  2 ​  ​ y C 1 (p2 – 1) = ___ ​  2 ​  y C1 p2 = ___ ​  2 ​ + 1 y 2

C1 + y2 = ​ ______  ​    y2

÷  ÷ 

_______

C1 + y2 p = ± ​ _______ ​  2 ​ ​      y







C1 + y2 dy fi ​ ___  ​ = ± ​ ​ ______  ​ ​      dx y2



y dy ______ fi ​ ________     ​ = ±  dx 2 ​÷y  + C1   ​



fi ​÷y  2 + C1   ​ = C2 ± x

_______

______

which is the required solution. 235. Given differential equation is

(  )

d 2y dy ​ ___2 ​ = 2y ​ ___ ​    ​  ​ dx dx

2



dp y p ​ ___  ​ – p2 = y2p dy



dp y  ___ ​    ​ – p = y2 dy

dp fi ​ ___  ​ – dy

p __ ​ y ​ = y

...(i)

which is a linear differential equation. \

dy

–   ___ ​   ​  1 IF = ​e​ Ú y ​ = e– log y = __ ​ y ​

Multiplying both sides of Eq. (i) by IF and integrating, we get p ​ __ y ​ = Ú  dy + c1 p ​ __ y ​ = y + c1 p = y2 + c1y dy ​ ___  ​ = y2 + c1y dx dy ​ ________      ​ = dx y( y + c1) Integrating, we get

|  |

y 1 _____ ​ __  ​  ​| = x + c2 c1  ​   log |​ ​ y + c1  which is the required solution. 237. Given differential equation is

(  ) (  )

d2y 1 ___ dy a ​ ___2 ​ + __ ​ x  ​​ ​    ​  ​ – __ ​  2  ​  = 0 dx dx x

dp fi ​ ___  ​ = 2y p dx dp fi p ​ ___  ​ = 2y p dy



dp fi ​ ___  ​ = 2y dy









dy d2y x2 ___ ​   ​ + x ​ ___ ​    ​  ​ = a 2 dx dx dp x2 ___ ​    ​ + xp = a dx a dx x dp + p dx = ____ ​  x    ​ 



a dx d (xp) = ____ ​  x    ​ 





dp = 2y dy

Integrating, we get p = y2 + C1







dy fi ​ ___  ​ = y2 + C1 dx

Integrating, we get xp = a log |x| + c1



dy fi ​ ________      ​ = dx 2 (y + C1)



dy x ​ ___  ​ = a log |x| + c1 dx



y 1 – 1 ____ ___ fi ​ ____    ​     ​  ​ = x + C2   tan  ​ ​  ___ ​÷C   1 ​  ​÷C   1 ​ 



c1 a log |x| ___ dy = ​ ______ ​  x    ​ + ​ x ​  ​ dx

(  )

which is the required solution. 236. Given differential equation is fi

d2y y ​ ___2 ​ – dx

(  )

(  )

dy 2 dy ​​ ___ ​    ​  ​​ ​ = y2 ​ ___ ​    ​  ​ dx dx

( 

)

Again integrating, we get

(log |x|)2 y = a ​ _______  ​   + C1 log |x| + C2 2

which is the required solution.

Differential Equation 

238. Given differential equation is

(  )

2

dy dy y ​ ___2 ​ – y ​ ___ ​    ​  ​ ln y = dx dx dp fi y ​ ___  ​ – yp ln y = p2 dx lny 1 1 dp ___ fi ​ __2  ​  ___ ​    ​ + ​ – p  ​ = __ ​ y ​ p dx



240. Given

(  )

dy ​ ___  ​ = y + 2x dx dy fi ​ ___  ​ + (– y) = 2x dx

dy ​​ ___ ​    ​  ​​ ​ dx 2

which is a linear differential equation.





dp fi ​ ___  ​ – dy

p __ ​ y ​ = ln y

...(i)

dy

___ 1 IF = e​ –  ​ Ú ​  y ​ ​ = e– log|y = __ ​ y ​

Multiplying both sides of Eq. (i) by IF and integrating, we get log y p ____ ​ __ ​  dy + c1 y ​ = Ú  ​  y   



(log y)2 p ______ fi ​ __   ​ = ​   ​   + c1 y 2 dy fi ​ ______________      ​ = dx 2 (log y) + 2c1 y ​ ​ ____________  ​       ​ 2

( 

Integrating, we get

÷ 

(Let log y = t)

(  )

(  )

log y 2 fi ​ ___ ​    ​ ​    tan– 1 ​ _____ ​  ____ ​     ​ = x + c2 c1 ​÷2c   1 ​ 

which is the required solution. 239. The slope of the curve = The slope of the tangent

dy = tany = ___ ​    ​ = dx



2y dy = dx



y2 = x + c





y ◊ e– x = – 2e– x (x + 1) + c

241. Given

y ◊ e– x = – 2e– x (x + 1)

dy x4 + 2x y – 1 ​ ___  ​ = ​  __________     ​  dx x2 + 1 2xy = x2 – 1 + _____ ​  2     ​ x +1 dy 2x fi ​ ___  ​ – ​ _____     ​ y = x2 – 1 dx x2 + 1



t 2 – 1 _____ ___ fi ​ ____    ​     ​   ​ = x + c2   tan  ​ ​  ____   1 ​  ​÷2c   1 ​  ÷​ 2c ___

y ◊ e– x = 2 Ú  xe– x dx + c

which is a linear differential equation.

)

2 dt fi ​ ________    ​  = dx, (t2 + 2c1)



which is passing through (0, 0) then c = 0. Hence, the required equation of the curve is

which is a linear differential equation. \

IF = e​ –  ​ Údx​ = e– x

Hence, the solution is

dp y p ​ ___  ​ – y p ln y = p2 dy

dp y ​ ___  ​ – y ln y = p dy dp p fi ​ ___  ​ – ln y = __ ​ y ​ dy

4.75

1 ___ ​    ​  2y

which is passing through (4, 3), so c = 5 Hence the equation of the curve is y2 = x + 5.

2x – Ú ​ _____     ​ dx x2 + 1 ​ =

IF = e​ ​

2

e​ – log |x ​

1 ​ = _____ ​  2      ​ x +1

+ 1|

Hence, the solution is 1 y ◊ ​ _____     ​ = x – 2 tan– 1x + c 2 x +1 which passes through (0, 0), then c = 0. Hence, the equation of the curve is

y = (x2 + 1) (x – 2 tan– 1x)

242. Given dy (x + 1)2 + y – 3 ​ ___  ​ = ​  _____________     ​    (x + 1) dx

Let



dy fi ​ ___  ​ = dx



...(i)

x + 1 = X, y – 3 = Y dY ___ ​    ​ dX

dY Y ___ ​    ​ = X + __ ​   ​ X dX

(  )

dY 1 fi ​ ___  ​ + ​ – ​ __ ​   ​ Y = X X dX which is a linear differential equation. \

1 __ 1 IF = e​ –  ​ Ú​ x ​ dX​ = e– log X = __ ​    ​ X

4.76  Integral Calculus, 3D Geometry & Vector Booster Hence, the solution is

(  )

1 1 Y ◊ ​ __ ​  = Ú  ​ X ◊ ​ __ ​   ​ dX + c = X + c X X

Y fi ​ __ ​ = X + c X y–3 fi ​ _____   ​ = (x + 1) + c x+1 which is passing through (2, 0) then c = – 4 Hence, the required equation of the curve is y–3 ​ _____   ​ = (x + 1) – 4 x+1 fi

y – 3 = (x + 1)2 – 4(x + 1)



y = x2 – 2x

243. The equation of the tangent at any point (x, y) on the curve is dy Y – y = ​ ___  ​ (X – x) dx dy It meets x-axis at A ​ x – y ​ ___  ​, 0  ​ dx

( 

( 

)

)

dy and y-axis at B ​ 0, y – x ​ ___  ​  ​ dx \  Mid-point of AB

(  ( 

) ( 

))

dy 1 dy 1 = ​ __ ​   ​  ​ x – y ​ ___  ​  ​, __ ​    ​ ​ y – x ​ ___  ​  ​  ​ 2 dx 2 dx

It is given that,

(  ( 

) )

dy 1 and ​ __ ​ ​  x – y ​ ___  ​  ​ = x, 2 dx dy 1 ​ __  ​  ​ y – x ​ ___  ​  ​ = y 2 dx dy Thus, x ​ ___  ​ = – y dx dy dx ___ fi ​ ___ y ​ = – ​  x ​  dy ___ dx fi ​ ___ y ​ + ​  x ​ = 0 fi log y + log x = log c fi

log (y x) log c

fi x y = c which is passing through (1, 1), then c = 1. Hence, the equation of the curve is

x y = 1.

244. The equation of the normal at the point (x, y) is dx Y – y = – ​ ___  ​ (X – x) ...(i) dy The distance of perpendicular from the origin to the normal (i) is



| 

|

dy ​ y + x ​ ___  ​  ​ dx ________  = ​ _________    ​ dy 2 ___ ​ 1 + ​​ ​    ​  ​​  ​ ​ dx

÷  (  )

Also the distance between P and x-axis is |y|.

| 

|

dy ​ y + x ​ ___  ​  ​ dx ________ Thus, ​ _________      ​ = |y| dy 2 ___ ​ 1 + ​​ ​    ​  ​​   ​ ​ dx

÷  (  ) (  ) (  ) (  (  ) (  )

(  (  ) )



dy dy 2 dx 2 y2 + ​​ ___ ​    ​  ​​  ​x2 + 2xy ​ ___  ​ = y2 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ dy dx dx



dx 2 dx (x2 – y2)​​ ___ ​    ​  ​​ ​ + 2xy ​ ___  ​ = 0 dy dy

)

dx dx fi ​ ___  ​ ​ (x2 – y2) ​ ___ ​    ​  ​ + 2xy  ​ = 0 dy dy y2 – x2 dx dx fi ​ ___  ​ = 0, ​ ___ ​    ​  ​ = ​ ______      ​ 2xy dy dy dx Now, ​ ___  ​ = 0 gives x = k dy which is passing through (1, 1), so k = 1. Thus, the equation of the curve is x = 1 y2 – x2 dx Also, ​ ___  ​ = 0 = ​ ______      ​ 2xy dy which is a homogeneous differential equation. dy dv Let  y = v x fi ___ ​    ​ = v + x ___ ​   ​  dx dx fi

dv v2 – 1 v + x ___ ​    ​ = ​ _____       ​ 2v dx



dv v2 – 1 v2 + 1 x ​ ___  ​ = ​ _____       ​ – v = – ​ _____       ​ 2v 2v dx

2v dx fi ​ ___2 ​ + 1dv = – ​ ___ x ​  v fi log |v2 + 1| = log c – log x c fi |v2 + 1| = __ ​ x ​ fi

x2 + y2 = c x

which also passes through (1, 1), so c = 2. Hence, the equation of the curve is x2 + y2 = 2x. 245. The Equation of the tangent at any point (x, y) is dy Y – y = ___ ​    ​ (X – x) dx dy It meets the x-axis at ​ x – y ​ ___  ​, 0  ​ dx

( 

Given

AP = 1



AP 2 = 1

)

Differential Equation 

(  ) (  )

dx 2 fi ​​ – y ​ ___  ​  ​​ ​ + y2 = 1 dy

2v dx fi _________ ​       ​ dv = ___ ​  x ​  2 1 + v – 2v

2 dx 2 1 – y fi ​​ ___ ​    ​  ​​ ​ = ​ _____  ​     dy y2

2v dx fi _________ ​       ​ dv = – ​ ___ x ​  2v2 – v – 1

dy y _____ fi ​ ___  ​ = ±  ​ ______      ​ dx ​÷1  – y2   ​ ______

 ​ ÷​ 1  –  y2   fi ​ _______ ​   dy = ± dx y  

| 

Integrating, we get

|

______ y _____ log ​ __________ ​       ​  ​ + ÷ ​ 1  – y2   ​ = c ± x 1 + ​÷1  – y2   ​

which is the required equation of the curve. 246. The slope of the line segment joining the points (x, y) and (– 4, – 3) is y+3 ​ _____   ​ x+4

(  )

dy y+3 Thus, ​ ___  ​ = 2 ​  ​ _____   ​  ​ x+4 dx

(4v –  1)dv dv 2dx fi ​ ___________       ​ + ___________ ​        ​ = – ​ ____ ​  x    (2v2  – v – 1) (2v2 – v – 1)

| 

|

2v – 2 1 fi log |2v2 – v – 1| + __ ​   ​  log ​ ​ ______   ​   ​ = c – log x 3 2v – 1

| 

| |  |



2y2 fi log ​ ___ ​  2 ​ – x



2y –  2x 1 fi log |2y2 – xy – x2| + __ ​   ​  log ​ ​ _______ ​   ​ – log x = c 3 2y – x





log |y + 3| = log c + 2 log (x + 4)



( y + 3) = c (x + 4)2

which is passing through (– 2, 1), so c = 1 Hence, the required equation of the curve is 2

( y + 3) = (x + 4)

247. The equation of the normal at P is dx Y – y = ___ ​    ​ (X – x) dy Thus, the points A and B are (x, 0) and

( 

(4v – 1)  +  1 2dx fi ​ ___________       ​ dv = – ____ ​  x    ​  2v2 – v – 1

y 2y – 2x 1 __ ​ x ​ – 1  ​ + __ ​   ​  log ​ ​ ______ ​   ​ = c – log x 3 2y – x

|  |

which is the required equation of the curve. 248. The equation of the normal at P is

dy 2 ◊ dx fi ​ _____     ​ = _____ ​     ​ y+3 x+4 Integrating, we get



4.77

)

dy ​ x + y ​ ___  ,​ 0  ​ dx Given condition is

dy x+y x + y ​ ___  ​ – x = ​ _____  ​    2 dx



dv 1 + v 1 + v – 2v2 x ​ ___  ​ = ​ _____    ​ – v = ​ __________      ​  2v 2v dx

dx Y – y = – ​ ___   ​(X – x) dy

( 

)

dy It meets the x-axis at A ​ x + y ___ ​    ,​ 0  ​ dx Given condition is

OP2 = OA2

(  )

dy 2 x2 + y2 = y2 ​​ ___ ​    ​  ​​ ​ + y2 dx dy x fi ​ ___  ​ = ± ​ __y ​ dx fi

Taking positive sign, dy x ​ ___  ​ = __ ​   ​ dx y fi

y dy = x dx

x2 fi ​ __ ​  – 2

y2 c2 __ ​   ​  = __ ​   ​  2 2

fi x2 – y2 = c2, which represents a rectangular hyperbola. dy x  +  y Taking negative sign, ​ ___  ​ = ​ _____    ​  2y dx dy x ​ ___  ​ = – ​ __y ​ which is a homogeneous equation. dx dy dv y dy = – x dx Put  y = vx fi ___ ​    ​ = v + x ​ ___​   fi dx dx y2 __ x2 __ a2 __ dv 1_____ +v fi ​   ​   + ​   ​   = ​   ​  ___ fi v + x ​    ​ = ​     ​  2 2 2 2v dx fi

x2 + y2 = a2.

which represents a circle.

4.78  Integral Calculus, 3D Geometry & Vector Booster

  (Problems for JEE-Advanced)

when

1. It is given that

2

e​ – log (x ​

1 ​ = _______ ​  2      ​ (x + 1)

+ 1)

Hence, the sloution is





which is a linear differential equation. 4

1 x – 1    y ◊ ​ _______      ​ = Ú​ ________    ​  dx + c 2 (x + 1) (x2 + 1)2



dy cos2 x ​ ___  ​ – (tan2x) y = cos4 x dx dy (tan2x) fi ​ ___  ​ – ​ ______  ​   y = cos2 x dx cos2 x



which is a linear differential equation. – Ú_____ ​  2x     ​ dx 1 + x2 ​ =

p  p  x = 1, y = __ ​   ​  then c = __ ​   ​  2 2

(  )

dy 2x    x4 – 1 fi ​ ___  ​ – _____ ​   2   ​y = ______ ​     ​ dx 1 + x 1 + x2

IF = ​e​

(  )

y (x y) sin ​ __ ​ x ​  ​ = c

Hence, the solution is y p  (x y) sin ​ ​ __x ​  ​ = __ ​   ​  2 3. The given differential equation is

dy x4  +  2xy – 1 ​ ___  ​ = ​ ___________     ​  dx 1 + x2

\



\

( 



( 

)









– 1



) ( 

)

cos 2x cos 2x y ◊ ​ _________ ​      ​  ​ = Ú  ​_________ ​      ​  ​ cos 2x dx + c 1 + cos 2x 1 + cos 2x

2 = Ú  ​ 1 – _____ ​  2      ​  ​ dx + c x +1



cos 2x _________ ​      ​ 1 + cos 2x

Hence, the solution is

y x2 – 1 fi ​ _______      ​ = Ú ​ _______      ​ dx + c 2 (x + 1) (x2 + 1)

tan(2x) – Ú  ​ ______  ​   dx cos2 x ​ =

IF = ​e​

= (x – 2 tan x) + c

which is the required solution. 2. The given differential equation is y y y cos ​ __ ​ x ​  ​ (x dy – y dx) + x sin ​ __ ​ x ​  ​ (x dy + y dx) = 0

( 

)

cos 2x 1 y ◊ ​ _________ ​      ​  ​ = __ ​    ​  Ú cos 2x dx + c 1 + cos 2x 2 sin 2x  = _____ ​     ​ 4+c

__

3​÷3 ​    p  when x = __ ​   ​ , y = ____ ​   ​   then c = 0 8 6 Hence, the required curve is

(  )

(  ) y y dy __y y dy __y fi __ ​ x ​ cos ​( __ ​ x ​ )​ ​( ___ ​    ​ – ​ x ​ )​ + sin ​(  ​ __x ​ )​ ​( ___ ​    ​ + ​ x ​ )​ = 0 dx dx

1 y = __ ​   ​    ◊ tan (2x) ◊ cos 2x 2 dv dv ___ ___ 4. The given differential equation is fi v cos v ​ v + x ​    ​ – v  ​ + sin v ​ v + x ​    ​ + v  ​ = 0 dx dx d y + ___ ​    ​  (x y) = x (sin x + log x) y dx __ ​ Let ​ x ​ = v  ​ dy dv dv fi x ​ ___  ​ + 2y = x sin x + x log x fi xv cos v ​ ___  ​ + sin v ​ 2v + x ​ ___  ​  ​ = 0 dx dx dx dy 2y dv fi ​ ___  ​ + ___ ​  x ​ = sin x + log x fi x (v cos v + sin v) ​ ___  ​ = – 2v sin v dx dx

( 

)

( 



(  )



)

( 

dv 2v sin v fi x ​ ___  ​ = – ​ _____________       ​ dx (v cos v + sin v)



(v cos v + sin v) 2dx fi ​ _____________     ​   dv = – ​ ____  ​ x    v sin v



2dx 1 fi ​ cot v + __ ​ v ​  ​ dv = – ​ ____ ​  x   

( 

)

Integrating, we get

log |sin v| + log |sin |v| = log c – 2 log x

c fi v sin v = __ ​  2  ​  x y__ y__ c fi ​ ​ x ​  ​ sin ​ ​ x ​  ​ = __ ​  2  ​  x

(  ) (  )

)

which is a linear differential equation. \

2dx ____ IF = ​e Ú​  ​  x   ​ ​ = x2

Hence, the solution is

y ◊ x2 = Ú (x2 sin x + x2log x) dx + c



2sin x  cos x y = – cos x + _____ ​  x    ​ + 2 ​ _____  ​    x2 x x c + __ ​    ​ log x – __ ​    ​ + __ ​    ​.  3 9 x2



5. The given differential equation is

x (1 – x2) dy + (2 x 2 y – y – 5 x3) dx = 0

Differential Equation 



dy (2x 2  –  1) y _______ 5 x3 fi ​ ___  ​ + __________ ​      ​  = ​      ​ 2 dx x (1 – x ) x (1 – x2)



dy fi ​ ___  ​ – dx

2





dy (2x    –  1) y 5 x2 fi ​ ___  ​ + __________ ​      ​  = ​ _______     ​ 2 dx x(1 – x ) (1 – x2)



which is a linear differential equation \

IF =

(2 x2 – 1)  Ú ​  ________    ​ dx 2 ​e​ x(1 – x ) ​ =

Hence, the solution is



1 _______ ​  _____      ​ x​÷1  – x2   ​

5x 1 _____ y ◊ ​ _______      ​ = Ú  ​ ________      ​ dx + c 2 3/2 2 (1 – x ) x​÷1  – x    ​

y 5 _____ fi ​ _______      ​ = ______ ​  _____      ​ + c 2 x​÷1  – x    ​ ​÷1  – x2   ​



6. The equation of the tangent at P (x, y) is dy Y – y = ___ ​    ​ (X – x) dx

( 

It cuts the line y = x, so the point of intersection



)

dy dy y  – x ​ ___  ​ y  –  x ​ ___ ​  dx dx = ​ ​ _______ ​   , ​ ________ ​     ​ dy dy ___ ___ 1 – ​    ​ 1 – ​    ​ dx dx







dy dy y – x ​ ___  ​ = 1 – ___ ​    ​ dx dx





dy (1 – x)  ​ ___  ​ = (1 – y) dx



dy dx fi ​ ______     ​ = ______ ​      ​ (y – 1) (x – 1)

Integrating, we get

log |x – 1| = log |y – 1| + log c





x–1 log ​ ​ _____   ​  ​ = log c y–1



x–1 fi ​ ​ _____   ​  ​ = c y–1

|  |

(  )

which is the required equation of the curve. 7. The given differential equation is



_______

÷  (  )

y y2 __ ​ x ​ = ​ 1 + ​​ __ ​ x ​  ​​  ​ ​

_____ y dv v + x ​ ___  ​ – v = ​÷1  + v2   ​, ​ Let  v = __ ​ x ​  ​ dx _____ dv fi x ​ ___  ​ = ÷ ​ 1  + v2   ​ dx dv dx ______ fi ​ _______     ​ = ___ ​  x ​  2   +  v    ​ ÷​ 1 



| 

_____

( 

_____

|



fi ​( v + ÷ ​ 1  + v2   ​ )​ = c x



fi ​ y + ÷ ​ y  2 + x2   ​  ​ = c x2

( 

______

)

which is the required solution. 8. The given differential equation is y y ​ x e y/x – y sin ​ __ ​ x ​  ​  ​ dx + x sin ​ __ ​ x ​  ​ dx = 0

( 



(  ) ) (  ) y y __ ​ x ​ sin ​( __ ​ x ​ )​  – ​e​ ​ dy fi ​ ___  ​ = ___________ ​   ​  y    dx __ sin ​( ​ x ​ )​ dv v sin – e fi v +  ​ ___  ​ = ​ _______       ​, ​( Let  dx sin v y  ​ __x ​

v





dv v sin – ev  ​ ___  ​ = ​ _______     ​  –v dx sin v





dv v sin – ev – v sin v  ​ ___  ​ = _______________ ​         ​ dx sin v

(  ) )

y v = ​ ​ __x ​  ​  ​

fi e– vsin v dv = – dv Integrating, we get e– vsin v  ​ _______   ​(– sin v – cos v) = – x – c (1 + 1)

e– vsin v  fi ​ _______   ​(sin v + cos v) = x + c (1 + 1)

(  )     ( ()

y __y e​ – ​  ​ x  ​​sin ​  ​ __x ​  ​ y y _________ fi ​   ​ ​   sin ​ __ ​ x ​  ​ + cos ​  ​ __x ​  ​  ​ = x + c 2 which is the required solution. 9. The given differential equation is

(  ) )



(x + 2y) (dx – dy) = dx + dy





(x + 2y – 1) dx = (x + 2y + 1) dy



dy fi ​ ___  ​ = dx

(x + 2y  –  1) ​ ___________     ​ (x + 2y + 1)

...(i)



Let

x + 2y = v





dy dv 1 + 2 ​ ___  ​ = ___ ​    ​ dx dx

______

dy x ​ ___  ​ = – y = ​÷x  2 + y2   ​ dx

)

log ​ v + ​÷1  + v2   ​  ​ = log c + log |x|

It is given that dy y  –  x ​ ___  ​ dx ​ ________ ​    =1 dy 1 – ___ ​    ​ dx

4.79

4.80  Integral Calculus, 3D Geometry & Vector Booster

( 

( 

)

v+1 1 dv ​ __ ​  ​ ___ ​    ​ – 1  ​ = ​ _____   ​ 2 dx v–1

dv fi ​ ___  ​ = dx

2v –  2 ______ ​   ​  +1 v+1



dv 3v – 1 fi ​ ___  ​ = ​ ______ ​  v+1 dx



v  +  1 fi ​ ______ ​     ​  ​ dv = dx 3v – 1















(x + 2y) + 4 log |3x + 6y – 1| = 3x + c





2 (y – x) + 4 log |3x + 6y – 1| = c

which is the required solution. 10. The given differential equation is

x2 = v dx dv 2x ​ ___  ​ = ___ ​    ​ dy dy

( 



)

dy

1 –   ___ ​   ​  IF = ​e​ Ú y ​ = e– log y = __ ​ y ​

(  )

1 1 __ v ◊  ​ __ y ​ = – Ú ​ 1 + ​ y2  ​  ​ dy + c

(  )



v 1 fi ​ __y ​ = ​ y – __ ​ y ​  ​ + c



x2 1  fi ​ __ y ​  = – ​ y –  ​​y  ​ ​ ​ + c



x2  +  1 fi ​ ______ ​ + y = c y   

( 

)

which is the required solution. 12. The given differential equation is

– 1

(1 + y ) dx = (tan y – x) dy.



tan– 1y dx x fi ​ ___  ​ + _____ ​    2   ​ = ______ ​     ​ dy 1 + y 1 + y2 dy

Ú _____ ​   2   ​ IF = ​e​ 1 + y ​= etan– 1y

x dy – y dx = x y3 (1 + log x) dx



x dy  –  y dx fi ​ _________  ​    = x y (1 + log x) dx y2





which is a linear differential equation.

(  )

x __x 2 2   – ​ __  y ​   d ​ ​ y ​  ​ = x  dx + x log x dx

Integrating, we get

Hence, the solution is tan– 1y etan– 1y    y = Ú  ​ ___________     ​  dy + c 1 + y2

tan– 1

x ◊ e

)

Hence, the solution is

v + 4 log |3v – 1| = 3x + c



( 

x2 1 __ ​ y ​  = – ​ y + __ ​ y ​  ​ Let

\



\

dx 2x ​ ___  ​ – dy

dv v 1 fi ​ ___  ​ – __ ​   ​ = – ​ y + __ ​ y ​  ​ dy y which is a linear differential equation.



2







(  ) 3v –  1 + 4 fi ​( ​ _________     ​   ​ dv = 3 dx 3v – 1 ) 3 fi ​( 1 + ______ ​       ​  ​ dv = 3 dx 3v – 1 )



)

dy dv fi ​ ___  ​ = 1/2 ​ ___ ​    ​ – 1  ​ dx dx







= Ú  t e  dt + c, t = tan y





= (t – 1) e t + c





= (tan– 1 y – 1) etan– 1y + c

t

– 1



(  ) __​ x3 ​  + __​ x3 ​  log x – __​ x9 ​  + C 2x x 1 x – ​ __ ​ ​​ ( __ ​   ​  ​​ ​ = ___ ​   ​  + __ ​   ​  log x + C 2 y) 3 3 1 x2 – ​ __ ​ ​​  __ ​   ​  ​​ ​ = 2 y 2

3

3

3

3

3

which is the required solution. 13. The given differential equation is

sec2x ◊ tan y dx + sec2y ◊ tan x dy = 0

which is the required solution. 11. The given differential equation is

sec2 y sec2 x fi ​ _____ ​   dx + _____ ​   ​   dy = 0 tan x tan y

dy 2x y ​ ___  ​ = _________ ​  2     ​ dx x – 2y – 1

Integrating, we get log tan x + log tan y = log c



2 2 dx x – y – 1 fi ​ ___  ​ = ​ __________       ​ 2x y dy





dx 2x y ​ ___  ​ = x2 – y2 – 1 dy





dx 2x y ​ ___  ​ – x2 = – (y2 + 1) dy

fi (tan x tan y) = c which is the required solution. 14. The given differential equation is dy x+y–1 ________  ​ ___  ​ = ​  _________    ​ dx ​÷x  + y + 1 ​  Let

x + y + 1 = v2

...(i)

Differential Equation 

(  )

c dy dv log |v + ev| = log ​ __ ​ y ​  ​ 1 + ​ ___  ​ = 2v ​ ___ ​  fi dx dx c fi (v + ev) = __ ​ y ​ dy dv ___ ___ fi ​    ​ = 2v ​    ​ – 1 dx dx x c fi ​ __ ​ y ​ + ex/y  ​ = __ ​ y ​ fi



( 

2

dv v –2 fi 2v ​ ___  ​ –1 = ​ _____ ​  v    dx

dv v2  –  2 + v fi ___ ​    ​ = ​ _________  ​    dx 2v2



2v2 fi _________ ​  2     ​ dv = dx v + v –  2

– 1

(  ( 

)

which is a linear differential equation. dy

)

5 dx 1 (2v + 1) 1 fi ​ 1 – __ ​    ​ ​ ________      ​ + __ ​    ​ ◊  ​ ___________      ​  ​ dv = ___ ​   ​  2 v2 + v – 2 2 (v + 2) (v – 1) 2

|  |

v–1 15 x 1 fi v – __ ​   ​  log|v2 + v – 2| + ___ ​   ​  log ​ ​ _____   ​  ​ = __ ​    ​ + C 2 2 v+2 2 ________

_________

1 fi ​÷x  + y + 1 ​   – __ ​   ​  log |(x + y + 1) + ÷ ​ (x   + y + 1) ​  – 2| 2

|

_________

​÷(x   + y +  1) ​ – 1 15 x _________    ​  ​ = __ fi + ___ ​   ​   log ​ ​ ______________ ​    ​ + C 2 2 ​÷(x   + y +  1) ​ + 2 which is the required solution. 15. The given differential equation is

( 

)

x (1 + ex/y) dx + ​ 1 – __ ​ y ​  ​  ex/y dy = 0

( 

)

x ​ __ ​ y ​ –  1  ​ ex/y dx fi ​ ___  ​ = __________ ​     ​  dy (1 + ex/y) fi fi

dv (v – 1) e x v + y ​ ___  ​ = ​ ________      ​, v = __ ​ y ​ dy 1 + ev v

dv (v – 1) e y ​ ___  ​ = ​ ________      ​– v dy 1 + ev v

v

ve –  e – v – ve = ​ _______________        ​ 1 + ev ev + v = – ​ _____v   ​ 1+e dy 1 + ev fi ​ _____v   ​ dy = – ​ ___ y ​  v+e

Integrating, we get

\

log |v + ev| = log c – log y

 2    ​ Ú ​ _______

– 1

IF = ​e​ (1 + y ) ​ = e​ tan ​ y​

Hence, the solution is

(​​  ​etan ​ y​ )​​ ​ ​ = Ú ​ _______  ​ dy     +c 1 + y2 2

– 1



tan– 1y

x ◊ ​e​

(​​  ​etan ​ y​ )​​ ​ fi x ◊ ​e​ ​ = _______ ​   ​   + C 2 which is the required solution. 18. The given differential equation is – 1

tan– 1y

2



y dx – x (1 + xy) dy = 0



y dx – x dy = x2y dy

y dx  –  x dy fi ​ _________  ​      = y dy x2 y fi – d  ​ __ ​ x ​  ​ = y dy fi

v

v

– 1 dx (1 + y2) ​ ___  ​ + (x – e​ tan ​ y​) = 0 dy

​etan ​ ​y dx x  fi ​ ___  ​ + _______ ​   2    ​ = _______ ​       ​ dy (1 + y ) (1 + y2)

dx 1 (2v + 1)  –  5 fi ​ 1 – __ ​    ​ ​ ___________       ​  ​ dv = ___ ​   ​  2 v2 + v – 2 2



)

which is the required solution. 16. Do yourself. 17. The given differential equation is – 1 dy (1 + y2) + (x – ​etan ​ ​y) ​ ___  ​ = 0 dx

dv v2 – 2 v2  – 2 + v fi 2v ​ ___  ​ = ​ ______     ​ + 1 = ​ _________   ​  v v  dx

| 

4.81

(  ) x d  ​( __ ​ y ​ )​ + y dy = 0

Integrating, we get y y2 ​ __ ​ x ​  ​ + __ ​   ​  = c 2

(  )

which is the required solution. 19. It is given that dy x+y y ​ ___  ​ = –  ​ ​ _____ ​  ​ = – 1 – __ ​ x ​ x    dx

( 

fi fi

)

dv v + x ​ ___  ​ = – 1 – v, dx dv x ​ ___  ​ = – 1 – 2v dx

dv dx fi ​ ______     ​ = – ​ ___ x ​  2v + 1

(Let v = y/x)

4.82  Integral Calculus, 3D Geometry & Vector Booster

(  ) (  )

dy 2 fi ​​ ___ ​    ​  ​​ ​ = dx

Integrating, we get

log |2v + 1| + log (x2) = log c



(2v + 1) x2 = c

( 

x2 __ ​  2 ​  y

dy x fi ​ ___ ​    ​  ​ = ± ​ __y ​ dx

)

2y 2 fi ​ ​ ___ x ​ + 1  ​  x = c fi x2 + 2xy = c which is passing thorugh the point (2, 1), so, c = 8 Hence, the equation of the curve is



y dy



x dx ± y dy = 0

x dx = 0

Integrating, we get

20. The equation of tangent at (x, y) is dy Y – y = ___ ​    ​ (X – x) dx

x2 ± y2 = a2 which is the required solution. 22. The given differential equation is dy 2 dy ​​ ___ ​    ​  ​​ ​ – (ex + e– x) ​ ___  ​ + 1 = 0 dx dx

Putting



p2 – (ex + e– x) p + 1 = 0



(ex + e– x)  ± ​÷(e   x + e– x)2   –  4 ​ p = ​ ________________________      ​    2



x2 + 2xy = 8

(  )

X = 0, we get

_____________

dy Y = y – x ​ ___  ​ dx It is given that,

_________

dy 2 ​​ y – x ​ ___  ​  ​​ ​ = xy dx



(ex  +  e– x) ± ​÷(e   x – e– x)2   ​ = ​ ____________________      ​    2

dy ___ fi ​ y – x ​ ___  ​  ​ = ÷ ​ x y    ​  dx



(ex + e– x) ±  (ex – e– x) = ___________________ ​       ​    2



= ex, e– x

(  ( 



) )

dy ___ x ​ ___  ​ = y – ​÷x y    ​  dx

dy fi ​ ___  ​ = dx

y __ ​ x ​ –

dy dy fi ​ ___  ​ = ex, ___ ​    ​ = e– x dx dx Integrating, we get

__

÷ 

y ​ __ ​ x ​ ​ 

( 

)

__ dv __y fi v + x ​ ___  ​ = v – ÷ ​ v     ​, ​ Let v = ​   ​  ​ x dx __ dv fi x ​ ___  ​ = – ​÷v     ​ dx dv__ dx fi ​ ___   ​ = – ​ ___ x ​  ​÷v     ​

Integrating, we get __



2 ​÷v    ​  = c – log |x|



y 2 ​ __ ​ x ​ ​  = c – log |x|

__

÷ 

which is the required equation of the curve. 21. It is given that

÷  (  ) (  (  ) ) (  (  ) ) ________



______ dy 2 y ​ 1 + ​​ ___ ​    ​  ​​ ​ ​  = ​÷x  2 + y2   ​ dx



dy 2 y2  ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ = (x2 + y2) dx

dy 2 (x2 + y2) fi ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ = ​ _______  ​    dx y2

x2 = __ ​  2 ​  + 1 y



y = ex + c1, y + ex = c2

fi y – ex – c1 = 0, y + ex – c2 = 0 Hence, the solution is

(y – ex – c1) (y + ex – c2) = 0

23. The given differential equation is

(  )



dy 2 dy ​​ ___ ​    ​  ​​ ​ + 2x ​ ___  ​ = 3x2 dx dx



p2 + 2px – 3x2 = 0



(p + 3x) (p – x) = 0



(p + 3x) = 0, (p – x) = 0

( 

) ( 

)

dy dy fi ​ ___ ​    ​ + 3x  ​ = 0, ​ ___ ​    ​ – x  ​ = 0 dx dx fi dy = – 3x dx, dy = x dx Integrating, we get 3x2 x2 y + ___ ​   ​  – c1 = 0, y – __ ​   ​  – c2 = 0 2 2 Hence, the solution is

( 

) ( 

)

3x2 x2 ​ y + ___ ​   ​  – c1  ​  ​ y – __ ​   ​  – c2  ​ = 0 2 2

Differential Equation 

24. The given differential equation is

{ (  ) } 2



dy dy xy ​ ​​ ___ ​    ​  ​​ ​ – 1  ​ = (x2 – y2) ​ ___  ​ dx dx



xy (p2 – 1) = (x2 – y2) p



xy p2 – xy = x2 p – y2 p



xy p2 – x2 p – xy + y2 p = 0



xp (yp – p) + y (yp – x) = 0



(xp + y) (yp – x) = 0



(xp + y) = 0, (yp – x) = 0

dy dy x ​ ___  ​ + y = 0, y ​ ___  ​ = x dx dx dy ___ dx fi ​ ___ y ​ + ​  x ​ = 0, y dy – x dx = 0 fi

which is passing through (– 2, 1), so, c = 1 Hence, the equation of the curve is (y + 3) = (x + 4)2. 27. It is given that dy ​ ___  ​ = x + x y dx dy ​ ___  ​ – x y = x dx which is a linear differential equation. fi

\

x2 – ​ __ ​ 

IF = e​ – Ú x dx ​ ​ = ​e​ 2 ​

Hence, the solution is x2 – ​ __ ​ 

x2 – ​ __ ​ 



y ◊ ​e​ 2 ​ = Ú x ◊ ​e​ 2 ​ dx + c

dy ___ dx fi ​ ___ y ​ + ​  x ​ = 0, x dx – y dy = 0



y ◊ ​e​ 2 ​ = – ​e​ 2 ​ + c

Integrating, we get

which is passing through (0, 1), so c = 2 Hence, the equation of the curve is



log |y| + log |x| = log c, x2 – y2 = a2

fi xy = c, x2 – y2 = a2 Hence, the solution is

(xy – c) (x2 – y2 – a2) = 0.

25. It is given that dy y ​ ___  ​ = x dx fi

x2 – y2 = c which is passing through (0, – 2), so c = – 4 Hence, the equation of the curve is

x2 – y2 = – 4

dy 26. Clearly, the slope of the tangent is ___ ​    ​ dx Also, the slope of the line segment joining the points (x, y) and (– 4, – 3) is y+3 ​ _____ ​  . x+4 It is given that dy y+3 ​ ___  ​ = 2 ​ ​ _____   ​  ​ x+4 dx

(  )

x2 – ​ __ ​ 

x2 – ​ __ ​ 

x2 – ​ __ ​ 



y ◊ ​e​ 2 ​ = – ​e​ 2 ​ + 2



y = 2​e​2 ​ – 1

x2 ​ __ ​ 

28. The given differential equation is

x dx – y dy = 0

Integrating, we get

x2 – ​ __ ​ 

(  )

d2y y3 ​ ___ ​  2 ​ – y  ​ = 1 dx

d2y 1 fi ​ ___2 ​ = y + __ ​  3  ​  dx y

(  )

d dy 1 fi ​ ___  ​  ​ ___ ​    ​  ​ = y + __ ​  3  ​  dx dx y Integrating, we get

(  )

y2 __ ​   ​  – 2

dy ​ ___ ​    ​  ​ = dx

As

y = 1, dy/dx = 0, so c = 0

(  ) ( 

dx fi ​ ___ ​    ​  ​ = dy

y2 dy fi ​ _____      ​ = y4 – 1

Integrating, we get log |y + 3| = 2 log |x + 4| + log c



)

1 1 __ ​    ​  ​ y2 – __ ​  2  ​   ​ + c 2 y

)

dx ___ ​   ​  2

2y2 dy fi ​ _____    ​ = d x y4 – 1

(y + 3) = (x + 4)2

1 ___ ​   2 ​ = 2y

1 1 __ ​   ​ ​  y2 – __ ​  2  ​   ​ 2 y

dy 2 dx fi ​ ______     ​ = ______ ​      ​ (y + 3) (x + 4)



( 



2y2 dy _____________ ​  2       ​ = d x (y – 1) (y2 + 1)

4.83

4.84  Integral Calculus, 3D Geometry & Vector Booster

( 

)

1 1 fi ​ _____ ​  2      ​ + _____ ​       ​  ​  dy = d x y – 1 y2 + 1

p x = 0, y = 1, c1 = __ ​   ​  4 Hence, the curve is y–1 p 1 ​ __ ​  log ​ ​ _____   ​  ​ + tan– 1y = x + __ ​   ​  2 y+1 4

Integrating, we get 1 ​ __ ​  log |2v + 1| + log|v – 1| = log c – 3 log x 2 y y c 1 fi ​ __ ​  log ​ 2 ​ __ ​ x ​  ​ + 1  ​ + log ​ ​ __ ​ x ​  ​ – 1 ​ = log ​ __ ​  3  ​   ​ 2 x ________ y__ y__ c fi ​ ​ ​ x ​  ​ – 1  ​  ​ ​ 2 ​ ​ x ​  ​ + 1 ​   ​ = ​ __ ​  3  ​   ​ x which is the required equation of the curve. 30. The equation of the normal at P (x, y) is dx Y – y = – ​ ___  ​ (X – x) dy

29. The equation of the normal at P (x, y) is

Putting

Y = 0, we get



dx – y = – ​ ___  ​ (X – x) dy

Integrating, we get

|  (  ) | | (  ) |

|  |

y–1 1 ​ __ ​  log ​ ​ _____   ​  ​ + tan– 1y = x + c1 2 y+1

( (  ) ) ( ÷  (  ) ) (  )

When

|  |

Putting

dx Y– y = – ​ ___ xy  ​ (X – x) Y = 0, we get



dx – y = – ​ ___ xy  ​ (X – x)



dy X = y ​ ___  ​ + x dx



dy X = y ​ ___  ​ + x dx

Thus,

dy Q = ​ y ​ ___  ​ + x, 0  ​ dx

Thus,

dy B = ​ y ​ ___  ​ + x, 0  ​ dx



( 

)

Also, it is given that,

)



PQ = k

(  (  (  ( 

) )

dy 2 fi ​​ y ​ ___  ​  ​​ ​ + y2 = k2 dx

Here, A = (x, 0) It is given that

dy x+y x + y ​ ___  ​ – x = ​ _____  ​    2 dx



dy x + y y ​ ___  ​ = ​ _____  ​    2 dx

dy 2 fi ​​ y ​ ___  ​  ​​ ​ = k2 – y2 dx

) )

dy 2 k2 – y2 fi ​​ ___ ​    ​  ​​ ​ = ______ ​  2 ​    dx y

÷ 

______

dy k2 – y2 fi ​ ___ ​    ​  ​ = ± ​ ​ ______  ​ ​       dx y2

dy x + y fi ​ ___  ​ = _____ ​      ​  2y dx

( 

)



y dv 1 + v v + x ​ ___  ​ = ​ _____ ​,  ​ Let v = __ ​ x ​  ​ fi v    dx



dv 1 + v – 2v2 x ​ ___  ​ = ​ __________      ​  2v dx

______

​÷k  2 – y2   ​ = c 31. It is given that dy ​ ___  ​ = dx dy fi ​ ___ y ​ = Integrating, we

v dv dx fi ​ _____________       ​ = – ​ ___ x ​  (2v + 1) (v – 1) (v – 1 + 1) dv dx fi ​  _____________        ​ = – ​ ___ x ​  (2v + 1) (v – 1)

( 

)

dv 2dv dx 1 dv fi ​ _______     ​ + __ ​   ​ ​  _____ ​      ​ – ______ ​      ​ ​ = – ​ ___ x ​  (2v + 1) 3 v – 1 2v + 1 dv dv 3 dx _______ ​      ​ + _____ ​      ​ = – ​ ____ ​  x    (2v + 1) v – 1

y dy ______ ​ _______     ​ = ± dx ​÷k  2 – y2   ​

Integrating, we get

v dv dx fi ​ __________       ​ = ___ ​  x ​  1 + v – 2v2



( 

x

2y ___ ​  x ​  2dx ____ ​  x    ​  get



log |y| = log |x2| + log c



y = c x2

which is passing through (1, 1), so, c = 1 Hence, the equation of the curve is y = x2

(  )

Differential Equation 

32. The equation of the normal at P (x, y) is Here,

dx Y – y = – ​ ___  ​ (X – x) dy dy dx A = ​ x + y ​ ___  ​, 0  ​, B = ​ 0, y + x ​ ___  ​  ​ dx dy

( 

) ( 

)

P = (x, y)

It is given that, PB ​ ___  ​ = PA

( 

) ( 

)



dy dx = ​ x + y ​ ___  ​  ​ ◊ ​ y + x ​ ___  ​  ​ dx dy



dy dy 1 + ___ ​    ​ = x + y ​___     ​ dx dx



dy (y – 1) ​___     ​ + (x – 1) = 0 dx

Integrating, we get 1 __ ​   ​  2

(x – 1)2 + (y – 1)2 = c



÷  (  )

___________

dx 2 ​ x2  + ​​ x ​ ___      ​  ​​ ​ ​ dy ____________ fi ​  __________       ​ = dv 2 ​ ​​ y ​ ___  ​  ​​ ​ +   y2 ​ dx

÷(   )

which is passing through (5, 4), so c = 25 Hence, the equation of the curve is

1 __ ​   ​  2

(x – 1)2 + (y – 1)2 = 25.



(  ) ( (  ) )



dv 2 dx 2 1 x2 + ​​ x ​ ___  ​  ​​ ​ = __ ​   ​ ​  ​​ y ​ ___  ​  ​​ ​ + y2  ​ 4 dy dx





x2 x2 + __ ​  2  ​ = p



1 __ ​   ​  (p2y2 + y2) 4

y2 x2 fi ​ __2  ​ (p2 + 1) = __ ​   ​  (p2 + 1) 4 p 2 x2 y fi ​ __2  ​ = __ ​   ​  4 p

(Tougher Problems for Jee-Advanced) 1. We have



x

y = C1 cos (2x + C2) – C8​3C​ 63 ​ + C6 sin (x – C7)

fi  y = C1 cos (2x + C2) – C93x + C6 sin (x – C7) Since the above equation has 5 arbitrary constants, so the order of the differential equation is 5. 2. The Equation of the family of parabolas is (y – k)2 = 4a (x – h),



y2p2 = 4x2



y p = ± 2x

where h and k are arbitrary constants



y dv = ± 2x dx

Differentiating w.r.t. x, we get dy 2 (y – k) ​ ___  ​ = 4a dx

Integrating, we get y2 fi ​ __ ​  = c1 ± x2 2 fi



y2 = 2 c1 ± 2x2

which is passing through (0, 4) so c1 = 8 Hence, the eqution of the curve is 2

y = 16 ± 2x



y2 = 16 + 2x2



___

1 1 ​ ____    ​ + ___ ​     ​ = 1 OM ON

dy ___ ​    ​ = 0 dx

(  )

d 2y dy 2 2a ​ ___2 ​ + ​​ ___ ​    ​  ​​ ​ = 0 dx dx which is the required differential equation. 3. Given condition is

dy ​ ___  ​ = dx

2y ___ ​  x ​ 

dy dx ___ fi ​ ___ y ​ = 2 ◊ ​  x ​  Integrating, we get

OM + ON = OM ◊ ON dy dx fi ​ x + y ​ ___  ​  ​ + ​ y + x ​ ___  ​  ​ dx dy

) ( 

d 2y (y – k) ​ ___2 ​ + dx

From Eqs (ii) and (iii), we get

Clearly, it is passing through (​÷10 ​   ,  – 6). 33. The equation of the normal at P (x, y) is dy (Y – y) = ___ ​    ​ (X – x) dx dy dx Thus, OM = x + y ​ ___  ​ and ON = y + x ​ ___ xy  ​ dx Also, it is given that,

( 

dy (y – k) ​ ___  ​ = 2a dx

)

...(i)

...(ii)

Again differentiaing w.r.t. x, we get

2





4.85



log |y| = 2 log |x| + log |c|



y = c x2

...(iii)

4.86  Integral Calculus, 3D Geometry & Vector Booster which is passing through the curve (1, 1), so c = 1 Hence, the equation of the curve is y = x2 4. The equation of the tangent is dy Y – y = ___ ​    ​ (X – x) ...(i) dx dx Equation (i) meets the x-axis at ​ x – y ​ ___  ​, 0  ​ dy dy and the y-axis at ​ 0, y – x ​ ___  ​  ​ respectively. dx

( 

)

( 

)

dx x – y ​ ___  ​ = 2x dy dy y fi ​ ___  ​ = – ​ __x ​ dx dy ___ d x fi ​ ___ y ​ + ​  x   ​ = 0



x y = c

2

)

( 



x2  +  y2 Let ​ _______ ​ = v x   











dv v + x ​ ___  ​ = ev + v dx



dv x ​ ___  ​ = ev dx dx e– v dv = ___ ​  x ​ 

– e



– e– v = log |c x|

fi fi

)

x2 + y2 = v x





dz ___ ​    ​ dx dx dx y ___ ​    ​ = ___ ​    ​ dy dz

1 __ ​ x ​ = z



1 Let ​ __ x ​ = v





dv – ​ ___  ​ + v = z dz

1 dx – ​ __2  ​ ​  ___  ​ = x dz

which is a linear differential equation. ...(i)

\

IF = e​ – Ú dz ​ ​ = e– z

Hence, the solution is

v ◊ e– z = Ú – z e– z dz + c



v ◊ e– z = – (z – 1) e– z + c



1 __ ​ x ​ = (ln y + 1) + c y

Hence, the required integral curve is 1 ​ __ x ​ = (ln y + 1) + e y fi



( 

dy 1 ___ fi ​ __ y ​ ​ dx  ​ =

(  )

– e– v

c x =



1 which is passing through ​ e, ​ __ e ​  ​, so, c = e

= log |x| + log c

c x = ​e​

ln y = z

dy v = (z + 1) + c ez dv fi 2x + 2y ​ ___  ​ = v + x ​ ___  ​ dx dx 1 ln y fi ​ __ x ​ = (ln y + 1) + c e

Integrating, we get

Let

dv fi ​ ___  ​ – v = – z dz

x______ +y dy x2 + y2 ​  ​ 2y ​ ___  ​ = e​ ​​ ​  x    ​ + ​ ​ ______   ​ – 2x  ​ x    dx

– v

...(i)





which is passing through (2, 4), so c = 8 Hence, the equation of the curve is xy = 8. 5. The given differential equation is



dx 2 y ​ ___ xy  ​ + x = x  ln y

which is a linear differential equation.

log y + log x = log c





1 dx fi ​ __2  ​ ​  ___  ​ + x dz



2

dy x (1 – x ln y) ​ ___  ​ + y = 0 dx

dx fi ​ ___  ​ + x = x2z dz

Given condition is

( 



)

2 x______ + y2 ​  ​ ​e– e–  ​ ​ ​  x    ​

which is the required solution. 6. The given differential equation is

((ln y + 1) + e y) x = 1

7. The given differential equation can be written as

( 

)

2 (x dx – y dv y dx – xdy ​ ___________     ​   = –  ​ ​ ________  ​    ​ 2 2 (x – y ) (x2 + y2)

(  (  ) )

d (x2 – y2) y fi ​ ________    ​ = – d ​ tan– 1 ​ __ ​ x ​  ​  ​ 2 (x2 – y )

dv ___ ​    ​ dz

Differential Equation 

dt tan x ​ ___ ​ = (2t 2 + t + 2) dx dt dx fi ​ ___________       ​ = ___ ​  x ​  2 (2t +  t  + 2)

Integrating, we get



(  (  ) )

y log |(x2 – y2)| + ​ tan– 1 ​ __ ​ x ​  ​  ​ = c

which is the required solution. 8. The given differential equation is d y + ___ ​    ​  (xy) = x (sin x + log x) dx

dt dx 1 fi ​ __ ​ ​  ______________       ​ = ___ ​  x ​  2 2 15 1 ​ ​​ t + __ ​    ​  ​​ ​ + ___ ​   ​   ​ 4 16 Integrating, we get 1 t  + ​ __ ​  2 4 ___ ​ ____    ​   tan– 1 ​ _____ ​  ___ ​   ​ = log |sin x| + C ​÷15 ​     15 ​ ___ ​   ​ ​   16

{ (  )



dy y + y + x ​ ___  ​ = x (sin x + log x) dx



dy x ​ ___  ​ + 2y = x (sin x + log x) dx

( 

which is the required solution. 11. The given differential equation is y y y cos ​ __ ​ x ​  ​ (xdy – ydx) + x sin ​ __ ​ x ​  ​ (xdy + ydx) = 0

dx ___



y ◊ x2 = Ú x2 (sin x + log x) dx + c



y ◊ x2 = – x2 cos x + 2x sin x + 2 cos x

(  )

(  ) y y dy __y y dy __y fi __ ​ x ​ cos ​( __ ​ x ​ )​ ​( ___ ​    ​ – ​ x ​ )​ + sin ​( __ ​ x ​ )​ ​( ___ ​    ​ + ​ x ​ )​ = 0 dx dx y ​( Let ​ __x ​ = u )​

x3 x3 + __ ​   ​  log x – __ ​   ​  + c 3 9

( 

2

(xdy + ydx) sin (xy) + (x ydx + xy dx) cos (xy) = 0 fi d (xy) sin (xy) + xy (xdy + ydx) cos (xy) = 0 fi d (xy) sin (xy) + xy d (xy) cos (xy) = 0 fi sin (xy) d (xy) + xy cos (xy) d (xy) = 0

)

Integrating, we get

On Integrating, we get





– cos (xy) + (xy) sin (xy) + cos (xy) = c



(xy) sin (xy) = c

which is the required solution. 10. The given differential equation is 2

dy 2y  cos x  +  y sin 2x + 2 cos x ◊ sin x ​ ___  ​ = ​ ____________________________          ​ dx sin2x

( 

log |v sin v| = – 2log |x| + log c c fi v sin v = __ ​  2  ​  x y__ y__ c fi ​ ​ x ​  ​ sin ​ ​ x ​  ​ = __ ​  2  ​  x

(  ) (  ) y c y sin ​( __ ​ x ​ )​ = __ ​ x ​



2

)

dy y2 y fi ​ ___  ​ = 2cosx ​ _____ ​  2  ​ + ____ ​     ​ + 1  ​ dx sin x sin x

) (  dv fi (v cos v + sin v) ​( x ​ ___  ​ )​ + 2v sin v = 0 dx 2dx fi ​(____________  ​ v cos v v sin v+  sin v        ​ )​ dv + ____ ​  x    ​ = 0

dv dv fi v cos v ​ v + x ​ ___  ​ – v  ​ + sin v ​ v + x ​ ___  ​ + v  ​ = 0 dx dx

9. The given differential equation is 2

)

4y  +  sin x 2 ___ fi ​ ____    ​   tan– 1 ​ _________ ​  ___    ​  ​ = log |sin x| + C ​÷15 ​     ​÷15 ​     sin x

\ IF = ​e2 Ú ​ ​  x ​ ​ = e2 log x = e log x2 = x2 Hence, the solution is



}

( ÷  )

dy 2y fi ​ ___  ​ + ___ ​  x ​ = (sin x + log x) dx which is a linear differential equation.



y Let ​ ____    ​ = t sin x

p p when x = 1, y = __ ​   ​ , then c = __ ​   ​  2 2 Hence, the required solution is y p y sin ​ __ ​ x ​  ​ = ___ ​    ​  2x 12. The given differential equation is

(  )

÷  ÷ 

______________________________

dy x4y2 – x6 + 2x4y – x6y2 – 2x6y + x4 ___ ______________________________ ​      ​ = ​ ​                 ​ ​ dy dt dx y2 – x2y2 + x3y2 – x5y2 ​ ___  ​ = t cos x + sin x ​ ___  ​ dx dx fi

4.87

dt t cos x + sin x ​ ___  ​ = 2 cos x (t2 + t + 1) dx

______________________________



x4 (y2 – x2 +  2y  – x2y2 – 2x2y + 1) = ​ ​ _____________________________                ​  ​ y2 (1 – x2 + x3 – x5)

4.88  Integral Calculus, 3D Geometry & Vector Booster

÷ 

______________________________



x4 {(y2  + 2y + 1)  – x2 (y2 + 2y + 1)} = ​ ​ ______________________________                ​ ​ y2 (1 –  x2 + x3 – x5)

÷  ÷ 

___________________



(x  + y)2 + 3 (x + y) + 1 = ____________________ ​          ​ (x + y)2 – 3 (x + y) + 2

dv v2 + 3v  +  1 fi ​ ___  ​ – 1 = ​ __________       ​, dx v2 – 3v + 1



+ 1)2  – x2 (y + 1)2} x2 {(y ___________________ = ​ __  ​     ​ ​              ​ ​ y (1 + x2) (1 + x3)



2 2 x2 {(y  +  1)  (1 – x )} = __ ​ y ​  ​ ​ _______________        ​ ​ (1 – x2) (1 + x3)





x2 (y  –  1) = ________ ​  _____  ​  y ​÷1  + x3   ​

v2  –  3v + 1 fi ​ __________     ​ dv   = 2 dx v2 + 1

_______________

)

x2 dx 1 fi ​ 1 – _____ ​       ​  ​ dy = _______ ​  _____    ​ y+1  ​ ÷​ 1  + x3  Integrating, we get _____



2 y – log |y + 1| = __ ​   ​ ​ ÷ 1 + x3   ​ + c 3

which is the required solution. 13. Given

x



log t f (x) = Ú​  ​  ​  ​ ________  2   ​ dt, x ≥ 1 1 1 + t  +  t

Now,



2v2 + 2 = ​ __________      ​ v2 –  3v  +  1

2v 3 _____ fi ​ 1 – __ ​   ​  ​   ​       ​  ​  ​ dv = 2 dx 2 v2 + 1 Integrating, we get 3 v – __ ​   ​    log |v2 + 1| = 2x + C 2 3 fi y – __ ​   ​    log |(x + y)2 + 1| = x + C 2 which is the required solution. 15. Given f (0) = – 1 Put x = 0, y = 1, then f (1) = 1

Now,

f (x + h) + f (x) ◊ f (h) = f (xh + 1)

log t 1 f  ​ __ ​ x ​  ​ = ​Ú ​   ​ ​  ​ ________ ​      ​  ​ dt 1 1  +  t + t2



(f (x + h) – f (x)) + (f (x) ◊ f (h) – f (x))

1 1 Let  t = __ ​ y ​ fi dt = – ​ __2  ​   dy y 1 y log ​ __ ​ y ​  ​ 1 1 __ __________ f  ​ ​ x ​  ​ = ​Ú  ​ ​  ​ ​        ​  ​ ​ – ​ __2  ​   ​ dy 1 1 1 1  + ​ __ ​ + __ y y ​ y2  ​ 

f (x + h) – f (x) ___________ f (x) f (h  – 1) fi ​ _____________        ​ + ​         ​ h h f (xh + 1)  –  f (1) = ______________ ​       ​   ◊ x xh

1/x

(  )

( 

)

(  )(  ) (  )

(  )

(  Ú  ( 

) )

y



dv v2  + 3v + 1 fi ​ ___  ​ = ​ __________       ​ + 1 dx v2 – 3v + 1

(  (  ) )

y dv x2 dx fi ​ _____    ​ = _______ ​  _____     ​ y+1 ÷ ​ 1  + x3   ​

( 

(Let v = x + y)

– log (y) = ​Ú ​  ​ ​ ________ ​  2      ​  ​ (– 1) dy 1 y + y + 1 y





= f (xh + 1) – f (1)

( 

)

( 



f ¢ (x) + f (x) ◊ f ¢ (0) = x f ¢ (1)



dy ___ ​    ​ + p y = q x dx





log  (t) = ​Ú ​  ​  ​ ________ ​ 2    ​   ​ dt 1 t + t +  1

which is a linear differential equation.



= f (x)

Hence, the solution is

( 

)

Hence, the result. 14. The given differential equation is dy ​ ___  ​ = dx

x2 +  y2 + 3x + 3y + 2xy + 1 ​ ________________________          ​ x2 + y2 – 3x – 3y + 2xy + 2

\

)

)

f (xh + 1)  –  f (1) = ​   lim ​ ​ ______________ ​       ​   ​  x h Æ 0 xh



log (y) = ​  ​ ​  ​ _________ ​  2     ​  ​ dy 1 y + y  +  1 x

( 

(f (x + h)  –  f (x) f (h)  –  1 ​ lim ​  ​ ​ _____________          ​  ​ + f (x) ​ ________ ​   ​    ​ h Æ 0 h h)

IF = e Úp dx = ep x



y ◊ epx = q Ú x epxdx + c



y ◊ epx = q Ú x epxdx + c



y ◊ ex = Ú x ex dx + c

4.89

Differential Equation 



y ◊ ex = (x + 1) ex + c



y = (x – 1) + c e– x



(  ) (  )

when x = 1, y = 1, then c = 0 Thus, the equation of the given curve is

Integrating, we get



y = x – 1.



16. Put

x = 1, y = 1, then f (1) = 0.

Now,

f (x) (1 + h)) = x f (1 + h) + (1 + h) f (x)



f (x + xh) – f (x) = xf (1 + h) + hf (x)



f (x + xh) – f (x)



= x (f (1 + h) – f (1)) + hf (x)

( 

)

f (xh + x) – f (x) fi ​ ______________ ​   ​       ​ ◊ x xh

(  ) (  )

y y x x sin ​ __ ​ y ​  ​ d ​ __ ​ y ​  ​ + cos ​ __ ​ x ​  ​ d ​ __ ​ x ​  ​ dy + dx + ___ ​  2 ​ = 0 y

(  )

(  )

y x 1 – cos ​ __ ​ y ​  ​ + sin ​ __ ​ x ​  ​ + x – __ ​ y ​ = c

which is the required differential equation. 18. The given differential equation is dy ​ ___  ​ = dx

(1 + y2) ​ _________      ​ x y (1 + x2)

y dy dx fi ​ _____ 2   ​ = ________ ​       ​ 1+y x (1 + x2)

( 

)

y dy  x 1 fi ​ _______      ​ = ​ __ ​ x ​ – _____ ​    2   ​  ​ dx 2 (1 + y ) 1 + x x ( f (1 + h) – f (1)) hf (x) = ________________ ​       ​  + _____ ​   ​     h h Integrating, we get f (xh + x) – f (x) log |1 + y2| = 2 log |x| – log |1 + x2| + 2 log c fi ​ lim    ​ ​ ______________ ​       ​   ​ x h Æ 0 xh fi  (1 + y2) (1 + y2) = c2x2 f (1 + h) – f (1) = ​   lim ​ ​ _____________ ​       ​   ​ x + f (x) which is the required solution. h Æ 0 h 19. The given differential equation is

( 

)

( 



x f ¢ (x) = x f ¢ (1) + f (x)



x f ¢ (x) = x + f (x)

)

dy x ​ ___  ​ = x + y dx dy y fi ​ ___  ​ = 1 + __ ​ x ​ dx dy 1 ___ fi ​    ​ + ​ – ​__  x ​ ​ y = 1 dx fi



Let

x y = v





y dy __ 1 dv ​ __x ​ + ___ ​    ​ = ​ x ​  ​___     ​ dx dx

dv ___________ 1 ___ 1 fi ​ __ ​  4      ​ x ​ ​ dx  ​ = sin  v + cos2 v

(  )

which is a linear differential equation. \

y dy ________________ 1 ​ __x ​ = ___ ​    ​ = ​  4      ​ dx sin  (xy) + cos2 (xy)

dx ___ 1 IF = e​ –  ​ Ú ​  x ​ ​ = e– log x = __ ​ x ​

dx (sin4 v + cos2 v) dv = ___ ​  x ​  dx 1 1 fi ​ __ ​  (2sin2v)2 dv + __ ​   ​  (2cos2v) dv = ___ ​  x ​  4 2 fi

Hence, the solution is y dx ​ __x ​ = Ú ​ ___ x ​ + c y __ fi ​ x ​ = log |x| + c

dx 1 1 fi ​ __ ​  (1 – cos2v)2 dv + __ ​   ​  (1 + cos2v) dv = ___ ​  x ​  4 2 1 1 fi ​ __ ​  (1 – cos2v) dv + __ ​   ​  (1 + cos4v) dv 4 8

when x = 1, y = 0, then c = 0 Thus, the equation of the given curve is y = x log |x|



17. The given differential equation can be written as

( 

)

(  )

dx xdy x ​ ___ ​  y ​ – ___ ​  2 ​  ​ sin ​ __ ​ y ​  ​ y

( 

dy + ​ ___ ​  x ​ –

)

(  )

ydx y dy ___ ​  2 ​  ​ cos ​ __ ​ x ​  ​ + dx + ___ ​  2 ​ = 0 x y

dx 1 + __ ​   ​  (1 + cos2v) dv = ___ ​  x ​  2

Integrating, we get

( 

)

( 

)

sin4v 1 1 fi ​ __ ​    (v – sin2v) + __ ​   ​ ​  v + _____ ​   ​    ​ 4 8 4 fi

sin 2v 1 + ​ __ ​ ​  v + _____ ​   ​    ​ = log |x| + c 2 2

( 

)

sin (4xy) 1 1 __ ​   ​ (xy – sin (2xy)) + __ ​   ​ ​ xy + ​ _______       ​  ​ 4 8 4

4.90  Integral Calculus, 3D Geometry & Vector Booster

( 

)

which is a linear differential equation.

sin 2(xy) 1 + __ ​   ​ ​  xy + _______ ​   ​    ​ = log |x| + c 2 2

\

which is the required solution. 20. The given differential equation can be written as

(y2 + 1) dy + x2 dy + 2xy dx = 0



(y2 + 1) dy + d (x2y) = 0

Hence, the solution is

y3 __ ​   ​  + y + x2y = c 3 which is the required solution. 21. The given differential equation is

Putting



( 



dy 1 y ​ ___  ​ + x = ___ ​   2 ​  (x2 + y2)2 dx 2x

dy Y = y – x ​ ___  ​ dx It is given that,

(  ( 

dy __ fi ​ y – x ​ ___  ​  ​ = ÷ ​ xy    ​  dx dy __ fi x ​ ___  ​ + ÷ ​ xy     ​ = y dx dy fi ​ ___  ​ + dx

2

d (x +  y ) ___ dx fi ​ _________  ​  = ​  2 ​  2 2 2 (x + y ) x



Integrating, we get 1 1 – ​ _______   2   ​ = c – __ ​ x ​ 2 (x + y )



) ( 

y __ ​ x ​

__

= – ​÷v    ​ 

Integrating, we get

(y + sin x cos2 (xy)) dx + x dy = 0

( 

÷ 

y ​ __ ​ x ​ ​  =

dv__ ___ dx fi ​ ___   ​ + ​  x ​ = 0 ​ v     ​ ÷

which is the required solution. 22. The given differential equation is

dy fi ​ y + x ​ ___  ​  ​ + sin x cos2 (xy) = 0 dx

__

__ dv __v v + x ​ ___  ​ + ​÷v    ​  = v, v = ​   ​ x dx __ dv x ​ ___  ​ = ÷ ​ v     ​ = 0 dx



1 _______ 1 fi ​ __  ​ = c x ​ – ​ (x2 + y2) 



) )

dy 2  ​​ y – x ​ ___  ​  ​​ ​ = xy dx

ydy + xdx ___ dx fi ​ _________  ​    = ​  2  ​  2 2 2 (x y ) 2x 2

X = 0, we get



)

2 2 2 dy 1 x +y y ​ ___  ​ + x = __ ​    ​ ​​ ​ ______   ​  ​​ ​ x   2 dx

y ◊ ​e p (x) x ​ ​ = Ú ​( ​ep (x)x ​ ​ ◊ q (x) )​ dx + c

24. The equation of tangent to the curve at (x, y) is dy Y – y = ___ ​    ​ (X – x) dx

Integrating, we get



IF = ​e Ú​ p (x) dx​ = e​ p (x) x ​ ​

)

__



2 ​÷v    ​  + log |x| = c



y 2 ​ __ ​ x ​ ​  + log |x| = c

__

÷ 

which is the required solution. 25. We have

dy dv ​ Let  xy = v fi y + x ​___     ​ = ___ ​    ​ ​ x x dx dx x ​Ú ​  ​  (1 – t) f (t) dt = ​Ú ​  ​  tf (t) dt, f (1) = 1 dv fi ​ ___  ​ + sin x cos2v = 0 0 0 dx Applying Newton and Leibnitz formula, we get dv x fi ​ ___  ​ = – sin x cos2v dx x (x – 1) f (x) + Ú​  ​  ​  (1 – t) f (t) dt = x f (x) fi sec2v dv = – sin x dx 0 Integrating, we get fi

x



tan (xy) – cos x = c

which is the required solution. 23. The given differential equation is dy ​ ___  ​ + p (x) y = q (x) dx

(x – x – x)  f (x) + Ú​  ​  ​  (1 – t) f (t) dt = 0 2

0

x



(– x2)  f (x) + Ú​  ​  ​  (1 – t) f (t) dt = 0 0

2



(– x ) f ¢ (x) – 2x f (x) + (1 – x) f (x) = 0



(x2)  f ¢ (x) + (1 – 3x) f (x) = 0

Differential Equation 

fi fi fi

dy (x2)  ​ ___  ​ + (1 – 3x) y = 0 dx

(  )

dy 1______ – 3y ​ ___  ​  dx = 0 y ​ + ​ ​  x2 ​   dy 1 3 ___ ​  y ​ + ​ __ ​  2  ​  – __ ​ x ​  ​ dx = 0 x

( 

)

Integrating, we get

j (y/x) dy y ______ fi ​ ___  ​ = __ ​   ​ + ​     ​  dx x j¢ (y/x) Thus, j (v) dv v + x  ___ ​    ​ = v + _____ ​     ​  dx j¢ (v) j (v) dv fi x ​ ___  ​ = _____ ​     ​  dx j¢ (v)



1 log |y| – 3 log |x| – __ ​ x ​ = c

j¢ (v) dx fi ​ _____ ​   dv = ___ ​  x ​  j (v)



y log ​ __ ​  3  ​  ​ – x

Integrating, we get

when

x = 1, y = 1, then c = – 1

|  |

1 __ ​ x ​ = c

Hence, the solution is

|  | |  |



y 1 log ​ __ ​  3  ​  ​ – __ ​ x ​ + 1 = 0 x



y 1–x 1 log ​ __ ​  3  ​  ​ = __ ​ x ​ – 1 = ​ _____ ​  x    x

y 1–x fi ​ __3  ​  = ​ _____ ​  x    x

= e​ (​  y=



f (x) = x3​e ​​( ​ 

)

1_____ –x ​  ​ x    ​

26. The given differential equation is

(  )

dy 2 dy y ​​ ___ ​    ​  ​​ ​ + (x – y) ​ ___  ​ – x = 0 dx dx



dy yp2 + (x – y) p – x = 0, where ___ ​    ​ = p dx yp2 – yp + xp – x = 0



yp (p – 1) + x (p – 1) = 0



(yp – 1) (p – 1) = 0



(yp + x) = 0, (p – 1) = 0



x d x + y d y = 0, dy = dx



Integrating, we get

x2 + y2 = a2, y = x + b

which is passing through (3, 4), so a2 = 25 and b = 1 Hence, the equations of the curves are

x2 + y2 = 25, y = x + 1

27. The given differential equation is

y y¢ = __ ​ x ​ +



log |j (v)| = log |c x|



|j (v) = c x



y j  ​ __ ​ x ​  ​ = c x

(  )

which is the required solution. 28. Clearly, f (0) = 1

( 

j (y/x) ______ ​     ​  j¢(y/x)

)

x+h f  ​ ​ ______     ​  ​ – f (x) ◊ f (h) = 0 1 + xh

[  ( 

(  )

1_____ –x  ​  ​ x3​e​​ ​  x    ​



log |j (v)| = log |x| + log c



)​

Let  y = vx



We have,

1–x ​ ​ _____ ​  ​ x   

4.91

) )

] ( 

h – x2h ​ f  ​ 1  + ​ ______   ​  ​ – f (x) ◊  ​ 1 + xh h – x2h fi ​ ______________________          ​ ​ ​ ______ ​   ​ 2 1 + xh h______ –xh ​ ​     ​  ​ ◊ h 1 + xh f (x) ◊ f (h)  –  f (x) = ______________ ​      ​  h

( 



f ¢ (x) ◊ (1 – x2) = f (x) ◊ f ¢ (0)



f ¢ (x) ◊ (1 – x2) = f (x)

dy fi ​ ___  ​ (1 – x2) = y dx dy _______ dx fi ​ ___    ​ y ​ = ​ (1 –   x2) Integrating, we get fi

|  |

1–x log |y| = log ​ ​ _____   ​  ​ + log c 1+x

(  )

1–x y = c ​ ​ _____   ​  ​ 1+x

when f (0) = 1, then we get, c = 1 1–x Thus, y = ​ ​ _____   ​  ​ 1+x which is the required solution.

(  )

29. Let

x = 1 = y, then f (1) = 0

)

4.92  Integral Calculus, 3D Geometry & Vector Booster Now,

f (x (1 + h))

Integrating, we get = x f (1 + h) + (1 + h) f (x)

f (x + xh) – f (x) ______________ x {f (1  +  h) – 0} _____ hf (x) fi x ◊ ​ ______________      ​  = ​       ​  + ​      ​  xh h h f (x + xh)  –  f (x) fi   ​ lim ​ ​ x ◊ ​ ______________        ​  ​ x Æ 0 xh

( 

) ( 

)



log |x| + log |y| = log |c|



log |xy| log c



x y = c

which is the required equation of the curve. 31. It is given that

x {f (1 + h) – 0} _____ hf (x) = ​   lim ​ ​ ______________ ​       ​   + ​      ​  ​ x Æ 0 h h



fi x f ¢ (x) = x f ¢ (1) + f (x)

÷  (  ) (  (  ) ) (  (  ) ) ( (  ) ) (  ) (  ) (  ) (  ) ________

______ dy 2 y ​ 1 + ​​ ___ ​    ​  ​​  ​ ​ = ÷ ​ x  2 + y2   ​ dx

dy 2 y2 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ = (x2 + y2) dx

fi x f ¢ (x) = x + f (x) ( f ¢ (1) = 1) dy fi x ​ ___  ​ = x + y dx dy y fi ___ ​    ​ = 1 + __ ​ x ​ dx y dv fi v + x ​ ___  ​ = 1 + v, v = __ ​ x ​ dx dv fi x ​ ___  ​ = 1 dx dx fi dv = ​ ___ x ​  Integrating, we get



fi v = log |x| + c

x2 ± y2 = a2 32. It is given that dy 1 ​ ___  ​ = __ ​   ​ dx y

dy 2 x 2 fi ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ = ​ ​​ __ ​ y ​  ​​ ​ + 1  ​ dx dy 2 fi ​​ ___ ​    ​  ​​ ​ = dx

dy x fi ​ ___ ​    ​  ​ = ± ​ __ ​ y ​  ​ dx fi

when x = 1, y = 0, then c = 0 y Thus, __ ​ x ​ = log |x|

fi ydy = dx Integrating, we get

fi y = x log |x| which is the required solution. 30. The equation of tangent to the curve at (x, y) is dy Y – y = ___ ​    ​ (X – x) dx

(  ( 

) )

dx Y = 0, then A = ​ x – y ​ ___  ,​ 0  ​ dy

dy X = 0, then B = ​ 0, y – x ​ ___  ​  ​ dx It is given that, dx dy x  –  y ​ ___ ​  y – x ​ ___ ​  dy dx ​ ________  ​   = x and ________ ​   ​   = y 2 2 dy dx fi x – y ​ ___  ​ = 2x and y – x ​ ___  ​ = 2y dy dx dy dx fi y ​ ___  ​ = – x and x ​ ___  ​ = – y dy dx and

dx fi ​ ___ x ​ +

dy ___ ​  y ​ = 0

xdx ± y dy = 0

Integrating, we get

y fi __ ​   ​ = log |x| + c

Put

x 2 ​​ __ ​ y ​  ​​ ​

y2 ​ __ ​  = x + c 2 which is passing through (2, 2), so, c = 0 Hence, the eqution of the curve is

y2 = 2x

33. The tangent at P (x, y) is dy Y – y = ___ ​    ​ (X – x) dx If p be the length of perpendicular from the origin, then

 | |  | |

dy x ​ ___  ​ – y dx ________ p = ​ ​ __________       ​  ​ dy 2 ___ ​ 1 + ​​ ​    ​  ​​  ​ ​ dx It is given that

÷  (  )

dy x ​ ___  ​ – y dx _________ ​​ __________      ​  ​ = x dy 2 ___ ​ 1 + ​​ ​    ​  ​​ ​  ​   dx

÷  (  )

Differential Equation 

) (  (  ) )

( 



2 dy dy 2 ​​ x ​ ___  ​ – y  ​​ ​ = x2 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ dx dx



dy y – 2xy ​ ___  ​ – x2 = 0 dx 2

Hence, the result. dy y2 – x2 Also, ​ ___  ​ = ______ ​      ​  2 xy dx y 2 ​​ __ ​ x ​  ​​ ​ – 1 dy fi ​ ___  ​ = ​ _______   x  ​  dx 2 ​ __ ​ y ​  ​

(  )

fi fi

(  )

2

dv v – 1 v + x ​ ___  ​ = ​ _____     ​,  2v dx dv v – 1 x ​ ___  ​ = ______ ​      ​ – v 2v dx

)





xdx + ydy _________ ​  ______  ​    = dx  ​ ÷​ x  2 +  y2 



2xdx + 2ydy ______ ​ __________     ​  = 2dx  ​ ÷​ x  2 + y2 



d ​ ​÷x  2 + y2   ​  ​ = 2 dx



fi x2 + y2 = c x which is the required equation of the curve. 34. The given curve is

y dy a = __ ​    ​ ​ ___  ​ 2 dx

______ dy x + y ​ ___  ​ = ÷ ​ x  2 +  y2   ​ dx

fi ...(i)

...(ii)





( 

)

dy y dy y2 = 2y ​ ___  ​  ​ x + __ ​    ​ ​ ___  ​  ​ 2 dx dx

(  )

dy dy 2 y2 = 2xy ​ ___  ​ + y2 ​​ ___ ​    ​  ​​ ​ dx dx

Replacing dy/dx by – dx/dy, we get

(  ) (  )



dx dx 2 2 ___ y2 = 2xy ​ – ​ ___ xy  ​  ​ + y  ​​ ​ xy  ​  ​​ ​



dy 2 dy y  ​​ ___ ​    ​  ​​ ​ + 2xy ​ ___ ​    ​  ​ – y2 = 0 dx dx 2

(  )

______

)

(  )

______

)

 | |

dy 2 xy ​ ___  ​ = y2 – x2 dx dy y2 – x2 ​ ___  ​ = ​ ______      ​ 2xy dx dy (y/x)2  –  1 ___ ​    ​ = _________ ​   ​    2 (y/x) dx

( 

)



y dv v2 – 1 v + x ​ ___  ​ = ​ _____       ​ ​ Let ​ __ ​  = v  ​ h 2v dx



dv v2 –  1 x ​ ___  ​ = ______ ​      ​ – v 2v dx



dv v2 + 1 x  ​ ___  ​ = – ​ _____     ​  2v dx

Eliminating a between Eqs (i) and (ii) we get

( 

÷  (  )

(v2 + 1) x = c y 2 fi ​ ​​ __ ​ x ​  ​​ ​ + 1  ​ x = c

dy 2y ​ ___  ​ = 4a dx



______

dy 0  –  y + x ​ ___​   dx ________ ​ ​ ___________       ​  ​ = x 2 dy ​ 1 + ​​ ___ ​    ​  ​​  ​ ​ dx





(yp + x) = ÷ ​ x  2 + y2   ​

which is the required orthogonal trajectory. 35. The equation of the tangent to the curve at (x, y) is dy Y – y = ___ ​    ​ (X – x) dx It is given that

log |v2 + 1| + log |x| = log c

y2 = 4a (x + a)



( 

2v dx fi ​ _____     ​ dv + ___ ​  x ​ = 0 v2 + 1 Integrating, we get



(yp + x)2 = x2 + y2

​ ​÷x  2 + y2   ​  ​ = 2x + c

v2 + 1 = – ​ ______       ​ 2v

( (  )



Integrating, we get

2v dx fi ​ _____     ​ dv = – ​ ___ x ​  2 v +1



dy y2p2 + 2x y p – y2 = 0, p = ___ ​    ​ dx

(Let  y = v x)

2





4.93

2v dx fi ​ _____     ​ dv = – ​ ___ x ​  2 v +1 Integrating, we get log |v2 + 1| = log c – log |x| c fi (v2 + 1) = __ ​ x ​ fi x2 + y2 = c x which is the required solution.

4.94  Integral Calculus, 3D Geometry & Vector Booster

Questions Asked in Past IIT-JEE Examination

3. The given differential equation is

dy ​ ___  ​ = sin (10x + 6y) dx

Let





( 

( 

)

)

1 dv fi ​ __ ​ ​  ___ ​    ​ – 10  ​ = sin v 6 dx dy fi ​ ___  ​ = 6 sin v + 10 dx dv ___________       ​ =  dx Ú  ​ (6 sin v  +  10) Ú

dv 1 fi ​ __ ​  Ú ​ __________       ​ = x + c 2 (3 sin v + 5)

( 

)

2

sec  (v/2) dv 1 fi ​ __ ​  Ú  ​ _______________________         ​ = x + c 2 (5 + 5 tan2 (v/2) + 6 tan (v/2)) dt       ​ = x + c, Ú  ​ ____________ (5  +  5t2 + 6t)



(Let  tan (v/2) = t))

dt 1 fi ​ __ ​  Ú  ___________ ​        ​ = x + c 5 6 2 ​ t + __ ​    ​t + 1  ​ 5

( 

)

dt 1 fi ​ __ ​  Ú  ______________ ​        ​ = x + c 5 3 2 4 2 ​ ​​ t + __ ​    ​  ​​ ​ + ​​ __ ​   ​   ​​ ​  ​ 5 5

( (  ) (  ) ) 5t + 3 1 5 __ fi ​   ​  × __ ​   ​  tan  ​( ​ _____  ​    ​ = x + c 5 4 4 ) 5 tan (5x + 3y) + 3 1 fi ​ __ ​  tan  ​( ​  _______________  ​       )​ = x + c 4 4



3 3 4 fi (5x + 3y) = tan– 1 ​ __ ​   ​  tan ​ 4x + tan– 1 ​ __ ​   ​   ​  ​ – __ ​    ​  ​ 4 5 5

( 

( 

)

(  ) )

(  ( 

(  ) ) )

(  )

du equations ___ ​    ​ = p (x) u = f (x) and dx dv ___ ​    ​ + p (x) v = g (x), where p (x), f (x) and g (x) dx are continuous functions. If u (x1) > v(x1) for some x1 and f (x) > g (x) for all x > x1. Prove that any point (x, y) where x > x1 does not satisfy the equation y = u (x) and y = v (x). [IIT-1997]. 7. The equation of the tangent at any point P (x, y) is dy Y – y = ​ ___  ​ (X – x) dx dy It meets the axes at A ​ x – y ​ ___  ​, 0  ​ and dx

( 

( 

)

) (  ( 

) ( 

)

( 

dy B ​ 0, y – x ​ ___  ​  ​ respectively. dx

It is given that

(  )

3 1 which is passing through origin so c = __ ​   ​  tan– 1 ​ __ ​   ​   ​. 4 4 Thus, the equation of the curve is 5 tan (5x + 3y) + 3 3 1 1 ​ __ ​  tan– 1 ​ ​  _______________  ​       ​ = x + __ ​    ​ tan– 1 ​ __ ​   ​   ​ 4 4 4 4

6. Let u (x) and v (x) satisfy the differential

))

dy dx 1 1 \  Mid-point AB is ​ __ ​    ​ ​ x – y ​ ___  ​  ​, __ ​   ​ ​  y – x ​ ___  ​  ​  ​. 2 dy 2 dx

– 1

)

4. A curve y = f (x) passes through the point P (1, 1). The normal to the curve at P is a (y – 1) + (x – 1). If the slope of the tangent at any point on the curve is propor tional to the ordinate of the point, determine the equation of the curve. Also, otain the area bounded by the y-axis, the curve and the normal to the curve at P. [IIT-1996] 5. A spherical rain drop evaporates at a rate proportional to its surface area at any instant t. The differential equation giving the rate of change of the radius of the rain drop is....... [IIT-1997]



– 1

( 

5 tan (5x + 3y) + 3 3 fi ​ ​  _______________  ​       ​ = tan ​ 4x + tan– 1 ​ __ ​   ​   ​  ​ 4 4



dv 1 fi ​ __ ​  Ú ​ _________________        ​ = x + c 2 _______________ 3 ◊ 2tan (v/2) ​ ​         ​  ​ 1 + tan2 (v/2)  +  5





dy dv 10 + 6 ​ ___  ​ = ___ ​    ​ dx dx dy 1 ___ dv fi ​ ___  ​ = __ ​    ​ ​ ​    ​ – 10  ​ dx 6 dx





(  )

)

5 tan (5x + 3y) + 3 3 fi tan– 1 ​ ​  _______________  ​       ​ = 4x + tan– 1 ​ __ ​   ​   ​ 4 4

...(i) 10 x + 6 y = v

( 



( 

)

dy dx 1 1 ​ __ ​ ​  x – y ​ ___  ​  ​ = x and __ ​   ​ ​  y – x ​ ___  ​  ​ = y 2 2 dy dx fi

dx x – y ​ ___  ​ = 2x dy



dx – y ​ ___  ​ = x dy

Differential Equation 

dy dx ___ fi ​ ___ y ​ = – ​  x ​ 

(  (  ) ) (  )

y 2 ​ 1 – ​​ __ ​ x ​  ​​ ​  ​ _________ = ​    y  ​  2 ​ __ ​ x ​  ​



dy



dx Ú ​ ___y ​ = – Ú ​ ___ x ​ 



log |y| = log c – log |x|



x y = c

4.95



dv 1 – v2 v + x ​ ___  ​ = – ​ _____     ​,  2v dx

which is passing through (1, 1), so c = 1 Hence, the equation of the curve is



dv 1 – v2 – 1 + v2 – 2v2 x ​ ___  ​ = – ​ _____       ​ – v = ​  ___________      ​  2v 2v dx

x y = 1 8. The given curve is y = (c1 + c2) cos (x + c3) – c4​ex​ + c5​



dv 1 + v2 x ​ ___  ​ = – ​ _____     ​  2v dx

2v dx fi ​ _____  2   ​ dv = – ​ ___ x ​  1+v



y = (c1 + c2) cos (x + c3) – c4​ec​ 5​◊ ex



y = A cos (x + c3) – B ◊ ex



Since the given curve has 3 arbitrary constants, so, the order of the differential equation represented by the given curve is 3.

2v dx     ​ dv = – Ú ​ ___ Ú ​ _____ x ​  1 + v2



log |1 + v2| = log c – log |x| c (1 + v2) = __ ​ x ​



9. The equation of the normal at any point P (x, y) is



dx Y – y = – ​ ___  ​ (X – x) dy

 | |

...(i)



fi x2 + y2 = c x which is passes through (1, 1), so c = 2 Hence, the equation of the curve is

It is given that



dx y + x ​ ___  ​ dy _________ ​ ​ __________       ​  ​ = |y| dx 2 ___ ​ 1 + ​​ ​    ​  ​​ ​  ​   dy

10. The given differential equation is

÷  (  ) (  ) (  (  ) ) (  ) (  )

dx dx fi ​​ y + x ​ ___  ​  ​​ ​ = y2 ​ 1 + ​​ ___ ​    ​  ​​ ​  ​ dy dy 2

2

dx 2 dx fi ​​ ___ ​    ​  ​​ ​ (x2 – y2) + 2xy ​ ___  ​ = 0 dy dy

dx dx fi ​ ___ ​    ​  ​ = 0, (x2 – y2) ​ ___  ​ + 2xy = 0 dy dy

(  )

2xy dx = 0, ___ ​    ​ = _______ ​      ​ dy (x2 – y2)

x2 + y2 = 2x

(  ) (  ) (  ) (  )

dy 2 dy ​​ ___ ​    ​  ​​ ​ – x ​ ___ ​    ​  ​ + y = 0 dx dx fi fi

dy y = x ​ ___ ​    ​  ​ + dx

dy 2 ​​ ___ ​    ​  ​​ ​ dx

dy y = px + p2, where p = ___ ​    ​ dx

which is a Clairauts differential equation Thus, the solution is

y = c x + c2



y = 2 x + 4

11. The given curve is

__

y2 = 2c (x + ​÷c    ​)  dy 2y ​ ___  ​ = 2c dx dy c = y ​ ___  ​ dx

...(i)

dx Now, ​ ___ ​    ​  ​ = 0 fi x = c dy



which is passing through (1, 1), so c =1 Hence, the equation of the curve is x = 1



2xy dx Also, ​ ___  ​ = _______ ​  2  2    ​ dy (x – y )

From Eq. (i) and (ii), we get

2



2

(x – y ) = ​ _______       ​ 2xy

(Let  y = vx)

...(ii)

(  ÷  ) ____



dy dy y = 2y ​ ___  ​ ​ x + ​ y ​ ___  ​ ​  ​ dx dx 2

( 

)

2 y dx fi ​​ __ ​    ​ ​ ___  ​ – x  ​​ ​ = 2 dy

dy y ​ ___  ​ dx

4.96  Integral Calculus, 3D Geometry & Vector Booster

( 

y fi ​​ __ ​    ​ – 2

) (  )

dy 2 dy 3 x ​ ___  ​  ​​ ​ = y ​​ ___ ​    ​  ​​ ​ dx dx

Thus, the order of the differential equation is 3. 12. The given expression is x2 + y2 = 1 Differentiating w.r.t. x, we get fi fi

dy 2x + 2y ​ ___  ​ = 0 dx dy x + y ​ ___  ​ = 0 dx

Again differentiating, w.r.t. x, we get

(  )



dy 2 d2y 1 + ​​ ___ ​    ​  ​​ ​ + y ​ ___2   ​ = 0 dx dx



1 + y¢2 + y ◊ y¢¢ = 0



y ◊ y¢¢ + (y¢)2 + 1 = 0

13. The given differential equation is dy (1 + t) ​ ___ ​ – ty = 1 dt

dy fi ​ _____     ​ = y+1

– cos x _______ ​       ​ dx 2 + sin x

dy



– cos x     ​ =   _______ ​       ​ dx Ú   ​ _____ y + 1 Ú 2 + sin x



log |y + 1| = log c – log |2 + sin x|



(y + 1) (2 + sin x) = c

Put x = 0, y = 1, then c = 4 Hence, the equation of the curve is

(y + 1) (2 + sin x) = 4

p When x = __ ​   ​ , then 2 fi

4 y + 1 = __ ​    ​ 3 4 1 __ y = ​   ​  – 1 = __ ​   ​  3 3

16. Given, dy (x + 1)2  +  (y – 3) ​ ___  ​ = ​ _______________     ​    (x + 1) dx

(  )

dy – t 1 fi ​ ___ ​ + ​ ____ ​      ​  ​ y = ____ ​       ​ t+1 t+1 dt which is a linear differential equation. t – Ú ​ ____     ​ dt t + 1 ​=

Thus, IF = e​ ​

(t + 1) – 1 – Ú ​ ________  ​ dt     ​e​ t + 1 ​

= e log (t + 1) – t = (t + 1) e– 1 Therefore, the solution is

(  )

dy 2 + sin x ___ ​ _______ ​ ​    ​    ​  ​ = – cos x y + 1 dx

y ◊ (t + 1) e– 1 = Ú  e– 1 dt + c – 1

– t

fi y ◊ (t + 1) e = – e + c Put t = 0, y = 1, then c = 2 Hence, the equation of the curve is y ◊ (t + 1) e– t = – e– t + 2 Put t = 1, then



y 3 = (x + 1) + ______ ​       ​ – ______ ​       ​ (x + 1) (x + 1)

dy y 3 fi ​ ___  ​ – ______ ​       ​ = (x + 1) – ______ ​       ​ (x + 1) dx (x + 1) which is a linear differential equation. dx –  ​ _____     ​ 1 Thus, IF = e​ ​ Ú x + 1 ​ = e– log (x + 1) = ______ ​       ​ (x + 1) Therefore, the solution is y 3 ​ _____     ​ =   ​ 1 – _______ ​       ​  ​ dx x+1 Ú (x + 1)2

( 

)

y 3 fi ​ _____     ​ = x + _____ ​       ​ + c y+1 x+1 Put

x = 2 and y = 0, then c = – 3



2y ◊ e– 1 = – e– 1 + 2

Hence, the equation of the curve is y 3 ​ _____     ​ = x + _____ ​       ​ –  3 x+1 x+1



2y = – 1 + 2e



 1 y = e – ​ __ ​  2 14. A right circular cone with radius R and height H contains a liquid which evaporates at a rate propeortional to its surface in contact with air (proportonality constant k > 0). Find the after which the cone is empty fi

15. The given differential equation is



y = x2 + x + 3 – 3x – 3 = x2 – 2x.

Differential Equation  ______

 ​ ÷​ 1  –  y2  fi ​ _______ ​   dy = dx y  

Hence, the required area 2



= ​Ú ​  ​  [0 – (x2 – 2x)] dx 0



( 

______

)

3 2

x = ​​ x2 – __ ​   ​   ​​ ​​  3 0

(  )

Put fi

x cos y + y cos x = p x = 0, then y = p dy dy cos y – x sin y ​ ___  ​ – y sin x + cos x ​ ___  ​ = 0 dx dx dy Put  x = 0, y = p, then ___ ​    ​ = – cos (p) = 1 dx dy dy dy 2 – sin y ​ ___  ​ – sin y ​ ___  ​ – x cos y ​​ ___ ​    ​  ​​ ​ dx dx dx

(  )

(  ) (  )



d2y dy – x sin y ​ ___ ​  2 ​  ​ – y cos x – sin ​ ___ ​    ​  ​ dx dx



dy d2y – sin x ​ ___ ​    ​  ​ + cos x ​ ___ ​  2 ​  ​ = 0 dx dx

(  )

(  )

dy Put x = 0, y = p and ___ ​    ​ = 1, then dx d2y (– sin p – sin p – 1) + ___ ​  2 ​ = 0 dx 2 d y fi ​ ___2 ​ = 1 dx 18. The equation of tangent at any point (x, y) to the curve y = f (x) is Y – y = f ¢ (x) (X – x)

( 

)

dx It meets the x-axis at ​ x – y ​ ___  ,​ 0  ​. dy It is given that

AP = 1



AP 2 = 1



dx 2 2 ​​ – y ​ ___ xy  ​  ​​ ​ + y = 1

(  )

(  ) (  ) (  ) ÷ 

dx y2 ​​ ___ ​    ​  ​​ ​ = 1– y2 dy 2 dx 2 1 – y fi ​​ ​ ___  ​  ​​ ​ = ​ _____  ​     dy y2 fi

2



 1   – y2   ​ ÷​_______   ​  ​   dy = Ú dx Ú y   



y ​÷1  – y2   ​ ________   ​      =x+c Ú y2 ​ dy



t     ​ dt = x + c, Ú  ​ _____ t2 – 1



1 ​ 2      ​  ​  dt = x + c Ú  ​ 1 + t_____ –1



t–1 1 t + __ ​   ​    log ​ ​ ____   ​  ​ = x + c 2 t+1

_____

8 4 = ​ 4 – __ ​   ​   ​ = __ ​   ​  sq.u. 3 3 17. The given relation is

÷ 

______



y2 = ​ ​ ______    ​ ​    1 – y2

2

( 

(Let t2 = (1 – y2))

)

|  |

| 

_____

|

​÷1  – y2   ​  –  1 1 _____     ​ ​ = x + c fi ​÷1  – y2   ​ + __ ​   ​  log ​ ​ __________ 2  ​ + 1 ÷​ 1  – y2  _____

19. The given differential equation is

(x2 + y2) dy = xy dx

dy xy fi ​ ___  ​ = ______ ​      ​ dx x2 + y2

(  ) (  )

y ​ __ ​ x ​  ​ dy fi ​ ___  ​ = ​ _______  ​ y 2  dx __ 1 + ​​ ​ x ​  ​​ ​

...(i)

which is a homogeneous differential equation.

( 

)

dy dv ​ Let  y = v x fi ___ ​    ​ = v + x ​ ___  ​  ​ dx dx fi

dv v v + x ​ ___  ​ = _____ ​       ​ dx 1 + v2



dv v x ​ ___  ​ = _____ ​       ​ – v dx 1 + v2



dv v  –  v – v3 v3 x ​ ___  ​ = ​ _________  ​     = – ​ _____     ​ 2 dx 1+v 1 + v2

(  ) Ú (  )

1 + v2 dx fi ​ ______ ​  3 ​    ​  dv = – ​ ___ x ​  v fi

_____

1 – y2 dx fi ​ ___ ​    ​  ​ = ​ ​ _____  ​ ​    dy y2

4.97

1 + v2 dx   ​ ​ _____  ​    ​ dv = – Ú ​ ___ x ​  v3



1 – ​ ___ 2 ​ + log |v| = c – log |x| 2v



y x2 – ​ ___2  ​ + log ​ __ ​ x ​  ​ = c – log |x| 2y

|  |

4.98  Integral Calculus, 3D Geometry & Vector Booster fi

x2 – ​ ___2  ​ + log |y| = c 2y

1 x = 1, y = 1, then c = – ​ __ ​  2 Thus, the equation of the curve is When



x2 1 – ​ ___2  ​ + log |y| = – ​ __  ​ 2 2y

When

x = x0, y = e, then



​x2​0​​  1 – ​ ___2  ​ + 1 = – ​ __  ​ 2 2e



​x2​0​​  3 1 ___ – ​  2  ​ = – 1 – __ ​   ​  = – ​ __ ​  2 2 2e

fi ​x​20​​  = 3e2 fi

___

x0 = ​÷3 e    ​ 

20. The given differential equation is 2



y dx + y  

= x dy



ydx – xdy = – y2dy

ydx  –  xdy fi ​ _________  ​    = – dy y2 x fi d ​ __ ​ y ​  ​ = – dy fi

(  ) Ú d ​( __​ xy ​ )​ = – Ú dy  

x fi ​ __y ​ = c – y When

x = 1, y =1, then c = 2

Thus, the equation of the curve is x ​ __y ​ = 2 – y When

x = – 3, then



3 2 – y = – ​ __ y ​



3 y – 2 = __ ​ y ​



y2 – 2y – 3 = 0



(y – 3) (y + 1) = 0



y = 3, – 1

Since y > 0, so the value of y = 3. 21. The equation of any tangent at P (x, y) is

dy Y – y = ___ ​     ​(X – x) dx

(  )

)

dx It meets the x-axis at A ​ x  –  y ​ ___  ​, 0  ​ dy dy and B ​ 0, y – x ​ ___  ​  ​ dx

( 

Since P (x, y) divides the line AB in the ratio 3 : 1, we get dy 3 dx 1 fi ​ __ ​ ​  y – x ​ ___  ​  ​ = y, __ ​   ​  ​   x – y, ___ ​    ​  ​ = x 4 4 dx dy

( 

)

( 

)

dy x ​ ___  ​ = – 3y dx dy dx ___ fi ​ ___ y ​ = – 3 ​  x ​  fi

dy



dx ​  y ​ = – 3 Ú  ​ ___ Ú  ___ x ​ 



log |y| = log c – 3 log |x|



x3y = c

As f (1) = 1, we get c = 1 Thus, the equation of the curve is x3y = 1 1 fi y = __ ​  3  ​  x which passes through (2, 1/8). dy 3 Also, ​ ___  ​ = – ​ __4  ​  dx x dx m = ​​ ___ ​    ​  ​​ ​ = – 3 dy (1, 1)

(  )

\  The equation of normal at (1,1) is 1 y – 1 = __ ​   ​  (x – 1) 3 fi 3y – 3 = x – 1 fi x – 3y + 2 = 0 22. The given differential equation is dy 2 ​ ___  ​ = _____ ​       ​ dx x + y Let x + y = v dy dv fi 1 + ___ ​    ​ = ___ ​    ​ dx dx dy dv fi ​ ___  ​ = ___ ​    ​ – 1 dx dx dv 2 fi ​ ___  ​ – 1 = __ ​ v ​ dx dv v + 2 fi ​ ___  ​ = ​ _____ ​  v    dx

( 

)

v fi ​ _____ ​       ​  ​ dv = dx v+2 fi

2 ​       ​  ​ dv = Ú dx Ú  ​( 1 – _____ v + 2)

Differential Equation 



v – 2 log |v + 2| = x + C



x + y – 2 log |x + y + 2| = x + C



y – 2 log |x + y + 2| = C

When x = 1, y = 1, then fi

(  )

e c = 1 – 2 log 4 = log ​ ___ ​    ​  ​ 16

Thus, the equation of the curve is fi

(  ) (  )

e y – 2 log |x + y + 2| = log ​ ___ ​    ​  ​ 16 e y = log |x + y + 2|2 + log ​ ___ ​    ​  ​ 16

( 

(  ) )

e fi ​ (x + y + 2)2 ​ ___ ​    ​  ​  ​ = ey 16 16 fi |(x + y + 2)2 e– y)| = ​ ___ ​  e ​   ​

(  )

23. The given differential equation is ______

dy ​÷1  – y2 ​  ​ ___  ​ = ​ _______ ​  y    dx y dv _____ fi ​ ______     ​ = dx ​÷1  – y2   ​ fi

y dv

_____     ​ = Ú dx Ú  ​ ______ 2

​÷1  – y    ​

Integrating, we get _____



fi (x + c)2 + y2 = 1 which represents a circle with the centre (c, 0) and the radius 1. 24. Given t2 f (x)  –  x2f (t) ​   lim  ​   ​ ____________ ​        ​ ​ = 1 t Æ x t–x

( 

Hence, the solution is y dx ​ __2  ​  = – Ú ​ ___4 ​ + c x x y 1 fi ​ __2  ​  = ___ ​   3 ​ + c x 3x As f (1) = 1, then c = 1 – 1/3 = 2/3 Therefore, the equation of the curve is y 3 1 ​ __2  ​  = ___ ​   3 ​ + __ ​   ​  2 x 3x fi

3x2 1 y = ​ ___  ​ + ___ ​   ​   3x 2

25. The given differential equation is _____

_____

_____

_____



x ​÷x  2 – 1 ​   dy – y ​÷y  2 – 1 ​    dx = 0



x ​÷x  2 – 1 ​   dy = y ​÷y  2 – 1 ​   dx

dy dx _____      ​ = ________ ​  _____      ​ fi ​ ________ 2 y ​÷y  – 1 ​  x ​÷x  2 – 1 ​   dy



dx _____ _____      ​ = Ú ​ _______     ​ Ú  ​ ________ 2 2



sec– 1 (y) = c + sec– 1 (x)

When

2 x = 2, y = ___ ​  __   ​, then ​ 3 ​    ÷

y ​÷y  – 1 ​ 

x​÷x  – 1 ​  

(  )

2 c = – sec–1 (2) + sec–1 ​ ___ ​  __  ​  ​ ​ 3 ​    ÷ p p p fi c = – ​ __ ​  + __ ​   ​  = – ​ __ ​  3 6 6 Thus, the equation of the curve is p sec– 1 (y) = sec– 1 (x) – __ ​   ​   6 p – 1 fi y = sec ​ sec  (x) – ​ __ ​   ​ 6 Thus, the statement (i) is trure Also, we can write Eq. (i) as fi

– ​÷1  – y2   ​ = x + c

)

( 

)

2t f (x) –  x2 f ¢ (t) fi ​   lim  ​ ​ ______________ ​   ​       ​= 1 t Æ x 1 fi

2x f (x) = x2 f ¢ (x) = 1



dy 2x y – x2 ​ ___  ​ = 1 dx

( 

(  ) (  ) p 1 1 __ __ fi ​ __ y ​ = cos ​( cos  ​( ​ x ​ )​ – ​ 6 ​  )​

p 1 1 cos– 1 ​ __ ​ y ​  ​ = cos– 1 ​ __ ​ x ​  ​ – __ ​   ​  6 – 1

(  (  ) ) (  ) p 1 + sin ​( cos  ​( __ ​ x ​ )​ )​ sin ​( __ ​   ​  )​ 6

p 1 1 – 1 __ __ fi ​ __ y ​ = cos ​ cos  ​ ​ x ​  ​  ​ cos ​ ​ 6 ​   ​

which is a linear differential equation.

​ 3 ​     __ ÷ 1 __ 1 ___ 1 1 __ fi ​ __ y ​ = ​ x  ​​  2 ​ + ​ 2 ​ ​  1 – ​ x2  ​ ​  

\

IF =

dx ___ ​e– 2  ​ Ú ​  x ​ ​ =

1 e– 2 log x = __ ​  2  ​  x

...(i)

)

dy x2 ​ ___  ​ – 2x y = – 1 dx dy 2 1 fi ​ ___  ​ – __ ​   ​ y = – ​ __2  ​  dx x x fi

4.99



– 1

__

÷ 

_____

Thus, the statement (ii) is false.

4.100  Integral Calculus, 3D Geometry & Vector Booster 26. Given differential equation is y¢ = y +1

Hence, the solution is y ​ __x ​ = – Ú x dx + c

dy fi ​ ___  ​ = y + 1 dx dy fi ​ ___ y ​ + 1 = dx

y x2 fi ​ __x ​ = c – __ ​   ​  2 When

dy

x = 1, y = 1, then c = 3/2

Hence, the equation of the curve is



    ​ =  dx Ú ​ y_____ +1 Ú



log |y + 1| = x + c

y 3 __ x2 ​ __x ​ = __ ​    ​ – ​   ​  2 2

when

x = 0, y = 1, then c = log 2

When x = – 3, then

Hence, the equation of the curve is

log |y + 1| = x + log 2

When

x = ln 2, then



y+1=4fiy=3



29. The given differential equation is

(x – 3)2 y¢ + y = 0

dy (x – 3)2  ___ ​    ​ + y = 0 dx dy y fi ​ ___  ​ = – ​ _______      ​ dx (x – 3)2 fi

Thus.

fi fi

1 C + _____ ​       ​ x – 3​ =

1 _____ ​       ​

1 _____ ​       ​

e​ ​x – 3 ​ ◊ ec = A ◊ ​e​x – 3 ​

Thus, the domain of the above function is R – {3} 28. The equation of tangent at any point (x, y) to the curve y = f (x) is Y – y = f ¢ (x) (X – x) Intercept on y-axis is y – x f ¢ (x) It is given that,

y – x f ¢ (x) = x3

dy y – x ​ ___  ​ = x3 dx dy y fi ​ ___  ​ – __ ​ x ​ = – x2 dx fi

which is a linear differential equation. Thus

IF =

dx ___ e​ –  ​ Ú ​  x ​ ​ =

1 e– log x = __ ​ x ​



y ◊ e g (x) = Ú (g (x) Ú  g¢ (x)) e g (x) dx



y ◊ e g (x) = e g (x) (g (x) – 1) + c

When x = 0, y = 0, then c = 1 Thus, the curve is

dy dx       ​ Ú  ​ ___y ​ = – Ú ​(x_______ – 3)2 1 log |y| = C + _____ ​       ​ x–3 y = ​e​

IF = e​ Ú​ g¢ (x) dx​ = e g (x)

Therefore, the solution is

dy dx _______ fi ​ ___  2   ​ y ​ = – ​ (x – 3) fi

y ¢ (x) + y (x) g ¢ (x) = g (x) g ¢ (x)

dy fi ​ ___  ​ + g ¢ (x) y = g (x) g ¢ (x) dx which is a linear differential equation.

27. The given differential equation is

9 27 ___ 3x x3 18 y = ___ ​   ​ – __ ​   ​  = – ​ __ ​  + ___ ​   ​ = ​   ​ = 9 2 2 2 2 2



y ◊ e g (x) = eg (x) (g (x) – 1) + 1

When

x = 2, then y = (0 – 1) + 1 = 0.

30. Given equation is x



6  ​Ú ​  ​  f (t) dt = 3xf (x) – x3 – 5 0



6f (x) = 3f (x) + 3x f ¢ (x) – 3x2



3f (x) = 3x f ¢ (x) – 3x2



f (x) = x f ¢ (x) – x2

dy y = x ​ ___  ​ – x2 dx dy fi x ​ ___  ​ – y = x2 dx dy y fi ​ ___  ​ – ​ __x ​ = x dx fi

which is a linear differential equation

dx ___ 1 IF = e​ –  ​ Ú ​  x ​ ​ = e– log x = __ ​ x ​

Hence, the solution is y ​ __x ​ = Ú dx + c

Differential Equation 

y fi ​ __x ​ = x + c When x = 1, y = 2, then c = 1 Hence, the equation of the curve is y ​ __x ​ = x + 1 when x = 2, then y = 6. Thus, the value of f (2) is 6.



dv v + x ​ ___  ​ = v + sec v dx



dv x ​ ___  ​ = sec v dx

dv dx fi ​ ____ ​ = ___ ​  x ​  sec v    fi

dv dx ​ = Ú  ​ ___ Ú  ​ ____ x ​  sec v   



dx Ú cos v dv = Ú  ​ ___ x ​ 

dy fi ​ ___  ​ – tan x ◊ y = 2x sec x dx



sin (v) = log |x| + C

which is a linear differential equation.



y sin ​ __ ​ x ​  ​ = log |x| + C

31. The given differential equation is

Thus,

y¢ – y  tan x = 2x sec x

– Ú tan x dx

IF = e​ ​

log cos x

​= e

= cos x

(  )

(  )

p which is passing through ​ 1, __ ​   ​   ,​ so, c = 1/2 6

Hence, the solution is

y ◊ cos x = Ú 2x ◊ sec x ◊ cos x dx + c

Hence, the equation of the curve is



y ◊ cos x = Ú 2x ◊ dx + c





y ◊ cos x = x2 + c

33. The given differential equation is

when x = 0, y = 0, then c = 0 Thus, the equation of the curve is

p p 2 1__ ___ When x = ​ __ ​ , then y ◊ ​ ___   ​ = ​   ​  4 ​÷2 ​     16 p 2 y = ____ ​  __  ​  8​÷2 ​   

When

p 2p 2 x = ​ __ ​ , then y = ____ ​   ​    3 9

dy xy x4_____ + 2x fi ​ ___  ​ – ​ _____  2   ​ = ​ ______      ​ dx 1 – x ​÷1  – x2   ​ which is a linear differential equation.

(  ) ( 

\

(  )

__ 2p 2 dy fi ​ ___  ​ = ÷ ​ 3 ​     ◊ ​ ____ ​   ​    ​ + 9 dx

dy 2p 2 ___ 4p fi ​ ___  ​ = ____ ​  __   ​ + ​   ​  3 dx 3​÷3 ​   

(  ) ( 

)

)



y ◊ ​÷1  – x2 ​  = Ú (x4 + 2x) dx + c



x5 y ◊ ​÷1  – x2   ​ = __ ​   ​  + x2 + c 5

_____

_____

dy p 2 p fi ​ ___  ​ = ____ ​  __  ​ + ___ ​  __  ​  dx 8​÷2 ​    ÷ ​ 2 ​   



x5 y ◊ ​÷1  – x2   ​ = __ ​   ​  + x2 5



x5 x2 y = _______ ​  _____      ​ + ______ ​  _____     ​ 5​÷1  – x2   ​ ​÷1  – x2   ​

...(i)

which is a homogeneous differential equation. Let y = v x dy dv fi ​ ___  ​ = v + x ​ ___  ​ dx dx

__



​ 3 ​    ÷ ​ ___    2 ​ x5 x2 Now, ​ __ ​ ​   ​ _______ ​  _____      ​ + ______ ​  _____     ​  ​ dx 2 2 ​ 3 ​     5​ 1 – x   ÷  ​ ​ 1 – x    ​ ___  – ​   ​  2

Ú 

( 

÷ 

÷ 

_____

​= ÷ ​ 1  – x2   ​

which is passing through (0, 0), so c = 0 Hence, the equation of the curve is

dy p p 2 p __ Again, ​ ___  ​ – tan ​ __ ​   ​   ​ ◊ ​ ____ ​  __  ​  ​ = 2 ◊ ​ __ ​  ◊ ​÷2 ​    4 8​÷2 ​ 4 dx   

(  )

1 __ ​   ​  log (1 – x2)

e​ ​2

_____

4p ___ ​   ​  3

dy y y 32. Given ​ ___  ​ = __ ​   ​ + sec ​ __ ​ x ​  ​ dx x

x – Ú ​ _____      ​ dx 1 – x2 ​ =

IF = ​e​

Hence, the solution is

dy p 2p 2 p Also, ​ ___  ​ – tan ​ __ ​   ​   ​ ◊ ​ ____ ​   ​    ​ = 2 ◊ ​ __ ​  ◊ 2 3 9 3 dx



(  )

y 1 sin ​ __ ​ x ​  ​ = log |x| + __ ​   ​  2

dy xy x4 + 2x ​ ___  ​ + _____ ​  2      ​ = _______ ​  _____  ​  dx x – 1 ÷ ​ 1  – x2 ​ 

y ◊ cos x = x2



4.101

)

4.102  Integral Calculus, 3D Geometry & Vector Booster __



( 

Ú 



)

÷ 

__



2–4 Clearly, g (0) = ​ _____  ​   < 0 22

​ 3 ​    ÷ ___ ​      2 ​ x2 = ​ __ ​ ​   ​ ______ ​  _____     ​  ​ dx 2 ​ 3 ​    ​ 1 – x  ÷  ​ ___  – ​   ​  2 ​ 3 ​    ÷ ___ ​      2 ​

( 

)

2

x = 2 ◊ ​Ú ​  ​ ​ ​ ______ ​  _____     ​  ​ dx  0 ÷ ​ 1  – x2   ​ =

p __ ​    3 ​ 2 ◊ ​  ​ ​ ​ sin2q dq, 0

Ú 

p ​ __  3​ ​  ​ ​ ​ (1 0

Ú 



=



sin 2q ​ 3 ​  = ​​ q – ​ _____  ​    ​​ ​ ​ 2 0

(Let  x = sin q)

– cos 2q) dq

(  ) p 1 2p = ​( __ ​   ​  – __ ​   ​  sin ​  ___ ​   ​   ​  ​ 3 2 ( 3 ))



( 

__

) )



g (0) ◊ g (– 1) < 0

( 

)

Hence, g (x) has a root in between (– 1, 0). 35. Let the family of circles be

x2 + y2 – a x – a y + c = 0

...(i)

(  )

d 2y dy 2 d 2y 2 + 2y ​ ___2 ​ + 2 ​​ ___ ​    ​  ​​ ​ – a ​ ___2 ​ = 0 ...(ii) dx dx dx Eliminating a between Eqs (i) and (ii), we get

)

(  )

dy 2x + 2y ​ ___  ​ d2y 2 2 d y dy dx ___ 2 + 2y ​ ___2 ​ + 2 ​​ ___ ​    ​  ​​ ​ – ​ __________ ​      ​    ​  ​  2 ​ = 0 dx dy dx dx 1 + ___ ​    ​ dx

​ 3 ​    p ÷ = ​ __ ​   ​  – ___ ​   ​  ​ 3 4

(  )

dy (1 + ex) ​ ___  ​ + y ◊ ex = 1 dx

( 

(  ( 

Again differentiating w.r.t. x, we get

34. We have (1 + ex) y ¢ + y ex = 1 fi

)

Differentiating w.r.t. x, we get dy dy 2x + 2y ​ ___  ​ – a – a ​ ___  ​ = 0 dx dx

p __



( 

and

3 1 2 ​ 1 + __ ​ e ​  ​  – ​ __ ​ 1 – ​ __ e ​ e ​  ​ ___________ _______ g (– 1) = ​      ​   = ​       ​ > 0 1 2 1 2 ​​ 1 + __ ​ e ​  ​​ ​ ​​ 1 + __ ​ e ​  ​​ ​



)

( 

( 

)

(x + 2)2 4 \ ​ ​  _______  ​    ​ > __ ​   ​  > 1 3 3

)

dy ex 1 fi ​ ___  ​ + ​ _______ ​      ​  ​ ◊ y = _____ ​    x   ​ dx (1 + ex) 1+e

2x + 2y y¢ fi 2 + 2y y¢¢ + 2 (y¢)2 – ​ _________ ​   ​       ​y¢¢ = 0 1 + y¢

which is a linear differential equation.

x + y y¢ fi 1 + y y¢¢ + (y¢)2 – ​ _______ ​   ​     ​ y¢¢ = 0 1 + y¢

Thus,

IF =

ex  x    ​ dx Ú ​ _______ e​ ​ (1 + e ) ​ =

elog |1 + ex| = (1 + ex)

Multiplying both sides of Eq. (i) by IF and integrating, we get fi

y ◊ (1 + ex) = Ú dx + c



y ◊ (1 + ex) = x + c

When

x = 0, y = 2, then c = 4

( 

)

fi (y – x) y¢¢ + (1 + y¢ + y¢ 2) y¢ + 1 = 0 Thus,

P = (y – x) and Q = (1 + y¢ + y¢2)

and P + Q = (– x + 1 + y + y¢ + y¢2) 36. Given curve is dy (x2 + xy + 4x + 2y + 4) ​ ___  ​ – y2 = 0, x > 0 dx

Hence, the solution is

y ◊ (1 + ex) = x + 4



dy {(x + 2)2 + y (x + 2)} ​ ___  ​ – y2 = 0 dx



x+4 y = ​ _______     ​ (1 + ex)



dy {(x + 2)2 + y (x + 2)} ​ ___  ​ = y2 dx

Thus,

y (– 4) = 0



(1 + ex) – (x + 4) ex y¢ = _________________ ​      ​    (1 + ex)2 x

Let

dy ___________________ y d (x + 2) – (x + 2) dy fi ​ ___      ​    y ​ = ​  (x + 2)2 x

(1 + e ) – (x + 4) e g (x) = ​ _________________     ​    (1 + ex)2

( 

)

dy y ______ fi ​ ___  ​  ​ y ​ = – d ​ ​ (x + 2)  Integrating, we get

Differential Equation 



y log |y| = c – ______ ​       ​ (x + 2)

When

x = 1, y = 3, then c = 1 + log3

Thus,

y y log ​ __ ​    ​  ​ + ______ ​       ​ = 1 3 (x + 2)

For

y = (x + 2), then

(  )

(  ) (  )

x  +  2 log ​ _____ ​   ​    ​ = 0 3 x+2 fi ​ ​ _____  ​    ​ = 1 3



x=1

For

y = (x + 2)2, then



(x + 2)2 log ​ ​ _______  ​    ​ + (x + 2) = 1 3

( 

( 

)

)

(x + 2)2 4 Now for x > 0, ​ ​ _______  ​    ​ > __ ​    ​ > 1 3 3

( 

)

(x + 2)2 log  ​ ​ _______  ​    ​ + (x + 2) > 2 3

So, it has no solution.

4.103

Chapter

5

Vectors

Concept Booster 1.1  Introduction A study of motion involves the introduction of a variety of quantities that are used to describe the physical world. For examples, distance, displacement, speed, velocity, acceleration, force, mass, momentum, energy, work, power, etc. All these quantities can by divided into two categories—vectors and scalars. A vector quantity is a quantity that is fully described by both magnitude and direction. On the other hand, a scalar quantity is a quantity that is described by its magnitude only. The emphasis of this unit is to understand some fundamentals about vectors and to apply the fundamentals in order to understand motion and forces that occur in two dimensions.

For example, the rotation of a rigid body through finite angles have both magnitude and direction but do not satisfy the vector law of addition. Therefore, it is not a vector.

1.3 Representation

of

vectors

Directed line segment Any given protion of a given straight line where the two end-points are distinguished as the initial and the terminal points is called a directed line segment. The directed line segment with the initial point P and the ​___›

terminal point Q is denoted by the symbol PQ or PQ​ ​  . 

1.2  Physical quantities The physical quantity is divided into two categories: (a) scalar quantities (b) vector quantities (a)  Scalar quantities A quantity which has only magnitude and not related to any fixed direction in the space is called the scalar quantity. For example, mass, length, volume, density, time, temperature, etc., are all scalar quantities. If the unit of measurement is defined, a real number is sufficient to represent a scalar quantity. Thus, in this chapter, we shall represent scalars by real numbers. (b) Vector quantities A quantity which has magnitude as well as direction is called a vector. For exmaple, force, velocity, acceleration, displacement, momentum, etc. are all vector quantities. Notes:  Quantities having magnitude and direction but not obeying the vector law of addition will not be treated as vectors.

The two end-points P and Q are not interchangeable. A directed line segment is called a vector if it has three following characteristics.

_​ __›

(i) Length: The length of PQ​ ​   is denoted by the symbol ​___›

|​PQ​ | . (ii) Support: The line of unlimited length of which a directed line segment is a part is called the support. (iii) Sense: The sense of the directed line segment is from its initial point to its terminal point. We genrally denote the vector by bold letter or by a single letter with an arrow or by a letter with a bar over its head, _​ __› ​_› _ i.e.  a, ​a   ​, a​ ​   denote the vector PQ​ ​  . 

5.2  Integral Calculus, 3D Geometry & Vector Booster

1.4  types

of

vectors

Like vectors

(i)  Zero or Null vector A vector whose initial or terminal points are identical or coincident, is called a zero vector. It is also known as null vector. It is denoted by 0 and its direction is indeterminate. ​___› _ ​___› ​ __› Thus AA​ ​   , BB​ ​   and CC​ ​   are zero vectors. Geometrically, it represents a point.

Collinear vectors are called like vectors if their direction are the same.

(ii) Proper vector

Collinear vectors are called unlike vectors if their directions are opposite.

Any non-zero vector is called a proper vector. (iii) Unit vector If the magnitude of a vector is unity, it is called a unit vector. ​_› If |​a   ​| = 1, then a is called a unit vector. It is generally a denoted as and is defined as = ___ ​ ​_›  ​.  |​a   ​| (iv) Co-initial vectors Two or more vectors are said to be co-initial vectors, if they have the same initial point.

_​ __›

_​ __›

Here, PQ​ ​  ,  and QR​ ​   vectors are like vectors. Unlike Vectors

​___›

​___›

Here, PQ​ ​   and QR​ ​   are unlike vectors. Difference between parallel and collinear vectors Every collinear vectors are parallel, whereas every parallel vectors need not be a collinear. Notes 1. Two non-zero vectors a and b are collinear (or parallel) if a = l b, " l ŒR. 2. If a = a1i + a 2 j + a3k and b = b1i + b2j + b3k are two collinear (or parallel) vectors, then a1 ​ __ ​  = b1

​ __› _ ​___› ​___› ​___› _ ​ __›

Here, OP​ ​  ,  OQ​ ​  ,  OR​ ​  ,  OS​ ​  ,  OT​ ​   are co-initial vectors. (v) Co-terminal vectors Two or more vectors are said to be co-terminal vectors if they have the same terminal point.

a2 __ ​   ​  = b2

a3 __ ​    ​. b3

(vii)  Coplanar vectors Three or more vectors are said to be coplanar if they lie in the same plane, or they are parallel to the same plane.Three vectors a, b and c are coplanar if any one of their is a linear combination of the other two vectors. i.e

a = x b + y c

or

b = x a + y c

or

c = x a + y b

(viii) Free vector If the origin of a vector is not specified, it is called a free vector.

_​ __› _ ​ __› ​ __› _ ​ __› _ ​ __› _

Here, PM​ ​  ,  DM​ ​  , CM​ ​  , BM​ ​  ,  AM​ ​   are co-terminal vectors. (vi) Collinear or parallel vectors Two vectors are said to be collinear vectors if their supports are parallel or the same irrespective of their direction. Collinear vectors are also called parallel vectors.

​___›

​ __› _ ​› _

​_› ​___›

_ ​›

Here, ​OA​ ,  = ​a  ​,  OB​ ​   = ​b  ​,  OC​ ​   = ​c  ​  ​› _ ​› _

_ ​›

Thus ​a  ​,  ​b  ​,  and ​c  ​  are free vectors.

Vectors 

5.3

(ix) Localized vector For a vector of given magnitude and direction, if its initial point is fixed in space, the vector is called a localized vector.

It is also stated as, If two vectors are represented by the two sides of a triangle taken in order, their sum is represented by the third side of the triangle, taken in reverse order.

(x)  Position vector

Parallelogram law of addition of vectors

Let O be the origin and P be a point in the space. The position vector of P is OP.

Let the parallelogram OACB, where _​ __›

​_›

_​ __›

​___›

​___›

​___›

​___›

​___›

_ ​›

​OA​  = ​a  ​  and OB​ ​   = ​b  ​ 

If a and b are the position vectors of the points A and B, then ​___›

​___›

​___›

​AB​  = OB​ ​   – OA​ ​   = b – a. (xi) Negative of a vector The vector, which has the same magnitude as the vector a but has the direction opposite to that of a, is called the negative of a and is written as –  a. (xii) Equality of two vectors Two vectors are (a) the same (b) the same (c) the same

1.5 Algebra

of



= OA​ ​   + OB​ ​   



= ​a  ​  + ​b  ​. 

Properties of addition of vectors

vectors

(i) Addition of vectors is commutative, i.e. ​_›

1.5.1 Addition of vectors Let a and b be two given vectors. Take a point O in the space. ​___›

_ ​›

​_›

This method of addition of two vectors is called the parallelogram law of addition vectors.

said to be equal if they have length or parallel supports sense.

It is possible to develop an algebra of vectors which is useful in the study of geometry, mechanics and other branches of applied mathematics.

​___›

Thus, ​OC​  = OA​ ​   + AB​ ​   

​_›

Let OA​ ​  ,  = a, AB​ ​  ​_ ›= b, so that the terminal point of ​a  ​  is the initial point of ​b  ​. 

_ ​›

_ ​›

​_›

​a  ​  + ​b  ​  = ​b  ​  + ​a  ​  (ii) Addition of vectors is associative, i.e. _ ​›



​_›

_ ​›

​_›

_ ​›

_ ​›

(​a  ​  + ​b  ​)  + ​c  ​  = ​a  ​  + (​b  ​  + ​c  ​) 

(iii) Additive identity exists, i.e. ​_›

_ ​›

_ ​›

​_›

​_›

​a  ​  + ​0 ​   = ​a  ​  = ​0 ​   + ​a  ​  (iv) Additive inverse also exists, i.e. _ ​›

_ ​ _›

​_›

_ ​ _›

_ ​›

​a  ​  + (​– a​  ) = ​0 ​   (​– a​  ) + ​a  ​ 

Polygon law of vector addition Let OABCDE be a polygon where

​___›

The vector OB​ ​   is defined as the vector sum (or resultant) ​_› _ ​› of ​a  ​  and ​b  ​.  ​___›

​___›

​___›

_ ​›

​_›

Thus, OB​ ​   = ​OA​  + ​AB​  = ​a  ​  + ​b  ​  which is known as the triangle law of vector addition.

​___›

​ __› _ ​› _

​_› _ ​ __›

​ __› _ ​› _

​_›

​___›

_ ​›

​OA​  = ​a  ​,  AB​ ​   = ​b  ​,  BC​ ​   = ​c  ​,  CD​ ​   = ​d  ​  and DE​ ​   = ​e  ​. 

5.4  Integral Calculus, 3D Geometry & Vector Booster Applying the triangle law, we have.



(i) If the rotation from OX to OY is in the anti-clockwise direction and OZ is directed upwards, the system is called the right handed system. (ii) If the rotation from OX to OY is in the clockwise direction and OZ is directed upwards, the system is called the left handed system.

_ _​ __› _​ __› _ ​› ​___› ​› ​OB​  = OA​ ​   + AB​ ​   = ​a  ​  + ​b  ​ 



​___›

​___›

​___›

_ ​›

​_›

_ ​›

​___›

​___›

​___›

​_›

​_›

​_›

​___›

​___›

​___›

​_›

​_›

​_›

​OC​  = OB​ ​   + BC​ ​   = (​a  ​  + ​b  ​)  + ​c  ​ 

​_›

​OD​  = OC​ ​   + CD​ ​   = (​a  ​  + ​b  ​  + ​c  ​)  + ​d  ​  ​_›

​_›

​OE​  = OD​ ​   + DE​ ​   = (​a  ​  + ​b  ​  + ​c  ​  + ​d  ​)  + ​e   ​ Thus, to find the sum of more than two vectors, a polygon is formed. Therefore, this method is known as the polygon law of vector addition. Note: If the initial point of the first vector and the final point of the last vector are the same, the sum of the vectors is a zero vector.

1.5.2  Subtraction of vectors If a and b be any two vectors, the subtraction of b from a is defined as the addition of – b to a and is written as a + (– b) = a – b, i.e. ​_›

_ ​›

_ ​›

​_›

​a  ​  + (– ​b  ​)  = ​a  ​  – ​b  ​ 

1.7  Position vector

of a

point

in a

space

Let O be a fixed point, known as the origin, and let OX, OY and OZ be three mutually perpendicular lines, taken as x-axis, y-axis and z-axis, respectively, in such a way that they form a right handed system. The plane XOY, YOZ and ZOX are known as xy-plane, yz-plane and zx-plane, respectively. Let P be a point in a space such that its distances from yz-, zx- and _ ​› ​› _ ​› _ xy-plane be a, b, c respectively and ​i ​  , ​j ​  , ​k   ​ are the vectors along x, y and z axes, respectively. Let

OA = a, OB = b and OC = c

Now, and

OP = OL + LP = OA + AL + LP = OA + OB + OC. = a i___________ + b j + c k. |OP| = ÷ ​ a  2 + b2 +   c2 ​.

1.8 Linear Combination 1.5.3  Multiplication of a vector by a scaler Let​_ m be any scaler and a be any vector. Then its product › m ​a   ​ is called​_ the multiplication of a vector by a scaler. › ​_› If ​a   ​ and ​  ​  be two vectors and m, n are scalers, then

​_›

​_›

​_›

(i) m (​a  ​)  = m ​a  ​  = (​a  ​)   m ​_›

​_›

(ii) m (n ​a  ​)  = (m n) ​a  ​  (iii) (iv)

​_› (m + n) ​a  ​  = _ ​› ​_› m (​a  ​  + ​b ​  ) =

1.6 Left

and

​_› m​a  ​  + ​_›

m ​a  ​  + m ​b  ​ 



right handed orientation

​__›

Z

Z

X

Y Z

Right Handed System

​__›

​__›

A system of vectors ​a1  ​, ​a2  ​, ..., ​an  ​ is said to be linearly independent if​_there exist scalars x1, x2,...., xn (all zero) such ​_› ​_› › that x1​a   ​1 + x2​a   ​2 + ... + xn​a  ​ n = 0

X

O Y

X

x1a1 + x2a2 + ... + xnan = 0.

1.10 Linearly independent vectors

Y

O

1.9 Linearly dependent vectors A system of vectors a1, a2, ..., an is said to be linearly dependent if there exist scalars x1, x2, ..., xn (not all zero) such that

​_› n ​a  ​  _ ​›

Y

A vector r is said to be a linear combination of the vectors a, b, c, ..., if there exist scalars x, y, z, ... such that r = x a + y b + z c + ...

1.11 Section formulae Z X

Left Handed System

1.11.1 Internal section If a point R (r) divides the line segment joining the points P(r1) and Q (r2) internally in the ratio m : n, then

Vectors 



m r2  +  n r1 r = __________ ​         ​. m+n

From the figure, we have by using triangle rule,

5.5

1.11.4  Centroid The point of intersection of the medians of a triangle is called its centroid. Let A (r1), B (r2) and C (r3) be the vertices of a triangle ABC and G (r) be its cen troid. Then the position vector r of the centroid is given by

r1  +  r2 + r3 r = ​ __________  ​      . 3

m PR __ ____ ​       ​ = ​ n ​  RQ

OR – OP __ m fi ​ _________     ​ = ​ n ​  OQ – OR fi

r – r1 __ m ______ r​  2 – r ​ = ​ n ​ 



n (r – r1) = m (r2 – r)



r (m + n) = m r2 + n r1



m r2  +  n r1 r = __________ ​         ​ m+n

1.11.2  External section If a point R(r) divides the line segment joining the points P(r1) and Q(r2) externally in the ratio m : n, then

1.11.5  Centroid of a tetrahedron Let ​_the position vectors of the points A, B, C and D are ​_› ​_› › ​_› ​a   ​, ​b  ​,  ​c  ​  and ​d  ​  respectively. The position vector r of the centroid is

a  +  b + c + d r = ​  ____________  ​      4

m r2 – n r1 r = _________ ​  m – n      ​. It can be proved by using triangle rule.

1.11.6 Incentre The point of intersection of the angle bisectors of a triangle is called its incentre.



1.11.3  Mid-Point formula If a point R(r) divides the line segment joining the points P(r1) and Q(r2) internally in the ratio 1 : 1, then

r2 + r1 r = ______ ​      ​.  2

Let the position vectors of the points A, B, C are r1, r2, r3, respectively, and r be the position vector of the incentre I. The position vector r of the incentre is given by

5.6  Integral Calculus, 3D Geometry & Vector Booster

a r1 + b r2 + c r3 r = ______________ ​          ​ a+b+c

1.11.7  Circumcentre The point of intersection of the perpendicular bisector of a triangle is called its circumcentre. Let the position vectors of the points A, B, C are r1, r2, r3, respectively, and r be the position vector of the circumcentre O. The position vector r of the incentre is given by (sin 2A) r1  +  (sin 2B) r2 + (sin 2C) r3 r = ​ ______________________________           ​ sin 2A + sin 2B + sin 2C

1.13  straight line 1.13.1  Equation of a line passing thorugh a point and parallel to a vector The equation of a line passing through a point A with position vector r1 and parallel to a vector m is given by

r = r1 + l m

Now,

OP = OA + AP



OP = OA + l M



r = r1 + l m

1.11.8 Orthocentre The point of intersection of the perpendiculars of a triangle is called its orthocentre. Let the position vectors of the points A, B, C are r1, r2, r3, respectively and r be the position vector of the orthocentre H. The position vector of the orthocentre is

1.13.2 Equation of a line passing through two points A (r1) and B (r2) is

(tan A) r1  +  (tan B) r2 + (tan C) r3 r = ​ ___________________________           ​ tan A + tan B + tan C

1.12 Bisector

of

angle

between

vectors A

and



r = r1 + l (r2 – r1)

Now,

OP = OA + AP



OP = OA + l  AB



OA + l (OB – OA)



r = r1 + l (r2 – r1).

b

(i) If a is not parallel to b, the vectors along the bisectors (internal) of angle between a and b is given by

​___› ​OM​  =

( 

_ ​›

​a   ​ l ​ ___ ​ ​_›  ​ + |​a   ​|

​__›

)

b ___ ​ ​​_›   ​​   ​ |​b   ​|

(ii) If a is not parallel to b, the vectors along the bisectors (external) of the angle the between a and b is given by

( 

​_›

​___› ​a   ​ ​ON​  = l ​ ___ ​ ​_›  ​ – |​a   ​|

​_›

)

​b   ​ ​ ___ ​_›  ​  ​ |​b   ​|

1.14  Plane 1.14.1 Vector Equation The vector equation of a plane passing through a point having position vector a and the normal to a vector n is given by r ◊ n = d

Vectors 

N n

P

r

5.7

Let a and b be two non-zero vectors and q the angle between them. Its scalar product is denoted as a ◊ b and is defined as a ◊ b = ab cos (q ), 0 £ q £ p.

O

Let

OP = r and ON = n

It is given that ON ^ NP NP ◊ ON = 0 (OP – ON) ◊ ON = 0 (r – n) ◊ n = 0 r ◊ n – n ◊ n = 0 r ◊ n = n◊ n r ◊ n = d.

fi fi fi fi fi fi

2.2 Geometrical interpretation

of a ◊ b

1.14.2  Equation of a plane in normal form The vector equation of a plane normal to a unit vector and at a distance from the origin is r ◊  = d.

We have a ◊ b = a b cos (q ) = a [b cos (q )] = a OM a◊b Thus, OM = ____ ​  a    ​  a◊ b Projection of b on a is ____ ​  a    ​. 

Let O be the origin and ON be the perpendicular from O to the given plane such that ON = d  . Let P be a point on the plane with position vector r so that OP = r Now, ON ^ NP

Thus, geometrically product of two vectors a and b is defined as the product of the magnitude of the first vector and the projection of the 2nd vector on the 1st vector.

2.3  Properties

of

dot product

NP ◊ ON = 0



(OP – ON) ◊ ON = 0



= ba cosq



(r – d  ) ◊ d  = 0



= ab cos q



(r ◊d  – d  ◊ d  ) = 0



fi fi

(r ◊  – d) = 0 r ◊  = d

(ii) If q acute, then a ◊ b > 0

Scalar product of two vectors 2.1 Definition If the product of two vectors is a scalar, it is known as scaler product or dot product of two vectors.

two vectors

(i) Dot product is commutative, i.e. a ◊ b = b◊ a



which is the required equation of the plane.

of

Now

(iii) (iv) (v) (vi) (vii) (viii) (ix)

b ◊ a = ba cos (– q)

= a ◊b

If q obtuse, then a ◊ b < 0 If a and b are perpendiculars, then a ◊ b = 0 If a and b are like vectors, then a ◊ b = ab If a and b are unlike vectors, then a ◊ b = – a b Maximum value of a, b is ab Minimum value of a ◊ b is – ab a ◊ a = |a|2 = a2

5.8  Integral Calculus, 3D Geometry & Vector Booster a ◊b (x) Projection of a on b = ____ ​   ​  .  |b|

Eliminating x, y and z from Eqs. (i), (ii) and (iii), we get

a. b (xi) Projection of b on a = ​ ____ ​  . |a| (xii) Orthonormal triad vectors If three vectors which are mutually perpendicular to each other, they are called orthonormal triad vectors. Let , , be three unit vectors which are mutually perpendicular to each other. Thus  .  =  .  =  .  and

a b c a⋅a a⋅b a⋅c = 0 b⋅a b⋅b b⋅c



2.4 Component vector A

of a

vector B

along and

perpendicular

to

 .  = 0 =  ◊  =  ◊ 

Therefore,





0 0

Here,

0

1 0

0

0 1

b = OM + MB Component of a vector b along a = OM

(xiii) If

a = a1 + a2 + a3



and

b = b1 + b2 + + b3 ,

then

a ◊ b = a1b2 + a2b2 + a3b3





|a| = ÷ ​ ​a  2​1​  + ​a2​2​​  +   a​ 2​3​ ​​ 

___________

|b| = ÷ ​ 

Thus,

a1b1 + a2b2 + a3b3 ___________ ___________  ​ cos (q) =​  ________________________         ​÷​a  2​1​​  + ​a2​2​  + ​    a2​3​ ​​  ​÷​b  2​1​​  + ​b2​2​​  +   b​ 2​3​ ​​ 

(xiv) Any vector a can be written as a = (a ◊  )  + (a ◊  )  + (a◊  ) 

(xv) |a + b + c| 2 = |a|2 + |b|2 + |c| 2 + 2 S (a ◊ b) (xvi) If a, b, c are coplanar vectors, then



x a + y b + z c = 0

= (OB cos q)  = (b cos q)  b a◊ b = ​_____ ​   ​    ​  a b a ◊ b = ​ ____ ​  a    ​  ​  a◊ b __ a = ​ ____ ​  a    ​  ​ ​ a ​ a ◊ b = ​ ____ ​  2 ​  ​ a. |a| Component of a vector b perpendicular to a vector a = MB

(  ) (  )



= OB – OM = b – OM



a◊ b = b – ​ ____ ​  2 ​  ​ a |a|

(  )

2.5 Physical significance two vectors

a b c a⋅a a⋅b a⋅c = 0 b⋅a b⋅b b⋅c

As we know that three coplanar vectors are always linearly dependent. Thus,

= (OM) 

(  ) (  )

___________ ​b2​1​​  + ​b2​2​  + ​    b2​3​ ​​ 

and



OB = OM + MB

1

of the

dot prodcut

F

Taking dot product a and b with Eq. (i), we get x (a ◊ a) + y (a ◊b) + z (a ◊ c) = 0

...(ii)



x (b ◊ a) + y (b ◊ b) + z (b ◊ c) = 0

...(iii)



A force acting on a particle is said to be work done if the particle is displaced in a direction which is not perpendicular to the force applied.

...(i)



of

q A

B

Vectors 

Let a force F acts on a particle P and the particle P gets displaced from the position A to B, where AB is not perpendicular to the applied force F. Let AB = d. \ Work done = F d (cos q) = F ◊ d = (Force) ◊ (Displacement). Note:  The work done by the resultant of the number of forces F1, F2, ..., Fn in a displacement d of a particle is equal to the sum of the work done by the forces separately, i.e. Work done = F1 ◊ d + F2 ◊ d + ... + Fn ◊ d.

= (F1 + F2 + ... + Fn) ◊ d



= R ◊ d

5.9

Area of a parallelogram OACB = (base) (height) = (OA) (BM) = (a) (b sin q) = (ab sin q) = |a × b| Thus, |a × b| reprtesents the area of a parallelogram with adjacent sides represented by the vectors a and b.

3.3  Properties

of

vector product

of

two vectors

(i) Vector product is not commutative, i.e. a × b π b × a (ii) a × b = – b × a (iii) If a and b are parallel vectors, then a × b = 0 (iv) If a and b are collinear vectors, then a × b = 0

where R = F1 + F2 + ... + Fn

CROSS PRODUCT OF TWO VECTORS 3.1  Introduction If the product of two vectors is a vector, it is known as the vector product or cross product or outer product of two vectors.

(v) (m a) × b = a × (m b) = m (a × b), where m is any scalar. (vi) a × (b + c) = (a × b) + (a + c). (vii) Unit vector perpendicular to the plane of a and b is a×b = ± ​ ______     ​. |a × b| (viii) A vector of the magnitude l and perpendicular to the plane of a and b is

(a × b) ±  l ​ _______ ​  . |a × b|

(ix) If q be the angle between two vectors a and b, then |a  ×  b sin (q) = ______ ​   ​  . |a||b| Let a and b be two_​ vectors. The cross product of ​_two ​_› _ › ​› › vectors is denoted as ​a  ​  × ​b  ​  and is defined as ​a  ​  × ​b  ​  = (ab sin q)  , _ ​› ​_› where q the angle between ​a  ​_​  and ​b  ​  and is unit vector › perpendicular to the plane of ​a  ​  and b. Here a, b, form a right handed system.

3.2 Geometrical Interpretation

of

×

Let OACB be a parallelogram with O origin. Let OA = a and OB = b and –AOB = q

(x) The area of DOAB is given by 1 ​ __ ​  |a × b|, 2 where OA = a, OB = b 1 (xi) The area of DABC = ​ __ ​    |a × b + b × c + c × a|, 2 position vectors of the points where a, b and c are the A, B and C, respectively. 1 (xii) The area of a parallelogram = __ ​   ​  |d1 × d2|, 2 where d 1 and d 2 are the diagonals of the parallelogram. (xiii) If A, B and C are three collinear, points then (a × b + b × c × c × a) = 0, where a, b and c are the position vectors of the points A, B and C, respectively. (xiv) A unit vector perpendicular to the plane of

5.10  Integral Calculus, 3D Geometry & Vector Booster –ABC is given by (a  × b + b × c + c × a) = ±  ​ _____________________         ​. |a × b + b × c + c + a|



(xv) If a, b and a × b form a right handed system, any vector r is a linear combination of a, b and a × b, i.e. r = x a + y b + z (a × b), where x, y and z are scalars. (xvi) Orthonormal Triad Vectors If three vectors which are mutually perpendicular to each other, they are called orthonormal triad vectors. Let , , be three unit vectors which are mutually perpendicular to each other. Thus

×

and

×

=0= = ,

= abc sin q cos j



= (a b sin q) (c cos j)



= |a × b| (c cos j)



= (area of the IIgm OALB) × (height)

,



= Volume of a parallelopiped.

– 

4.2  Properties

× ×

,

, 0

=

×

= ,

×

=

, –  0

–  0

(xvii) If a = a1 + a2 + a3 and b = b1 + b2 + b3 , then iˆ a × b = a1 b1



We know that [a, b, c] = a ◊ (b × c)

Therefore, ×

Here OA, OB and OC are the coterminous edges of a parallelopiped represented by the vectors a, b and c respectively.

kˆ a3 b3

ˆj a2 b2

( xviii) Lagranges identity For any two vectors a and b, a.a a.b (a × b)2 = (ab)2 – (a ◊ b)2 = . a.b b.b

Scalar Triple Product of Vectors



(i) Let

of

scalar triple product

vectors

a = a1i + a2 j + a3k,



b = b1i + b2 j + b3k

and

c = c1i + c2j + c3k

Then

[a b c] = a ◊ (b × c)



of

a1 = b1 c1

a2 b2 c2

a3 b3 c3

(ii) a ◊ (b × c) = b ◊ (c × a) = c ◊ (a × b) i.e.

[a b c] = [b c a] = [c a b]

(iii) a ◊ (b × c) = – b ◊ (a × c) i.e.

[a b c ] = – [b a c]

(iv) [ka b c] = k [a b c], where k Œ R

4.1  Introduction If the product of three vectors is a scalar, then it is known as scalar triple or box product or mixed product of three vectors. Let a, b and c are three vectors. Its scalar triple product is denoted as a ◊ (b × c) and is defined as a ◊ (b × c) = abc sin q cos j _ ​›

​_›

where q the angle between ​a  ​  and ​b  ​  and j the angle between c and a × b. Geometricel interpretation of [a, b, c]

(v) [la mb nc] = lmn [a b c] [a + b + c, d] = [a, c, d] + [b, c, d] If any two vectors are same, then [a, b, c] = 0 If any two vectors are parallel or collinear, then [a, b, c] = 0 If any one of them be a zero vector, then [a, b, c] =0 (x) If a, b, c are coplanar vectors, then [a, b, c] = 0

(vi) (vii) (viii) (ix)

Vectors 

If a, b, c form a right handed system, then [a, b, c] > 0 If a, b, c form a left handed system, then [a, b, c] < 0 For any three vectors a, b and c, [a + b, b + c, c + a] = 2 [a, b, c] If a, b, c are coplanar vectors, then a + b, + b + c, c + a are also coplanar vectors If a and b are non-zero and non-collinear vectors, then [a, b, i] i + [a, b, j] j + [a, b, k] k = a × b (xvi) For any three vectors a, b, c, (xi) (xii) (xiii) (xiv) (xv)

a ⋅a a ⋅b a ⋅c [a, b, c] = b ⋅ a b ⋅ b b ⋅ c c⋅a

c⋅b

c⋅c

(xvii) If a, b, c, m, n are non-zero vectors, then a b c [a, b, c] ◊ [m × n] = a ⋅ m b ⋅ m c ⋅ m a ⋅n b⋅n c ⋅n



(xix) Any vector r can be expressed as a linear combination of three non-coplaner vectors a, b, c, then

r = ma + n b + p c

i.e.

[rbc] [rca] [rab] r = _____ ​     ​ a + ​ _____   ​   b + _____ ​   ​  c [abc] [abc] [abc]

(xx) If four points a, b, c and d are coplanar vectors, then [a b c] = [a b d] + [b c d] + [c a d]

VECTOR TRIPLE PRODUCT 5.1  Introduction If the product of three vectors is also a vector, then it is known as vector triple product. Let a, b and c be any three vectors, then its vector triple product is denoted as a × (b × c) and is defined as a × (b × c) = (a ◊ c) b – (a ◊ b) c

5.2 Geometrical r r r r

0 = l (a ◊ b) + m (a ◊ c)



l (a ◊ b) + m (a ◊ c) = 0



l (a ◊ b) = – m (a ◊ c)

(a ◊ b) (a ◊ c) ​ _____ ​ = – ​ _____     ​ = l (say) m    l Therefore,

a × (b × c) = l [(a◊c) b – (a◊b) c]

Let a = i, b = i + j and c = i + j + k Now,    i  j k (b × c) = ​ ​ 1   ​  1​    ​ ​ 0 ​   ​ = i – j 11 1

|  |

2



Let fi fi fi



significance of

a × (b × c)

= a × (b × c) ^ a and r ^ (b × c) ^ a and r lies in the plane of b and c is orthogonal to a and coplanar with b and c

5.3 Explanation

of

Vector Triple Product

Since r is coplanar with b and c, then we can write r = l b + m c Thus,

a × (b × c) = l b + m c



a ◊ (a × (b × c)) = l (a ◊ b) + m (a ◊ c)

5.11

and a × (b × c) = i × (i – j) = – i × j = – k Also, (a ◊ c) b – (a ◊ b) c = i + j – i – j – k = – k Thus,

– k = l × – k

fi Hence,

l=1 a × (b × c) = (a◊c) b – (a◊b) c

5.4  Properties

of

vector triple product

(i) A unit vector perpendicular to a and coplanar with b and c is given by



a × (b × c) ±​ ___________       ​. |a × (b × c)|

If a, b and c be three non-zero vectors, then a × (b × c) + b × (c × a) + c × (a × b) = 0 If a, b and c be three non-zero vectors, then a × (b × c) + b × (c × a) + c × (a × b) are coplaner. The vector product of three vectors is not associative, i.e. a × (b × c) π (a × b) × c (v) If a, b and c be three non-zero vectors, then [(a × b), (b × c), (c × a)] = [a, b, c]2 (ii) (iii) (iv)



Proof: We have



(b × c) × (c × a)



= d × (c × a)  (Let d = (b × c)]



= (d ◊ a) c – (d ◊ c) a



= (b × c ◊ a) c – (b × c ◊ c) a



= [a, b, c] c – 0



= [a, b, c,] c



Thus, [(a × b), (b × c), (c × a)]



= (a × b) ◊ ((b × c) × (c × a))

5.12  Integral Calculus, 3D Geometry & Vector Booster

= (a × b) ◊ [a, b, c] c



= ((a × b) ◊ c) [a, b, c]



= [a, b, c] [a, b, c]



= [a, b, c]2

(vi) If a, b and c be coplanar vectors, then (a × b), (b × c), (c × a) are also coplanar. Proof:  As we know that, if a, b, c are coplanar vec-

tors, then [a, b, c] = 0 We have [(a × b), (b × c), (c × a)]

= [a, b, c]2 = 0

Thus, (a × b), (b × c), (c × a) are coplanar. (vii) For any vector a, i × (a × i) + j × (a × j) + k × (a × k) = 2a Proof: We have i × (a × i) = (i ◊ i) a – (i ◊ a) i = a – (i◊a) i = a – a1i, where a = a1i + a 2 j + a3k Similarly, j × (a × j) = a – a2 j and

k × (a × k) = a – a3k

Thus,

i × (a × i) + j × (a × j) + k × (a × k)



= a – a1i + a – a2 j + a – a3k

= 3 a – (a1i + a2 j + a3 k) = 3 a – a = 2 a (viii) If a and b be two non-zero vectors, then i × ((a × b) × i) + j × ((a × b) × j)

+ k × [(a × b) × k] = 2 (a × b).

Proof: Replace a by a × b in property (vii), we get the required result. (ix) If a × (b × c) = (a × b) × c, then (c × a) × b = 0 Proof: We have

a × (b × c) = (a × b) × c



a × (b × c) = – c × (a × b



(a ◊ c) b – (a ◊ b) c = – (c ◊ b) a + (c ◊ a) b



– (a ◊ b) c = – (c ◊ d) a



(c ◊ b) a – (a ◊ b) c = 0



(c × a) × b = 0

(x) If a, b, c and d are four coplanar vectors then, [a, b, c] = [a, b, d] + [b, c, d] + [c, a, d]

Proof: Let the position vectors of the points A, B, C and D are a, b, c and d, respectively. Thus, AB = b – a, AC = c – a, AD = d – a Given A, B, C and D are coplanar, so, AB ◊ AC, AD are coplanar Therefore, AB ◊ (AC × AD) = 0 fi (b – a) ◊ ((c – a) × (d – a)) = 0 fi (b – a) ◊ (c × d – c × a – a × d) = 0 fi (b ◊ c × d) – (b ◊ c × a) – b ◊ (a × d) – (a ◊ c × d) = 0 fi [b, c, d] – [b, c, a] – [b, a, d] = [a, c, d] fi [b, c, d] – [b, a, d] – [a, c, d] = [b, c, a] fi [b, c, a] + [a, b, d] + [c, a, d] = [b, c, a] fi [b, c, a] = [b, c, d] + [a, b, d] + [c, a, d] fi [a, b, c] = [a, b, d] + [b, c, d] + [c, a, d] Hence, the result.

5.5 Scaler product

of

four vectors

If a, b, c and d are four non-zero vectors, then the scalar product of (a × b) and (c × d) is called scalar product of four vectors and is denoted as (a × b) ◊ (c × d) and is defined as (a ⋅ c) (a ⋅ d) (b ⋅ c) (b ⋅ c)



(a × b)◊(c × d) =

We have

(a × b) ◊ (c × d) = (a × b) ◊ p,    [Let p = (c × d)]



= a ◊ (b × p) = a ◊ (b × (c × d))



= a ◊ ((b ◊ d) c – (b ◊ c) d)



= (a ◊ c) (b ◊ d) – (a ◊ d) (b ◊ c)



=

(a ⋅ c) (a ⋅ d) (b ⋅ c) (b ⋅ c)

5.5.1 If a and b lie in a plane normal to the plane containing c and d, then (a × b) ◊ (c × d) Proof: it is given that (c × d) is perpendicular to the plane containing c and d. But a and b are normal to the plane containing c and d Thus, c and d lie in the plane containing a and b. Also (a × b) is perpendicular to the plane containing a and b. Therefore, (a × b) is perpendicular to (c × d) also. Hence,

(a × b) ◊ (c × d) = 0

Vectors 

5.5.2 If a, b, c and d are four non-zero vectors, then (a × b) ◊ (c × d) + (b × c) ◊ (a × d) + (c × a)◊(b × d) =0 Proof: We have, (a × b) ◊ (c × d) + (b × c) ◊ (a × d) + (c × a) ◊ (b × d) =

(a ⋅ c) (a ⋅ d) (b ⋅ a) (b ⋅ d) (c ⋅ b) (c ⋅ d) + + (b ⋅ c) (b ⋅ d) (c ⋅ a) (c ⋅ d) (a ⋅ b) (a ⋅ d)

= (a ◊ c) (b ◊ d) – (a ◊ d) (b ◊ c)

+ (b◊a) (c◊d) – (c◊a) (b◊d)



+ (c◊b) (a◊d) – (a◊b) (c◊d)

= 0

the plane containing a and b and the other one parallel to the plane containing c and d. 5.7.1 If a, b, c and d are four non-zero vectors, then a × [b × (c × d)] = (b ◊ d) (a × c) – (b◊c) (a × d) Proof:  We have,

a × [b × (c × d)]

= a × [(b ◊ d) c – (b ◊ c) d]

= (b ◊ d) (a × c) – (b ◊ c) (a × d) Hence, the result. 5.7.2 If a, b, c and d are coplanar vectors then (a × b) × (c × d) = 0 Proof:  As we know that (a × b) is perpendicular

5.6  Vector product

of

four vectors

If a, b, c and d are four non-zero vectors, the vector product of (a × b) and (c × d) is called the vector product of four vectors and is denoted as (a × b) × (c × d) and is defined as (a × b) × (c × d) = [a, b, d] c – [a, b, c] d

5.13

= [a, c, d] b – [b, c, d] a

to a and b vectors and (c × d) is also perpendicular to c and d vectors. Since a, b, c and d are coplanar vectors, so (a × b) and (c × d) are perpendicular to the same plane. Thus, (a × b) and (c × d) are parallel. Therefore, (a × b) × (c × d) = 0 5.7.3  If b, c and d are three non-coplanar vectors, then (a × b) × (c × d) + (c × d) + (a × d) × (b × c) is parallel to a.

Proof: We have,

Proof:  We have,

(a × b) × (c × d)

(a × b) × (c × d) = [a, b, c] c – [a, b, c] d Again, (a × c) × (d × b) = – (d × b) × (a × c) = – [d, b, c] a + [d, b, a] c = – [b, c, d] a – [a, b, d] c Also, (a × d) × (b × c) = – (b × c) × (a × d)



= p × (c × d),    [Let a × b = p]



= (p ◊ d) c – (p ◊ c) d



= ((a × b) ◊ d) c – ((a × b) ◊ c) d



= [a, b, d] c – [a, b, c] d

Also,

(a × b) × (c × d)



= (a × b) × q,   [Let q = (c × d)]



= (a◊q) b – (b◊q) a



= [a◊(c × d)] b – [b◊(c × d)] a

= [a, c, d] b – [b, c, d] a Hence, the result.

5.7 Geometrical interpretation

of

(a × b) × (c × d )

(a × b) × (c × d) is a vector perpendicular to (a × b) and (c × d). But (a × b) is perpendicular to the plane containing a and b. Thus, (a × b) × (c × d) represents a vector coplanar with a and b. Similarly (a × b) × (c × d) represents a vector coplanar with c and d. Hence, (a × b) × (c × d) represents a vector parallel to the line of intersections of two planes, one being parallel to



= – [b, c, d] a + [b, c, a] d



= – [b, c, d] a + [a, b, c] d

...(i)

...(ii)

...(iii)

Adding Eqs. (i), (ii) and (iii), we get (a × b) × (c × d) + (a × c) × (d × b) + (a × d) × (b × c) = – 2 [b, c, d] a Therefore, (a × b) × (c × d) + (a × c) × (d × b) + (a × d) × (b × c) is parallel to a.

5.8 Reciprocal system

of

vectors

Let a, b and c be three non-zero vectors such that [a, b, c] π 0. The reciprocal system of vectors are denoted as a¢, b¢, c¢ and are defined as b×c c  × a a×b a¢ = ​ _______     ​, b¢  = ​ _______      ​ and c¢ = ​ _______      ​. [a, b, c] [a, b, c] [a, b, c]

5.14  Integral Calculus, 3D Geometry & Vector Booster

Properties

of

reciprocal system

of

v ectors

If a, b, c and a¢, b¢, c¢ be reciprocal system of vectors, then (i) a ◊ a¢ = 1 = b ◊ b¢ = c ◊c¢ Proof:  We have,

( 

)

(b × c◊a) c – (b × c ◊ c) a = ​  ____________________      ​    [a, b, c]2

a ◊ (b × c) = _________ ​   ​     [a, b, c]

[a,  b,  c] c – 0 = ​ ____________        ​ [a, b, c]2 c = _______ ​       ​ [a, b, c] a Similarly, b¢ × c¢ = _______ ​       ​ [a, b, c]

[a,  b,  c] = ________ ​     ​ = 1 [a, b, c] Similarly, b ◊ b¢ = 1 and c ◊ c¢ = 1 (ii) a ◊ a¢ + b ◊ b¢ + c ◊ c¢ = 0 (iii) a ◊ b¢ = 0 = a ◊ c¢, b ◊ c¢ = 0 = b ◊ a¢ and c ◊ a¢ = 0 = c ◊ b¢



( 

)

c×a a ◊ b¢ = a ◊ ​ ​ _______     ​  ​ [a, b, c]

( 

)

( 

( 

)

)

[a¢, b¢, c¢] = a¢◊(b¢ × c¢)

)

c×a b×c a×b = ​ _______     ​ ◊ ​ ​ ________     ​  × ​ _______      ​  ​ [a, b, c] [a, b, c,] [a, b, c] 1 = ________ ​       ​ [a × b, b × c, c × a] [a, b, c]3 [a,  b,  c,]2 = _________ ​   ​  [a, b, c]3 1 = _______ ​      [a, b, c]  ​Thus, [a¢, b¢, c¢] [a, b, c] = 1 (v) a × a¢ + b × b¢ + c × c¢ = 0 a+b+c (vi) a¢ × b¢ + b¢ × c¢ + c¢ + a¢ = ​ _________ ​     [a, b, c] Proof:  We have,

b×c c×a a¢ × b¢ = ​ _______     ​ × ​ ________     ​ [a, b, c] [a, b, c,]

Hence,

a  + b + c a¢, × b¢ + b¢ × c¢ + c¢ × a¢ = ​ _________ ​     [a, b, c]

(x) If a, b and c be three non-coplanar vectors and a¢, b¢ and c¢ be its reciprocal system of vectors, then any vector r can be expressed as r = (r ◊ a¢) a + (r ◊ b¢) b + (r ◊ c¢) c

Proof:  We have,

( 

b c¢ × a¢ = _______ ​       ​ [a, b, c]

(ix) If a¢, b¢ and c¢ be the reciprocal system of a, b and c, then a, b and c is the reciprocal system of a¢, b¢ and c¢,

a×b a◊c¢ = a ◊ ​ ​ _______      ​  ​ [a, b, c]

a ◊ (a × b) = ​ ​ _________ ​     ​= 0 [a, b, c] (iv) [a, b, c] [a¢, b¢, c¢] = 1

and

(vii) (a + b + c) ◊ (a¢+ b¢ + c¢) = 3. (viii) The system of unit vectors i, j, k be its own reciprocal.

a ◊ (c × a) = ​ _________ ​   ​     ​= 0 [a, b, c] Also,

d  ×  (c × a) = ​ __________    ​  [a, b, c]2 (d ◊ a) c  – (d ◊ c) a = ​ ______________        ​ [a, b, c]2

b×c a ◊ a¢ = a ◊ ​​ _______     ​  ​ [a, b, c]

Proof:  We have

(b × c)  ×  (c × a) = ​ _______________        ​ [a, b, c]2

or r = (r ◊ a) a¢ + (r ◊ b) b¢ + (r ◊ c) c¢ Proof:  Since a, b, c be three non-coplanar vectors, any vector r can be expressed as a linear combination of a, b and c. Thus, r = x a + y b + z c, where x, y, z Œ R Taking dot product of (b × c), we have r ◊ (b × c) = x a ◊ (b × c) + y b ◊ (b × c) + z c ◊ (b × c) fi r ◊ (b × c) = x a ◊ (b × c) + 0 + 0 = x a ◊ (b × c) fi r ◊ (b × c) = x a ◊ (b × c) r ◊ (b × c) r ◊ (b × c) fi x = ​ ________   ​ = ​ ________ ​  a ◊ (b × c) [a, b, c] fi x = r ◊ a¢ Similarly, y = r◊b¢, = z = r ◊ c¢ (xi) If a, b and c be three non-coplanar vectors, any vector r can be expressed as a linear combination of a, b and a × b, i.e. r = x a + y b + z (a × b).

Vectors 

5.15

Exercises (Problems based on Fundamentals)

DOT PRODUCT OF VECTORS 1. If a = 3 i – 2 j + k and b = 2 i + 3 j, find the angle between a and b. 2. If a = i + 2 j – 3 k and b = 3 i + j + 2 k, prove that (a + b) is perpendicular to (a – b). 3. If |a| = 3, |b| = 4, |c| = 5 such that (a + b + c) = 0, find the value of (a ◊ b + b ◊ c + c ◊ a). 4. If a, b and c are mutually perpendicular unit vectors, find |a + b – c|. 5. Find the projection of the vector a = 3 i + j + 2 k on the vector b = j – 2 j = i – j. 6. Find the angle between the vectors a and b such that 2a + b = i + j and a + 2 b = i – j. 7. Find the unit vector perpendicular to each of the vectors i – 2 j + k and 2 i + j – 3 k. 8. Find a unit vector in xy-plane that makes an angle of 45° with the vector i + j and an angle of 60° with the vector 3 i – 4 j. 9. If a, b and c be mutually perpendicular vectors of equal magnitude, show that (a + b + c) is equally inclined to a, b and c. ___ 10. Find a vector of magnitude ​÷51 ​    which makes equal angles with the vectors 1 1 a = __ ​   ​  (i – 2 j + 2 k), b = __ ​   ​  (– 4 i – 3 k) and c = j. 3 5 11. Find a vector of magnitude 4, which is equally inclined to vectors a = i + j, b = j + k and c = k + i. 12. Find a unit vector in the plane of (i + 2 j + k) and (i + j + 2 k) and perpendicular to (2 i + j + k). 13. If and are unit vectors and q the angle between q 1 them, show that sin ​ __ ​   ​   ​ = __ ​    ​ | – |. 2 2 14. If , and are unit vectors perpendicular to each other, find the value of ( – ) ◊ ( – ). 15. Let and be two unit vectors and q the angle between them. If ( + ) is a unit vector, find sin (q). 16. If and be two unit vectors inclined to x-axis at angles 30° and 120° respectively, find the value of | + |. 17. If a and b are two vectors and their lengths are a a b 2 a–b2 and b, show that ​​ __ ​  2  ​ – __ ​  2  ​   ​​ ​ = ​​ ​ _____    ​  ​​ ​ ab a b 18. Let u = i + j, v = i – j, and w = i + 2 j + 3 k. If is a unit vector such that u ◊  = 0 and v ◊  = 0, then find |w ◊  |.

(  )

( 

) (  )

19. If a, b and c be unit vectors such that a is perpendicular to the plane of b and c and the angle between p b and c is __ ​   ​ , find |a + b + c|. 3 20. If |a| = 3, |b| = 4, |c| = 5 and a ^ (b + c) b ^ (c + a) and c ^ (a + b), find |a + b + c|. 21. Let and are two unit vectors and the angle between them is 60°, find the value of | + / – |. ___

​ 17 ​     ÷ 22. If |a| = 1, |b| = 4, |c| = ____ ​   ​   such that (a + b + 3 c) 3 = 0, find the value of (a ◊ b + b ◊ c + c ◊ a). 23. Constant forces F1 = i – j + k, F2 = – i + 2 j – k and F3 = j – k act on a particle at a point A. Find the work done when the particle is displaced from the point A to B where A = 4 i – 3 j – 2 k and B = 6 i + j – 3 k. 24. Prove that, by vector method, b2 + c2 – a2 cos (A) = ​ ___________     ​.  2bc 25. 26. 27.

Prove that, by vector method, a = b cos (C) + c cos (B). Prove that, by vector method, cos (A – B) = cos A ◊ cos B + sin A ◊ sin B Prove that, by vector method,

cos (A + B) = cos (A) cos (B) – sin (A) sin (b)

Cross product of two vectors 28. If a = 2 i – j + k, and b = i – 3 j – 5 k, find a × b. 29. Find the area of a triangle whose adjacent sides are determined by the vectors a = 3 i + 4 j and b = 3 i – 3 j + k. 30. Find the area of a parallelogram whose adjacent sides are determined by the vectors a = i + 2 j + 3 k and b = 3 i – 2 j + k. 31. Find the area of a parallelogram whose diagonals are given by the vectors a = i + j + k and b = 3 i – 4 j + k. 32. Find the area of a triangle whose vertices are (3, – 1, 2), (1, – 1, – 1) and (4, – 3, 1). 33. Find a unit vector perpendicular to each of the vectors 2 i – j + k and 3 i – 4 j – k. 34. Prove that a × (b + c) + b × (c + a) + c × (a + b) = 0. 35. If a × b = c × d and a × c = b × d, show that (a – d) is parallel to (b – c). 36. If (a + b + c) = 0, prove that a × b = b × c = c × a.

5.16  Integral Calculus, 3D Geometry & Vector Booster 37. Prove that |a × |2 + |a × |2 + |a × |2 = 2a2. 38. Let , and be three unit vectors such that p a ◊ b = a ◊ c = 0 and the angle between b and c is __ ​   ​ , 6 prove that a = ± 2 (b × c). 39. If a × b = a × c, a π 0 and b π c, prove that b = c +  a, " Œ R. 40. Let A = 2 i + k, B = i + j + k and C = 4 i – 3 j + 7 k. Find a vector R satisfying R × b = R × C and R ◊ A = 1. 41. Find the number of vectors of unit length perpendicular to the vectors a = i + j and b = j + k. 42. Let a = x i + y j + z k and b = j, find a vector c for which a, b and c form a right handed system. 43. Let a = i + j and b = 2 j – k. Find the point of intersection of the lines r × a = b × a and r × b = a × b. 44. If a and b are two non-zero vectors such that r ◊ a = 0 and r × a = b, find r. 45. Let a = i + j + k, c = j – k such that a ◊ b = 3 and a × b = c, find b. 46. Find the angle between the vectors [a – (a ◊ b) b] and (a × b). 47. Find the area of a square whose one diagonal is (3 i + 4 j). 48. A constant force F = 3 i + 2 j – 4 is applied at the point (1, – 2, 2). Find the vector moment of F about the point (2, – 1, 3). 49. Forces (5 i + k) and (– 5 i – k) act at the points P (9, – 1, 2) and Q (3, – 2, 1), respectively. Find the moment of the couple. 50. Find the torque about the point 2 i + j + k of a force 4 i + k acting through the point (i – j + 2 k). 51. In a D ABC, a = BC, b = CA and c = AB, by using vector method, prove that a b c ​ ____      ​ =​ ____     ​ = _____ ​     ​.  sin A sin B sin C

Find [a, b + c, a + b + c]. If a, b, and c be three non-coplanar vectors, find [a + b + c, a + b, a + c]. Find the value of [a – b, b – c, c – a]. If a, b and c are three non-zero and non-coplanar vectors such that a ◊ (b × c) = |a| |b| |c|, find the angle between a and b. 60. For non-zero vectors a, b and c, if a ◊ (b × c) = 4, 1 find the value of __ ​   ​  (b × c) ◊ (a + b + c). 2 56. 57. 58. 59.

61. If the vectors 2 i – j + l k, i – j + 2 k and 3 i – 2 j + k are coplanar vectors, find the value of l. 62. Find the volume of a parallelopiped whose coterminous edges are a = 3 i – 2 j + k, b = i + j + k and c = i + j – 2 k. 63. Find the volume of a parallelopiped whose coterminous edges are a + b = i + j – k, b + c = 2 i + 3 j – 4 k and c + a = 3 i + 4 j – 7 k. 64. The volume of a parallelopiped determined by the vectors a, b and c is 5. Find the volume of the parallelopiped determined by the vectors 3 (a + b), (b + c) and 2 (c + a). 65. If the volume of the parallelopiped formed by the vectors i + a j + k, j + a k and a i + k, a > 0, is minimum, find the value of a. 66. Let V1 be the volume of the parallelopiped formed by three non-zero vectors a, b and c and V2 be the volume of the parallelopiped formed by the vectors p = a – 2 b + 2 c, q = 3 a – b + c and r = a – b + V1 2 c. Find ​ ___ ​   ​  ​. V2

(  )

67. If the vectors a i + j + k, i + b j + k and i + j + c k, (a, b, c π 1) are coplanar, then find the value 1 1 1 of ​ _____     ​ + _____ ​       ​ + _____ ​       ​. 1–a 1–b 1–c 68. For any three vectors a, b and c, prove that

52. Prove, by the vector method,

sin (A – B) = sin A cos B – cos A sin B.

53. Prove, by vector method,

sin (A + B) = sin A cos B + cos A sin B

SCALER TRIPLE PRODUCT OF VECTORS 54. For any three vectors a, b and c, prove that [a + b, b + c, c + a] = 2 [a, b, c]. 55. If ,

and

be unit coplanar vectors, find

[2a – b, 2b – c, 2c – a].



a ⋅a a ⋅b a ⋅c [a, b, c] = b ⋅ a b ⋅ b b ⋅ c c⋅a c⋅b c⋅c 2

69. The edges of a parallelopiped are of unit length and parallel to non-coplaner unit vectors a, b and c such 1 that a ◊ b = b ◊ c = c ◊ a = __ ​   ​ . Find the volume of the 2 parallelopiped. 70. If a and b be non-zero and non-collinear vectors, prove that [a, b, i] i + [a, b, j] j + [a, b, k] k = a × b. 71. If a, b, c, m and n are non-zero vectors, prove that

Vectors 

a b c [a, b, c] (m × n) = a ◊ m b ◊ m c ◊ m a ◊n b◊n c ◊n 72. If a vector r can be expressed as a linear combination of three non-coplanar vectors a, b and c, prove that [r b c] r = ______ ​     ​ a + [a b c]

[r c a] ______ ​     ​   b+ [a b c]

[r a b] ______ ​   ​   c [a b c]

73. If a and b be unit vectors such that 1 [a, b, c] = __ ​    ​, find the angle between a and b. 4 74. If a = x (a + b) + y (b × c) + z (c × a) and [a, b, c] 1 = __ ​   ​ , find (x + y + z). 8 75. Find the volume of the tetrahedron with edges a = i + j + k, b = i – j + k and c = i + 2 j – k. 76. If a, b and c are unit vectors satisfying |a – b|2 + |b – c|2 + |c – a|2 = 9, find |2a + 5b + 5c|. 77. The three vectors i + j, j + k, k + i taken two at a time form three planes. The three unit vectors drawn perpendicular to three planes form a parallelopiped. 4 Prove that its volume is ___ ​  __  ​ c.u. ​ 3 ​    ÷ 78. If a, b and c are three non-coplanar vectors such that a + b + c = a d and b + c + d = b a, find a + b + c + d + 4.

VECTOR TRIPLE PRODUCT 79. Find a unit vector which is orthogonal to 3 i + 2 j + 6 k and is coplanar with the vectors 2 i + j + k and i – j + k. 80. If a = i + j + k, a ◊ b = 1, a × b = j – k, find b. 81. If a, b and c are three non-parallel unit vectors such 1 that (a × (b × c)) = ​ __ ​  b, find the angles which a 2 makes with b and c. 82. If a, b and c are three non-coplanar unit vectors such that 1 (a × (b × c)) = ___ ​  __  ​  (b + c), ​ 2 ​    ÷ where b and c are non parallel, find the angle between a and b. 83. If a × (a × c) + b = 0 such that |a| = 1 |b| and |c| = 2, find the angle between a and c.

If q be the angle between b and c, find the value of sin q. 86. If a and b be mutually perpendicular unit vectors satisfying r ◊ a = 0, r ◊ b = 1 and [r, a, b] = 1, find r. 87. If |a| = 7, |b| = 1 = |c| and a × (b × c) + b × (c × a) 1 = ​ __ ​  a, where a and b are non-collinear vectors, find 2 |a × c|. 88. Simplify: (d + a) ◊ a × b × (c × d)]. 89. Solve: p x + (x × a) = b. 90. If [x a b] = 0, x ◊ a = 0, x ◊ b = 1, a ◊ b = 0, find x. 91. Find the value of [a × (b + c), b × (c – 2a), c × (a + 3b)] if [a, b, c] = 2. 92. Find the value of [(a – b), (a – b – c), (a + 2b – c)] if [a, b, c]. 93. Find the value of [(2a × 3b), (3b × 4c), (4c × 2a)] if [a, b, c].

Vector equations 94. Solve: x × b = a × b, where a and b are non-zero and non-collinear vectors. 95. Solve: x × a = b and x ◊ a = 0. 96. Solve: x × b = a × b and x ◊ c = 0, where c is not perpendicular to b. 97. Solve: x a + y b + z c = d. 98. Solve: x + y = a, x × y = b, x ◊ a = 1





84. If a × (b × c) is perpendicular to (a × b) × c, prove that (a ◊ c) = 0. 85. Let a, b and c be three non-zero vectors such that



1 (a × b) × c = __ ​   ​   |b| |c| |a. 3





5.17



​_›

Mixed Problems (More than one options are correct) _ ​›

​› ​_› _

1. If ​a  ​  and ​b  ​  are two vectors such that ​a  ​,  ​b  ​  < 0 and ​› ​_› _

​_›

_ ​›

​_›

_ ​›

|​a  ​  ◊ ​b  ​|  < |​a  ​  × ​b  ​| , the angle between ​a  ​  and ​b  ​  is p (a) p (b) ​ __ ​  3 p 3p __ ___ (c) ​   ​   (d) ​   ​  4 ​_ 4 ​_› › ​_› 2. Let ​a   ​, ​b   ​and ​c   ​are three vectors of equal magnitudes. p The angle between each pair of vectors is __ ​   ​  such that 3 _ ​ __ › ​_› ​_› |​a   ​ + ​b   ​ + c| = ÷ ​ 6 ​    , the value of (|​a   ​| + 2) is (a) 2 (b) 3 (c) 1 (d) 0 3. If a, b and c are three unit vectors inclined to each other at angle q, the maximum value of q is p p (a) ​ __ ​   (b) ​ __ ​  3 2 2p 5p ___ ___ (c) ​   ​   (d) ​   ​  3 6 4. The number of vectors of unit length perpendicular _ ​ › ​_› to vectors ​a   ​ = (1, 1, 0) and ​b   ​ = (0, 1, 1) is

5.18  Integral Calculus, 3D Geometry & Vector Booster







(a) 1 (b) 2 (c) 3 (d) infinite 5. Let a, b and g be distinct real numbers. The points with position vectors a  , b  , g  , b  , g  , a  and g  , a  , b  (a) are collinear (b) form an equilateral triangle (c) form a scalene triangle (d) form a right-angle triangle. ​_›

​_›

6. If P and Q have position vectors ​a  ​  and​___ ​b  ​  relative to › the origin O such that X and Y divide ​PQ​  internally and externally respectively in the ratio 2 :1, the ​___› vector XY​ ​   is _ 3 _​ › ​_› 4 ​_› ​ › (b) ​ __ ​  (​a   ​ – ​b   ​) (a) ​ __ ​  (​b   ​ – ​a   ​) 3 2 _ 5 ​_› ​_› 4 ​ › ​_› __ __ (c) ​   ​  (​b   ​ – ​a   ​) (d) ​   ​  (​b   ​ – ​a   ​) 3 6 7. If _​the​_› three points with position vectors ​_› _ _ ​› ​ › ​_› › (1, ​a   ​, ​b   ​)_​, (​a   ​, ​_›2, ​b   ​) and (​a   ​, ​b   ​, 3) are collinear, the › value of ​a ​   + ​b   ​ is (a) 1 (b) 4 (c) 5 (d) none. 8. The acite angle between the medians drawn from the acute angle of an isosceles right-angled triangle is 3 2 (a) cos– 1 ​ __ ​   ​   ​ (b) cos– 1 ​ __ ​   ​   ​ 3 4 4 2 – 1 __ – 1 __ (c) cos  ​ ​   ​   ​ (d) cos  ​ ​   ​   ​ 3 5

(  ) (  )

​_›

(  ) (  )

​_›

​_›

​_›

​__›

12. Let ​u  ​  = + , ​v  ​  = – and w​ ​    = – 2 + 3 _ _​_› ​› If is a unit vector such that ​u  ​  ◊  , the value of |​w​   ◊  | is (a) 1 (b) 2 (c) 3 (d) 0 ​_›

_ ​›

_ ​›

_ ​›

​_›

_ ​›

13. If ​a  ​  + ​b  ​ _​+ ​c  ​  = ​_0, |​a  ​|  = 3, |​b  ​|  = 5, |​c  ​|  = 7, the angle › › between ​a  ​  and ​b  ​  is p 2p (a) ​ __ ​   (b) ​ ___ ​  3 6 5p p (c) ​ ___ ​   (d) ​ __ ​  3 3 ​_› ​_›

​_›

14. Let ​a  ​,  ​b  ​  and ​c  ​  be three vectors of the lengths 3, 4 ​_› ​_› ​_› ​_› and 5 respectively. Let ​a  ​ ​_be perpendicular to ​b  ​ ​_+ ​c  ​,  ​b  ​  › › ​_› ​_› ​_› ​_› ​_› ​_› to ​a   ​ + ​c   ​ and ​c   ​ to ​a   ​ + ​b   ​, the value of |​a   ​ + ​b   ​ + ​c   ​| is __ __ (a) 2 ​÷5 ​    (b) 2 ​÷2 ​    __

__

(c) 10 ​÷5 ​   



(d) 5​÷2 ​   

​_›

15. If a vector ​a   ​ of length 50 is collinear with the ​_› vector ​b  ​  = 6  – 8 – and makes an acute angle with the positive z-axis, then ​_›

​_›

​_›

​_›



(a) ​a  ​  = 4​b ​   



(c) ​b  ​  = 4 ​a  ​  



​_›

(b) a = – 4 ​b  ​  (d) none.

_ ​› 16. Let and ​b  ​  be two non-parallel unit vectors in a _ ​› ​_› ​ plane. If (a ​a  ​  + ​b  ​)  bisects the internal angle between​ ​_› _› a  ​  and ​b  ​,  then a is ​_› ​a  ​ 

9. If ​e  ​1  and ​e  ​2  are two unit vectors and q the angle q between them, then cos ​ __ ​   ​   ​ is 2 ​_› ​_› 1 ​_› 1 ​_› __ (a) ​   ​  |​e   ​1 + ​e   ​2| (b) ​ __ ​  |​e   ​1 – ​e  ​ 2| 2 2 ​_› 1 ​_› 1 ​_› ​_› __ __ (c) ​   ​  |​e   ​1 × ​e   ​2| (d) ​   ​  |​e   ​1 ◊ ​e   ​2| 2 2



(a) 1/2

(b) 1



(c) 2

(d) – 1

10. If the vectors (3 ​p  ​  + ​q  ​)  , (5 ​p  ​  – 3 ​q  ​)  and (2 ​p  ​  + ​q  ​)  , ​_› ​_› (4 ​p   ​– 2 ​q  ​)  are pairwise mutually perpendicular vectors ​_› ​_› such that q the angle between ​p   ​ and ​q   ​, the value of sin (q ) is







(  )

​_›

___



​÷55 ​     (a) ​ ____  ​     4 3 (c) ​ ___  ​   16

​_›

​_›

​_›

​_›

​_›

___

​÷55 ​     (b) ​ ____  ​    8 ____ ​ 247 ​     ÷ (d) ​ _____  ​    16

11. The set of values of c for which the angle between the vectors c x  – 6 + 3 , x  – 2 + 2c x  is acute for every x in R is 4 4 (a) ​ 0, ​ __ ​   ​ (b) ​ 0, __ ​   ​   ​ 3 3 11 4 4 (c) ​ ___ ​   ​ , ​ __ ​   ​ (d) ​ ​ 0, __ ​   ​   ​ ​ 9 3 ​ 3 ​

(  ) (  )

[  ] [  )

17. Let , and are three unit vectors such that ( + + ) is also a unit vector. If pairwise angle between , , are q1, q2 and q3, spectively, the value of cos (q1) + cos (q 2) + cos (q3) is (a) 3 (c) 1

​_› ​_›

(b) – 3 (d) – 1 ​_›

18. Given three vectors ​a  ​,  ​b  ​ and​_ ​c  ​ each two of which are › ​_› ​_› non-collinear. Further (​a  ​  + ​b  ​)  is collinear with ​c  ​  and ​_› ​_› ​_› ​_› ​_› (​c   ​ +__ ​b   ​) is collinear with​_ ​a   ​ and each length of ​a   ​, ​b  ​  _ ​ › ​_› ​_› › ​_› ​_› is ÷ ​ 2 ​    . The value of (​a   ​ ◊ ​b ​   + ​b   ​ ◊ ​c   ​ + ​c   ​ ◊ ​a   ​) is

(a) 3

(b) – 3



(c) 0

(d) not defined.

19 ___ (a) – ​ _____   ​  5​÷43 ​    

(b) 0

19.



_ _ _ ​› _ ​ › ​_ ​› ​_› ​_› ​_› ​› ​_› ​_› › If ​p  ​  =_​ 3​a  ​  – 5​b  ​,  ​q  ​  = 2​a  ​  + ​b  ​,  ​r ​   = ​a  ​  + 4​b  ​  and ​s ​   = _ _ _ › ​› ​› ​› – ​a  ​  + ​b  ​  are four vectors such that sine of (​ p ​    and ​q  ​)  _ _ ​› ​› is 1 and sine of (​r ​   and ​s ​ )  is also 1, the value of _ ​› _ ​› cosine of (​a  ​  and ​b  ​)  is

Vectors 



19 ___ (d) ​ _____   ​  5​÷43 ​    

(c) 1

​_› _ ​› 20. If ​a  ​  and ​b  ​  are non-zero and non-collinear and the ​_› ​_› _ _ ​› ​› linear combination (2x – y) ​a  ​  + 4​b  ​  = 5​ a  ​  + (x – 2y) ​b  ​ 

holds good for all real x and y, then the value of x + y is (a) – 3 (b) 1 (c) 17 (d) 3. _ _ ​› ​› 21. If ​p   ​ the position vector of the orthocentre and ​q   ​ the position vector of the centroid of _​the triangle ABC _ ​› › and origin O is the circumcentre. If ​p   ​= k ​q   ​, the value of k is (a) 3 (b) 2

(c) 1/3

(d) 2/3

(c) 275 (d) 300 28. The set of values of m for which the vectors + m  , + + (m + 1)  and coplanar, is



5.19 +

+ m  are non-



(a) R

(b) R – {1}



(b) R – {– 2}

(d) j

_ ​› 29. Given ​a  ​  = x  + y  + z  , _ ​› _ _ ​› ​› _ ​› ​b  ​  = – + , ​c  ​  = + 2  , (​a  ​  ◊ ​c  ​)  = ​_› _ ​› p between ​a  ​  and ​b  ​  is __ ​   ​ , then 2 ​_› ​_› ​_› 2 ​_› ​_› ​_› (a) [​a  ​,  ​b  ​,  ​c  ​​]​   ​ = |​a  ​|  (b) [​a  ​,  ​b  ​,  _ _ ​ › ​_› _ ​› 2 ​ › ​_› (c) [​a  ​,  ​b  ​,  ​c  ​​]​   ​ = 0 (d) [​a  ​,  ​b  ​, 

4 and the angle _ ​_› 2 ​› ​c  ​​]​   ​ = |​a  ​|  _ _ ​› ​› ​c  ​]  = |​a  ​​|​ 2​

22. If the vectors – 2x  – 3y  and +3x  + 2y  are orthogonal to each other, the locus of the point is (a) a/an circle (b) ellipse (c) a/an parabola (d) straight line.

30. Let a, b, c be three distinct non-negative numbers. If the vectors a  + a  + a  , + and c  + c  + b  lie in a plane, then c is

23. A tangent is drawn to the curve x2 y = 8 at a point A (x1, y1) where x1 = 2. The tangent cuts the x-axis



(a) AM of a and b

(b) GM of a and b



(c) HM of a and b

(d) equal to zero.

​___› ​___›

at a point B. The value of (​AB​   ◊ ​OB​ )  is

(a) 3 (c) 6

(b) – 3 (d) – 6.

_ _ ​› ​› 24. If ​e  ​ 1 and ​e  ​ 2 be two unit vectors and q the angle

(  )

q between them, then sin ​ __ ​   ​   ​ is 2

​_› 1 ​_› (a) ​ __ ​  |​e  ​1  + ​e  ​2  | 2 _ ​› 1 _​ › (c) ​ __ ​  |​e   ​1 × ​e  ​ 2| 2

​_› 1 ​_› (b) ​ __ ​  |​e  ​1  – ​e  ​2  | 2 1 _​ › _​ › (d) ​ __ ​  |​e   ​1 ◊ ​e  ​ 2| 2

_ ​› _ ​_› ​_› _ _ _ _ ​› ​› ​› ​› ​› 25. If ​u  ​  = ​a  ​  – ​b  ​,  ​v  ​  = ​a  ​  + ​b  ​  and |​a  ​|  = 2 = |​b  ​|  ​_› ​_› ​_› ​_› = (​a  ​  ◊ ​b  ​)  , the value of |​u  ​  × ​v  ​|  is



(a) 0 (c) 4

(b) 2 (d) 16.



(a) (5, 2, 2)

( 

)

2 5 __ 2 (c)  ​ __ ​   ​ , __ ​   ​ , ​    ​  ​ 3 3 3

(  ) 5 2 2 __ (d) ​( __ ​   ​ , __ ​   ​ , ​    ​  ​. 3 3 3)

5 2 __ 2 (b) ​ __ ​   ​ , __ ​    ​, ​    ​  ​ 3 3 3

​_›

​_›

​__›

​_›

​_›

​__›

​_›

​__›

​_›

​_›

​_›

​__›



(a) ​u  ​  ◊ (​v  ​  × w​ ​  ) 

(b) (​v  ​  × w​ ​  )   ◊ ​u  ​ 



(c) ​v  ​  ◊ (​u  ​  × w​ ​  ) 

(d) (​u  ​  × ​v  ​)   ◊ ​w​  

32. The vector perpendicular to the vectors ​_› ​_› ​a   ​ = (2, – 3, 1), ​b   ​ = (1, – 2, 3) and satisfies the ​_›

​_›

condition ​c  ​  ◊ ( + 2  + 7  ), the vector ​c  ​  is

(a) (7, 5, 1)

(b) (– 7, – 5, 1)



(c) (1, 1, – 1)

(d) (1, 2, 3)



_ ​› ​_› ​_› 33. If ​a  ​  = ( + + ) and ​b  ​  = ( + 2  + ), the vector ​c  ​  _ ​› _ ​_› ​_› ​› ​_› such that ​a  ​  ◊ ​c  ​  = 2 and ​a  ​  × ​c  ​  = ​b  ​  is

1 1 (a) ​ __ ​ ​ ( 3    + 2    + 5   )​ (b) ​ __ ​ ​ ( –    + 2    + 5   )​ 3 3 1 1 (c) ​ __ ​ ​ (    + 2    + 5   )​ (d) ​ __ ​ ​ ( 3    + 2    +  )​ 3 3 34. The altitude of a parallelopiped whose coterminous



​_›

(a) 225

_​_›

and ​C​   = ( +

_ ​›

_ ​›

+ 3  ) with ​A  ​  and ​B  ​  as the sides of

the base of the parallelopiped, is



(b) 250

​_›

edges are the vectors ​A   ​= ( + + ) ​B  ​ = (2  + 4  – )

_ _ ​› ​› ​_› ​_› 27. If |​a  ​|  = 1, |​b  ​|  = 2 and and the angle between ​a  ​  and ​b  ​  ​_› ​_› _ _ ​› ​› 2p is ___ ​   ​ , the value of {(​a  ​  + 3 ​b  ​)  × (3 ​a  ​  – ​b  ​)  ​}2​ ​ is

3



31. For three vectors which of the following expressions is not equal to any of the following three?

​_› _ ​› 26. If ​a  ​  = (1, 1, 1) are given vectors, then a vector ​b  ​  ​_› _ _ _ ​› ​› ​ › ​_› satisfying the conditions ​a  ​  × ​b  ​  = ​c  ​  and ​a  ​  ◊ ​b   ​ = 3

is

​_› _ ​ › _​_› ​u  ​,  ​v  ​,  w​ ​  , 

2 ___ (a) ​ ____    ​  ​÷19 ​    

4 ___ (b) ​ ____    ​  ​÷19 ​    

3 ___ (c) ​ ____    ​   ​÷19 ​    

2​÷2 ​    ___ ​  (d) ​ ____ . ​÷19 ​    

__

5.20  Integral Calculus, 3D Geometry & Vector Booster 2. Let a and b are two vectors satisfying the conditions a × b = 0. Does it imply that one of the vectors a + a  + b  are coplanar and a, b and c are distinct, and b must be a null vector. Give one example in then support of your answer. (a) a3 + b3 + c3 = 1 (b) a + b + c = 1 [Roorkee-JEE, 1984] 3. Constant forces P = 2 i – 5 j + 6 k and Q = – i + 1 __ 1 __ 1 (c) ​ __ (d) a + b + c = 0. 2 j – k act on a particle. Determine the work done a ​ + ​ b ​ + ​ c ​ = 1 when the particle is displaced from a point A with ​_› ​_› ​__› ​_› ​_› ​__› If ​u  ​,  ​v  ​,  w​ ​    are vectors such that ​u  ​  + ​v  ​  + w​ ​    = 0, then position vector 4 i – 3 j – 2 k to a point B with a ​_› ​_› ​_› ​__› ​__› ​_› position vector 6 i + j – 3 k. Î​u  ​  + ​v  ​,  ​v  ​  + w​ ​  ,  w​ ​    + ​u  ​˚  is [Roorkee-JEE, 1984] (a) 1 (b) 0 4. Prove that for any two vectors a and b (c) –1 (d) None. _ (a × b)2 = a2b2 – (a ◊ b)2 ​_› ​ › ​_› If ​a   ​, ​b   ​ and ​c ​   are three mutually perpendicular [Roorkee-JEE, 1985] _ _ _ ​› _ ​› _ ​› ​› _ ​ › ​_› ​› _ ​› _ ​› vectors, then (​r ​   ◊ ​a  ​)   ​a  ​  + (​r ​   ◊ ​a  ​)   ​b  ​  + (​r ​   ◊ ​a  ​)   ​c  ​  is 5. If (a × b) = (b × c) π 0, show that a + c = k b, where ​_› ​_› k is a scalar. (a) ​r ​    (b) 2 ​r ​   [Roorkee-JEE, 1985] ​_› ​_› (c) – ​r ​    (d) – 2 ​r ​   6. Find the value of the constant S such that the scalar ​_› ​_› product of the vector (i + j + k) with the unit vector Let ​a  ​  = + and ​b  ​  = 2  – . The point of intersec_ _ _ ​ ​ ​ parallel to the sum of the vectors (2i + 4 j – 5k) and › › › ​_› ​_› ​_› ​_› ​_› tion of the lines ​r ​   × ​a  ​  = ​b  ​  × ​a  ​  and ​r ​   × ​b  ​  = ​a   ​ × ​b  ​  (S i + 2 j + 3k) is equal to 1. [Roorkee-JEE, 1985] is 7. Find a such that the vectors (2 i – j + k), (i + 2 j – 3k) (a) (3, – 1, 1) (b) (3, 1, – 1) and (3i + a j + 5k) are coplanar. (c) (– 3, 1, 1) (d) (– 3, – 1, – 1) [Roorkee-JEE, 1986] ​_› ​_› ​_› ​_› ​_› ​_› ​_› 8. If a and b are non-null vectors and |a + b| = |a – b|, If |​a  ​|  = 1 = |​b  ​|  and |​c  ​|  = 2 and ​a  ​  × (​a  ​  × ​c  ​)  + ​b  ​  _ show that a and b are perpendicular to each other. ​ ​_› › ​_› = ​0 ​ ,  the acute angle between ​a   ​ and ​b   ​ is [Roorkee-JEE, 1986] ___ p p 9. Find a vector of magnitude ​ 51 ​    which makes equal ÷ (a) ​ __ ​   (b) ​ __ ​  4 6 1 angles with the three vectors a = ​ __ ​  (i – 2 j + 2k), b p __ 3 (c) ​   ​   (d) p 2 1 __ = ​   ​  (– 4i – 3k) and c = j. _ ​› ​_› 5 If ​b   ​ and ​_​c   ​ are two mutually perpendicular unit vec[Roorkee-JEE, 1987] › tors and ​a   ​ is any vector, then _ ​› 10. Three vectors a = (12, 4, 3), b = (8, – 12, – 9) and ​_› _ _ ( ​ › ​_› ​_› ​› _ ​› _ ​› a ◊ ​   ​b   ​ × ​c   ​ )​ ( ​_› _​ › ) c = (33, – 4, – 24) define a parallelopiped. Evaluate       ​b   ​ × ​c   ​  ​ is (​a   ​ ◊ ​b   ​) ​b   ​ + (​a   ​ ◊ ​c   ​) ​c   ​ + _________ ​  ​_› ​_  ​ ​ (​ ​b   ​ × ​​c › 2 ​​ ​ )​ the length of its edges, area of the faces and its volume. ​_› (a) 0 (b) ​a   ​ [Roorkee-JEE, 1988] _ ​› ​_› ​__ a   ​ (c) 2 ​a  ​   (d) ​   ​  b × c c × a 2 11. It is given that x = ​  _______      ​, y = ​ _______     ​ and [a, b, c] [a, b, c] a × b z = ​ _______      ​, where a, b and c are non-coplanar [a, b, c]

35. If the vectors a  + b  + c  , b  + c  + a  and c 

36. 37. 38.

39.

40.





1. Three force vectors P, Q and R of 15 KN each acts along AB, BC and CA, respectively. The position vectors OA, OB and OC are given in metres as OA = 2 i – 4 j + 3 k, OB = 5 i + 3 j – 2k and OC = – 2 i + 2 j + 3 k. Find the resultant force vector S of the vectors P, Q and R. [Roorkee-JEE, 1983]



vectors. Show that x, y and z also form a non-coplanar system. Find the value of x ◊ (a + b) + y ◊ (b + c) + z ◊ (a + b).

[Roorkee-JEE, 1989]

12. It is given that r × b = c × b, r ◊ a = 0, a ◊ b π 0 What is the geometrical meaning of these equations

Vectors 

separately? If the above three statements hold good simultaneously, determine the vector r in terms of a, b and c. [Roorkee-JEE, 1989] 13. Let a, b, c are three unit vectors, a + b + c = 0. Then a ◊ b + b ◊ c + c ◊ a is (a) – 3/2 (b) 0 (c) – 1 (d) 1 [Roorkee-JEE, 1990] 14. Let a = x i + y j + z k, b = j. For what c, a, b, c form a right handed system? (a) 2 i – x k (b) 0 (c) – z i × x k (d) y j [Roorkee-JEE, 1990] 15. Let a, b, c are in the same plane. Which of the following is correct? (a) a ◊ b × c = 0 (b) a ◊ b × c = 1 (c) a ◊ b × c = 2 (d) a ◊ b × c = 3

[Roorkee-JEE, 1990]

16. Given that the vectors A, B, C form a triangle such that A = B + C. Find__a, b, c and d such that the area of the triangle is 5 ​÷6 ​   ,  where A = a i + b j + c k, B = d i + 3 j + 4 k, C = 3 i + j – 2 k. [Roorkee-JEE, 1990] 17. If a and b be two unit vectors, the vector (a + b) × (a × b) is (a) perpendicular to (a – b) (b) parallel to (a – b) (c) equal to 2 (a – b) (d) equal to 2 (a – b) [Roorkee-JEE, 1991] 18. If the position vectors of points A and B with respect to origin O are a = 2 i – j + 2 k and b = i + 2 j – 2k, respectively, the projection of the vector a + b + a × b on a line perpendicular to the plane OAB is (a) 15 (b) 10

___ (c) ​÷75 ​    

___ (d) ​÷ 65 ​ 

[Roorkee-JEE, 1991] 19. If two vectors a and b are such that a ◊ b = 0, the solution of x + a = b for all x (a) is unique (b) is possible only, when a = b (c) does not exist (d) will be infinitely many. [Roorkee-JEE, 1991]

5.21

20. Let be a unit vector and b be a non-zero vector not parallel to . Find the angles of the triangle, two sides of each are represented by the vectors __

​÷ 3 ​  ( × b) and b – (  ◊ b)  [Roorkee-JEE, 1991] 21. Unit vector in the xy-plane that makes an angle of 45° with the vector i + j and an angle of 60° with the vector 3 i – 4 j is

(a) i



i  –  j __ ​   (c) ​ ____ ​ 2 ​    ÷

i+j __ ​  (b) ​ _____   ​ 2 ​    ÷ (d) none

[Roorkee-JEE, 1992] 22. Find the value of l that the vectors 2 i – j + k, i + 2 j – 3k and 3i + l j + 5k are coplaner (a) – 4 (b) 0 (c) 2 (d) 4 [Roorkee-JEE, 1992] 23. In parallelogram ABCD, the interrior bisectors of the consecutive angles B and C intersect at P. Find –BPC. [Roorkee-JEE, 1992] 24. If the sides of an angle are given by the vectors a = i – 2 j + 2k and b = 2i + j + 2k, the internal bisector is 1 (a) 3i + j + 4k (b) ​ __ ​    (3i – j + 4k) 3 1 (c) ​ __ ​  (– i – 3j) (d) 3i – j – 4k 3 [Roorkee-JEE, 1993] 25. Let a, b and c are three vectors such that a × b = c, b × c = a, then (a) a = 1, b = c (b) c = 1, a = b (c) b = 2, c = 2a (d) b = 1, c = a

[Roorkee-JEE, 1993]

26. Let a, b and c are in the same plane. Which of the following is correct? (a) a ◊ b × c = 0 (b) a ◊ b × c = 1 (c) a ◊ b × c = 2 (d) a ◊ b × c = 1 [Roorkee-JEE, 1994] 27. If two vectors a and b are such that a ◊ b = 0, the solution of x × a = b for all x. (a) is unique (b) is possible only, when a = b (c) does not exist (d) will be infinitely many.

[Roorkee-JEE, 1994]

5.22  Integral Calculus, 3D Geometry & Vector Booster 28. Solve the following system of simultaneous equations for vectors x and y x + y = a, x × y = b, x ◊ a = 1



(a) p – 4q

7 1 (b) ​ __ ​  p + __ ​   ​  r 5 5



(c) 2p – 3q – r

(d) – 4p – 2r



[Roorkee-JEE, 1998] 37. The vector c directed along the bisectors of the angle between the vectors a__= 7i – 4 j – 4k and b = – 2i – j + 2k, where |c| = 3 ​÷6 ​     is given by

[Roorkee-JEE, 1994]

29. The vector – i + j – k bisects the angle between vector c and 3 i + 4 j. Determine the unit vector along a.

1 (a) – ​ ___  ​  (3i – 8jz + 12k) 15 1 (b) – ​ ___  ​ ​ ( 11i + 10j + 2k )​ 15 1 (c) – ​ ___  ​ ​ ( 3i + 8j + 12k )​ 15 (d) none.

[Roorkee-JEE, 1995]

30. Find the scalers a and b if a × (b × c) + (a ◊ b) b = (4 – 2b – sin a) b + (b 2 – 1) c and (c ◊ c) a = c, where b and c are non-collinear. [Roorkee-JEE, 1995] 31. |(a × b)◊ c| = |a| |b| |c|, where a, b, c are non-zero vectors holds, if (a) a ◊ b = 0 (b) b ◊ c = 0

(c) c ◊ a = 0

(d) a ◊ b = b ◊ c = c ◊ a [Roorkee-JEE, 1996]

32. Let x, y and z be unit vectors such that x + y + z 3 a, x × (y × z) = b (x × y) × z = c, a ◊ x = ​ __ ​ , a ◊ y = 2

= 7 ​ __ ​  4

and |a| = 2. Find x, y and z in terms of a, b, and c. [Roorkee-JEE, 1996] __

33. Vectors x, y and z each of magnitude ​÷ 2 ​  makes an angle of 60° with each other. If x × (y × z) = a, y × (z × x) = b and (x × y) = c, find x, y, z in terms of a, b and c. [Roorkee-JEE, 1997] 34. Which of the following is a true statement? (a) (a × b) × c is coplaner with c (b) (a × b) × c is perpendicular to a (c) (a × b) × c is perpendicular to b (d) (a × b) × c is perpendicular to c. 35.

[Roorkee-JEE, 1998] If A, B, C and D are any four points, then AB ◊ CD + BC ◊ AD + CA◊ BD is equal to (a) 1 (b) 0 (c) – 1 (d) None.

[Roorkee-JEE, 1998] 36. If p = 2a – 3b, q = a – 2b + c, r = – 3a + b + 2c, where a, b, c are non-zero are non-coplanar vectors, then the vector – 2a + 3b – c is equal to



(a) i – 7 j + 2k

(b) i + 7 j – 2k



(c) – i + 7 j – 2k

(d) i – 7 j – 2k

[Roorkee-JEE, 1998] 38. a, b, c three non-coplanar vectors such that r1 = a – b + c, r2 = b + c – a, r3 = c + a – b, and r = 2a – 2b + 4c, if r = x1r1 + x2r2 + x3r3, then

7 (a) x1 = __ ​   ​  3 (c) x1 + x2 + x3 = 4

(b) x1 + x3 = 3 (d) x2 + x3 = 2

[Roorkee-JEE, 1998] 39. If x × y = a, y × z = b, x ◊ b = c, x ◊ y = 1 and y ◊ z = 1, find x, y and z in terms of a, b and c. [Roorkee-JEE, 1998] 40. If a, b, c are non-coplanar vectors and d is a unit vector, find the value of |(a ◊ d) (b × c) + (b ◊ d) (c × a) + (c ◊ d) (a × b)| independent of d. [Roorkee-JEE, 1999] 41. If a = i + j – k, b = – i + 2 j + 2k and c = – i + 2 j – k, find a unit vector normal to the vectors a + b and b – c. [Roorkee-JEE, 2000] 42. Given that the vectors a and b are perpendicular to each other, find vector v in terms of a and b satisfying the equations v ◊ a = 0, v ◊ b = 1 and [v, a, b] = 1 [Roorkee-JEE, 2000] 43. a, b, c are three unit vectors such that a × (b × c) 1 = __ ​   ​ (b + c). Find the angle between vectors a and b 2 given that vectors b and c are nonparallel. [Roorkee-JEE, 2000] 44. The diagonals of a parallelogram are given by the vectors 2i + 3 j – 6k and 3i – 4 j – k. Determine its sides and the area also. [Roorkee-JEE, 2001] 45. Find the value of l that a, b, c are all non-zero and (– 4i + 5 j) a + (3i – 3 j + k) b (i + j + k) c = l (a i + b j + c k)

[Roorkee-JEE, 2001]

Vectors 

46. Find the vector r which is perpendicular to a = i – 2 j + 5k, b = 2i + 3 j – k and r ◊ (2i + j + k) + 8 = 0.



​_›

​_›

5.23

​_›

9. Let ​a  ​  and ​b  ​  are two unit vectors such that |​a   ​| = 1, ​_›

​_› ​_›

​_›

​_›

​_›

​_›

[Roorkee-JEE, 2001]

|​b  ​|  = 4, ​a  ​  ◊ ​b  ​  =​_›2. If ​_​c  ​  = (2​a  ​  × ​b  ​)  – 3​b  ​,  find the › angle between ​b  ​  and ​c  ​. 

47. Two vertices of a triangle are – i + 3 j and 2i + 5 j and its orthocentre is at i + 2 j. Find the position vector of the third vertex.

10. Given that ​a   ​, ​b   ​, ​p   ​ and ​q   ​ are four vectors such



where m is a scaler, prove that



[Roorkee-JEE, 2001]

​_›

​_›

​_›

(Tougher Problems for JEE-Advanced)

​_›

​_›

​_› ​_› _ ​›

​_›

that ​a  ​  + ​b  ​  = m ​p  ​,  ​b  ​  ◊ ​q  ​  = 0 and (​b  ​)  2 = 1, ​_› _ ​› _ ​›



​_›

​_› _ ​› _ ​›

​_› _ ​›

|(​a   ​◊  ​q  ​)   ​p  ​  – (​p  ​  ◊ ​q  ​)   ​a  ​|  = |​p  ​  ◊ ​q  ​|  ​_›

11. Find a vector ​v   ​, which is coplanar with with the

_

​› ​_› vectors + – 2 and + – 2 and is orthogonal 1. If ​a  ​  and ​b  ​  be two unit vectors, find the range of ​_› to the vector 2 + + . ​_› 3 ​_› ​_› __ _ ​› ​   ​  |​a   ​ + ​b  ​|  + 2 |​a  ​  – ​b  ​| . It is given that the projection of ​v  ​  along the vector 2 __ p 2. Find the unit vector which makes an angle ​ ​ __ ​   ​ – + is equal to 6​÷3 ​   .  4 2   1 ​_›  1 with axis of z and is such that ( + + ) is a unit ​_› ​_› 12. Let ​ a      = ​ ​   ​   ​      , ​ ​ b     = ​ 1 ​ ​   ​  ​ and ​ c      ​ = ​ ​  1 ​   ​. 0   vector. 0 –1 – 3 3. If r and s are non-zero vectors and the sacalar b is Find the numbers a, b and g such that ​_› ​_› chosen in such a way that |​r ​   + b ​s ​  | is minimum, find –2 ​_›   _ _ ​› ​› ​_› ​_› a ​a   ​ = b ​b   ​ + g  ​c   ​ = ​ ​–5 the value of |r + b ​s ​  |2 + |b ​s ​  |2.    ​   ​ _ 6 ​› ​_› ​u   ​ = – 2 + 3 , 13. Let a 3-dimentional vector ​ V    ​   satisfies the condition ​_› ​__› _ _ ​› ​› 4. Given that ​v   ​ = 2  – + 4  and ​w​   =   + 3  + 3  , 2​V   ​ + ​V   ​ × ( + 2 ) = 2 + 2 . and _ ​› __ _ _ _ ​ ​ ​ _ _ _ _ ​› › ​› › ​› › If  3 |​V   ​| = ÷ ​ m     ​, m Œ N, find m. (​u   ​ ◊ ​R   ​ – 10)  + (​v   ​ ◊ ​R   ​ 20)  + (​w​  ◊ ​R   ​ – 20)  = 0 ​_› ​__› ​_› ​_› 14. Let ​A   ​ = – 2 + 3 , ​B   ​ = 2 + – and C​ ​    = + . Find the vector ​R  ​. 



(  )

[  ] [  ]

[  ]

[  ]



5. Suppose the​_ vectors a,​_ b, c on a_​ › plane satisfy the _ ​› › › conditions |​a  ​|  = |​b  ​|  = |​c  ​|  = |a + ​b  ​|  = 1; c ◊ a = 0 ​_› ​_ ›

​_›

​_›

and _​​b    ​ ◊ ​c ​   > 0. Find the angle between (2​a   ​ + ​b   ​) › and ​b  ​. 



6. Find the minimum area of the triangle whose vertices are A (– 1, 1, 2), B (1, 2, 3) and C (t, 1, 1), where t is a real number. 7. Suppose the vectors a, b, c on a plane satisfy the ​_›

​_›

​_›

​_›

and ​b  ​  ◊ ​c  ​  > 0. If the vector ​c  ​  is a linear combination ​_›

​_›

l ​a  ​  + m + ​b  ​,  find the ordered pair (l ◊ m).

​_›

_ ​›

8. Given that ​a  ​  and ​b  ​  are two unit vectors such that the

(  )

​_› _ _ ​› ​› 1 angle between ​a  ​  and ​b  ​  is cos– 1 ​ __ ​   ​   ​. If ​c  ​  be a vector 4 _ _ ​› ​› ​_› ​_› ​_› in the plane of ​a  ​  and ​b  ​  such that |​c  ​|  = 4 ​c  ​  × ​b   ​ = ​_› ​_› _ _ _ ​› ​› ​› 2​a  ​  × ​b  ​  and ​c  ​  = l ​a  ​  × m ​b  ​,  find the

_​_›

_ ​›

_​ _›

_​_›

15. Find the angle between any edge and face, which is not containing the edge of a regular tetrahedron and also find the angle between the two faces of a regular tetrahedron.

INTEGER TYPE QUESTIONS

​_›

​_›

conditions |​a  ​|  = |​b  ​|  = |​c  ​|  = |​a  ​  + ​b  ​|  = 1; c ◊ a = 0 ​_› _ ​›

_ ​›

If the vector ​B  ​  × C​ ​    = x ​A  ​  + y​ B​   + z ​C​ ,  where x, y and z are scalars, find the value of (100x + 10y + 8z).



1. If [a, b, c] = 1, find the value of

a ◊ (b × c) _________ b ◊ (c × a) _________ c ◊ (a × b) ​ _________ ​  + ​   ​  + ​   ​  (c × a)◊ b (a × b)◊ c (b × c)◊ a

2. If a, b and c are non-coplanar vectors and p, q, r are defined as

b×c c×a a×b p = ​ ______   ​  , q = ​ ______   ​, r = ​ ______   ​  , [b c a] [c a b] [a b c]



(i) values of l

find the value of (a + b) ◊ p + (b + c) ◊ q + (c + a) ◊ r



(ii) sum of the values of m





(iii) product of all values of m.

and ​c  ​  = l  +

​_›

3. Let ​a  ​  = ​_›

​_›

– 2 – 3 , ​b  ​  = 2 + 3 – ​_›

+ (2 l – 1)  . If ​c  ​ 

5.24  Integral Calculus, 3D Geometry & Vector Booster ​_›

​_›

is parallel to the plane of the vectors ​a  ​  and ​b  ​,  find the value of (l2 + 1).



​_› ​_› ​_› ​_› 4. Let ​r ​   be _a vector perpendicular to (​ a    ​ + ​b   ​ + ​c   ​) _ ​ ​ › ​_› › ​_› ​_› ​_› ​_› ​_› where [​a  ​,  ​b  ​,  ​c  ​]  = 2. If ​r ​   = P (​b  ​  × ​c  ​)  + Q (​c  ​  × ​a   ​) + ​_› _ ​› R (​a  ​  × ​b  ​)  , find the value of (P + Q + R + S). ​_› ​_› ​_› ​_› ​_› ​_› 5. Let |​a   ​| = 1, |​b   ​| = 1, |​c ​  | = 2 and ​a   ​ ^ (​b   ​ + ​c ​  ), _ _ _ ​› ​› ​› ​_› ​_› ​_› ​_› ​_› ​_› ​b  ​ ^ (​c  ​ + ​a  ​)  , ​c  ​ ^ (​a  ​ + × ​b  ​)  such that m = |​a  ​ + ​b  ​ + ​c  ​| ,

Linked Comprehension Type (For Jee-Advanced Examination Only) Passage I _ _ _ ​› _ ​› ​› ​› Let the vectors ​x  ​,  ​y  ​  and ​z ​   are coplanar such that ​x  ​  = a  + _ ​›

– , ​y  ​  =

2

find the value of (m + 1).

6. If a, b and c are the p th, q th and r th terms of an ​_› HP and ​u  ​  = (q – r)  + (r – b) + (p – q)  and ​_› ​v  ​  =

__ ​ a ​  + __ ​   ​ + b value of (m +

​_› ​_› __ ​ c ​ such that m = |(​u  ​  ◊ ​v  ​)  + 2|, find the 4). ​_›

​_›

7. Let ​a  ​  = – 2 + 3 , ​b  ​  = 2 + 3 – + (2 l – 1)  . ​_›

​_›

If ​c  ​  is parallel to the plane of ​a  ​  and

​_›

and ​c  ​  = l  + ​_› ​b  ​, 

find the value

of (l + l + 2). ​› ​_› _

​_›

8. Let ​a  ​,  ​b  ​  and ​c  ​  be three vectors of magnitudes 3, 4 ​_›

​_›

​› ​_› _

​_›

​_›

and 5 respectively and ​a  ​  ^ ​b  ​  + ​c  ​,  ​b  ​  ^ ​c  ​  + ​a  ​  and _ ​› _ ​_› ​› ​c  ​  ^ ​a  ​  + ​b  ​  such

( 

that m =

_ ​› _ ​_› ​› |​a  ​  + ​b  ​  + ​c  ​| ,

find the value

)

m of ​ ______ ​  __      ​  ​. ​ 2 ​    + 3 ÷

_ ​›

_ ​›

+ , ​v  ​  =

_​_›



and w​ ​    =

+ 2 – 3 . If

is a unit vector such that  ◊  = 0 and v ◊  = 0, find the value of_ |  ◊  |. ​› ​_› 11. If ​a   ​ and ​b   ​ are non-zero and non-collinear and ​_› ​_› ​_› the linear combination (2x – y) ​ a      ​ + 4 ​ b      ​ = 5 ​ a    ​ + ​_› (x – 2y) ​b   ​ holds for real x and y, find the value of (x + y + 2). _ ​›

_ ​›

12. Given the vectors ​u  ​  = 2  – – , ​v  ​  = – – 2 ​__› and ​w​   = – 3  . If the volume of the parallelopiped _ _​_› ​› _ ​› having – c ​u   ​, ​v  ​  and c ​w​   are concurrent edges is 8, find the positive integral value of c. ​_› ​p  ​  =

​_›

13. Consider three vectors + + , ​q  ​  = 2 + 4 ​_› – and ​ r ​    = + + 3 and s​_ be a unit vector. If ​_› ​_› ​_› ​_› ​_› › (​p   ​ × ​q   ​) × ​r ​   = u ​p  ​  + v ​q  ​  + w ​r ​ ,  find the value of (u + v + w + 4). ​_›

​_›

14. Consider​_ three vectors ​p  ​  = ​_ + + , ​q  ​  = 2 + 4 › › – and ​r ​   = + + 3 and ​s ​   be a unit vector. Find the value of ​_› ​_›

​_›

​_›

​_› ​_›

​_›

​_›

( 

​_› ​_›

​_›

​_›

|(​p  ​  ◊ ​s ​ )   (​q ​   × ​r ​  ) + (​q  ​  ◊ ​s ​ )   (​r ​   × ​p ​  ) + (​r ​   ◊ ​s ​ )   (​p ​   × ​q ​  )|

+

–c .

)

1 1 1 (i) The value of ​ _____ ​       ​ + _____ ​       ​ + _____ ​       ​  ​ is 1–a 1–b 1–c



(a) 1

(b) 2



(c) 0

(d) – 1

( 

)

a b c (ii) The value of ​ _____ ​       ​ + _____ ​       ​ + _____ ​       ​  ​ is 1–a 1–b 1–c

(a) – 1 (c) – 3

(b) – 2 (d) 0 ​_› _ ​›

​_› _ ​›

​_›

(iii) The value of Î​x  ​  + ​y  ​,  ​y  ​  + ​z ​ ,  ​z ​   + ​z ​ ˚  is

(a) 1 (c) 0

(b) 2 (d) –1

Passage II

_ ​›

_ ​›

Consider the three vectors_​ ​p  ​  = + + , ​q  ​  = 2  + 4 – _ ​› › and ​r ​   = + + 3 also ​s ​   be a unit vector.

9. If the three points with position vectors (1, a, b), (a, 2, b) and (a, b, 3) are collinear in the space, find the value of (a + b).

10. Let ​u  ​  =

_ ​›

and ​z ​   =

​_›

2



+b –



​_› ​_› ​_›

(i) ​p  ​,  ​q  ​,  ​r ​   are (a) (b) (c) (d)

linearly dependent vectors can form the sides of a possible triangle ​_› ​_› ​_› (​q   ​ – ​r ​  ) is orthogonal to ​p  ​  any one can be expressed as a linear combination of the other two.

​_›

​_›

​_›

​_›

​_›

​_›

(ii) If (​p  ​  × ​q  ​)  × ​r ​   = u ​p  ​  + v ​q  ​  + w ​r ​ ,  the value of (u + v + w + 2) is (a) 6 (b) 4 (c) 0 (d) 2 (iii) The value of ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​_› ​ (​p   ​ ◊ ​s ​  ) (​q   ​ × ​r ​  ) + (​q  ​  ◊ ​s ​ )   (​r ​   × ​p  ​)  + (​r ​   ◊ ​s ​ )   (​p  ​  × ​q  ​)    ​ is

| 



|

(a) 4 (c) 18

(b) 8 (d) 2.

Passage III ​_› ​_› ​_› ​_› Consider the three vectors ​p  ​,  ​q  ​  and ​r ​   such that ​p  ​  = ​_›

_ ​_› ​› (​p  ​  × ​r ​ ) 

+ , ​q   ​ = – + and 2, then ​_› ​_› ​_› (i) the value of Î ​p  ​,  ​q  ​,  ​r  ​˚  is

=

​_› ​q  ​  +



4 (a) – ​ __ ​  3

8 (b) – ​ __ ​  3



(c) 2

(d) 1

​_› c ​p  ​  and

​_› ​_› (​p  ​  ◊ ​q  ​) 

+ =

Vectors  ​_›

​_› _ ​›

​_› _ ​›

​_›

(ii) the value of Î ​p  ​  + ​q  ​,  ​q  ​  + ​r ​ ,  ​r ​   + ​p  ​˚  is

4 (a) – ​ __ ​  3

8 (b) – ​ __ ​  3



16 (c) – ​ ___ ​  3

(d) 2

(iii) the value of Î p × q, q × r, r × p˚ is

16 (b) ​ ___ ​  9

4 (a) ​ __ ​  3 64 (c) ​ ___ ​  9

(d) 1

Passage IV The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors , , such that 1  ◊  =  ◊  =  ◊  = __ ​    ​. 2

(i) The value of Î × , ×

× ,



1 (a) ​ __ ​   2

1 (b) ​ __ ​  4



1 (c) ​ __ ​   3

1 (d) ​ __ ​  9

× ˚ is

(ii) The volume of the parallelopiped with coterminous edges are given by , , is

1 (a) ​ __ ​   3

1__ (b) ​ ___   ​  ​ 3 ​    ÷



1__ (c) ​ ___   ​  ​ 2 ​    ÷

1 (d) ​ __ ​ . 2

(iii) The volume of the tetrahedron formed by the vectors , , is

1__ (a) ​ ____     ​ 6​÷2 ​   

1__ (b) ​ ____     ​ 3​÷2 ​   

1__ (c) ​ ____    ​  4​÷2 ​   

1 __ (d) ​ _____    ​.  12​÷2 ​   

Passage V ​_›

If a + b + g = 2 and ​a   ​ = a   + b  + g   and also _ _ ​› ​› × ( × ​a  ​)  = ​a  ​.  (i) The value of (a 2 + 1) is (a) 2 (b) 1 (c) –1 (d) 0. 2 (ii) The value of (b  + b + 1) is (a) 1 (b) 2 (c) –1 (d) 0 (iii) The value of (g 2 – g) is (a) – 2 (b) 0 (c) 4 (d) 2

Passage Vi ​_›

​_›

​__›

Let ​u   ​, ​v   ​, ​w​   be three ​_› ​_› ​_› 3 ​_› ​_› = ​a   ​, ​a   ​ ◊ ​u   ​ = __ ​   ​ , ​a   ​ ◊ ​v   ​ = 2 (i) The value of (a) 3/4 (c) 1/2 (ii) The value of (a) – 3/4 (c) – 1/4 (iii) The value of (a) 1/2 (c) – 1/2 Passage VII ​_›

​_›

​_›

​_›

5.25 ​__›

unit vectors such that ​u   ​ + ​v   ​ + ​w​   ​_› 7 __ ​   ​  and |​a  ​|  = 2. 4

​_› ​__› ​a  ​  ◊ ​w​   is

_ ​ › _​_› ​u  ​  ◊ ​w​   is

​_› ​_› ​u  ​  ◊ ​v  ​  is

(b) 1/4 (d) –1/2 (b) 1/2 (d) 1/6 (b) 3/4 (d) – 3/4.

​_›

Let ​a  ​,  ​b  ​,  and ​c  ​  be three vectors with magnitude 4 such ​_› ​_ ​_› ​_› ​_› ​_› › 1 that ​a  ​  ◊ ​b  ​  = ​b  ​  ◊ ​c  ​  = ​c  ​  ◊ ​a  ​  = __ ​   ​ . 2 (i) The height of the parallelopiped whose adjacent ​› ​_› _ ​_› edges by the vectors ​a   ​, ​b   ​ and ​c   ​ is

÷ 

÷  2 (d) 4 × ​ __ ÷​  3 ​ ​ 

__

__



2 (a) ​ __ ​   ​ ​    3



2 (c) 3 × ​ __ ​   ​ ​    3

2 (b) 2 × ​ __ ​   ​ ​   3

÷ 

__

__



(ii) The volume of​_ the prism whose adjacent edges by ​_› › ​_› the vectors ​a  ​,  ​b  ​  and ​c  ​  is __

__



(a) 2 ​÷2 ​   

(b) 3 ​÷2 ​   



(c) 4 ​÷2 ​   

(d) 16 ​÷2 ​   

__

__

(iii) The volume of the​_tetrahedron whose adjacent edges ​_› › ​_› by the vectors ​a  ​,  ​b  ​  and ​c  ​  is __

__



4​÷2 ​    (a) ​ ____  ​    3

   8​÷2 ​  ​    (b) ​ ____ 3



16​÷2 ​    (c) ​ _____  ​    3

32​÷2 ​    (d) ​ _____  ​    3

__

Passage VIII ​_›

​_›

__

​_›

Let ​a   ​, ​b   ​ and ​c   ​ are three non-parallel unit vectors such __ ​_› ​_› ​_› 1 ​ › ​_› that ​a   ​ × (​   ​ × ​   ​ ) = __ ​   ​  (b​   ​+ ​c  ​)  . 2 _ _ ​› ​› (i) The angle between ​a   ​ and ​c  ​  is (a) 90° (b) 60° (c) 30° (d) none. _ ​›

​_›

(ii) The angle between ​a  ​  and ​b  ​  is (a) 90° (b) 60° (c) 120° (d) 0°

5.26  Integral Calculus, 3D Geometry & Vector Booster _ ​›

​_›

_ ​›

_ ​›

(a  –  b) × c – (a + b) (d) y = ​ __________________         ​ 2 ​_› (iii) The vector ​z ​   is

(iii) The value of |​a  ​  × ​b  ​| 2 + |​a  ​  × ​c  ​| 2 is

(a) 1 (c) 0



(b) 2 (d) 4.

​› ​_› _

​_›

​_›

​_›

​_›

Let ​a  ​,  ​b  ​  and ​c  ​  be three vectors such that |​a  ​|  = 1, |​c  ​| , |​b  ​|  = ​_›

​_›

___

4 and |​b  ​  × ​c  ​|  = ÷ ​ 15 ​    and also

(i) The angle between the

(  ) (  )

​_›

​_› ​_› ​b  ​  – 2 ​c  ​  = l ​a  ​.  _ ​› ​_› vectors ​b  ​  and ​c  ​  is

(  ) (  )

1 1 (a) sin–1 ​ __ ​   ​   ​ (b) cos–1 ​ __ ​    ​  ​ 4 4 1 1 (c) tan–1 ​ __ ​   ​   ​ (d) cos–1 ​ __ ​    ​  ​ 4 4 (ii) The value of l is (a) ± 4 (b) ± 3 (c) ± 2 (d) ± 6 (iii) The angle between the vectors a and b is



(  ) (  ) (  ) (  )

7 (a) p – cos– 1 ​ __ ​   ​   ​ 8 7 (b) p + cos– 1 ​ __ ​   ​   ​ 8 7 (c) – p + cos– 1 ​ __ ​   ​   ​ 8 1 (d) p – cos– 1 ​ __ ​   ​   ​. 8

Passage X

If x × (y × z) = a, y × (z × x) = b and (x × y) = c.



​_›

(a  +  b) × c – (a + b) (a) x = ___________________ ​       ​    2 (a  +  b) × c + (a + b) (b) x = ​ ___________________      ​    2 (a –  b)  × c + (a + b) (c) x = ​ __________________      ​    3 (a  +  b) × c – (a – b) (d) x = ​ __________________      ​    3 _ ​›

(ii) The vector ​y  ​  is



b + a + (a – b) × c (d) z = ​ _________________  ​       2.



Passage XI Let x, y and z be three unit vectors such that ​_›

​_›

​_›

​_›

​_›

8 4 (c) x = a + __ ​   ​  b – __ ​   ​  c 3 3 8 4 (d) x = – a + __ ​   ​  b – __ ​   ​  c 3 3 _ ​›

(ii) The vector ​y  ​  is (a) y = a – 4c

(b) y = – 4c



(c) y = a + 4c + 3b



(d) y = 2b – 4c ​_›

(iii) The vector ​z ​   is 2 (a) z = __ ​   ​  (c – b) 3 1 (b) z = __ ​   ​  (c – b) 3 4 (c) z = __ ​   ​  (c – b) 3 5 (d) z = ​ __ ​  (c – b). 3

(a  –  b) × c + (a + b) (a) y = ​ __________________         ​ 2

Passage XII



(a  +  b) × c + (a + b) (b) y = ​ __________________         ​ 2



(a – b)  × c + (a – b) (c) y = ​ __________________         ​ 2

​_›

​_› ​_› ​_› ​_› ​_› ​_› ​_› 3 ​_› ​_› 7 (​x ​   × ​y  ​)  × ​z ​ ,  ​c  ​,  ​a  ​  ◊ ​x  ​  = __ ​   ​ , ​a  ​  ◊ ​y  ​  = __ ​   ​  and |​a  ​|  = 2. 2 4 _ ​› (i) The vector ​x   ​ is 8 4 (a) x = a + __ ​   ​  b + ​ __ ​  c 3 3 8 4 (b) x = a – __ ​   ​  b + __ ​   ​  c 3 3





​_› ​_›

​x  ​  + ​y  ​  + ​z ​   = ​a  ​,  ​x  ​  × (​y  ​  × ​z ​ )  = ​b  ​ 

__

(i) The vector ​x  ​  is





Vectors x, y and z each of magnitude ÷ ​ 2 ​     makes an angle of 60° with each other.



b  –  a + (a – b) × c (a) z = ​ _________________      ​  2 b  + a – (a + b) × c (b) z = ​ _________________        ​ 2 b  –  a + (a + b) × c (c) z = __________________ ​         ​ 2



Passage IX

_ ​›

_ ​›

_ ​› _ ​›

_ ​›

​_› _ ​› _ ​›

If ​x  ​  + ​y  ​  = ​a  ​,  ​x  ​  × ​y  ​  = ​b  ​,  ​x  ​  ◊ ​a  ​  = 1.



_ ​›

(i) The vector ​x  ​  is ​_› 1 ​_› (a) ​x  ​  = __ ​  2  ​ ​ ( ​a  ​  + a ​_› 1 ​_› (b) ​x   ​ = __ ​  2  ​ ​ ( ​a   ​ – a

_ ​› ​_› ​a  ​  × ​b  ​   ​

)

​_›

_ ​›

​a  ​  × ​b  ​  )​

Vectors 



_ ​_› 1 ​_› ​_› ​ › (c) ​x  ​  = – __ ​  2  ​ ​ ( ​a  ​  + ​a  ​  × ​b  ​  )​ a





_ _ ​› ​› 1 ( _​ › (a) ​y  ​  = ​a  ​  + __ ​  2  ​  ​    ​a  ​  + a ​_› ​_› 1 ​_› (b) ​y   ​ = ​a   ​ – __ ​  2  ​  ​ ( ​a   ​ + a

​_› _ ​› ​a  ​  × ​b  ​  )​ ​_› ​a  ​  ×

​_› ​b  ​   ​

)



_ ​_› ​_› 1 ( ​_› ​_› ​ › ) (c) ​y  ​  = – ​a  ​  + __ ​  2  ​  ​    ​a  ​  + ​a  ​  × ​b  ​   ​ a



_ ​_› ​_› 1 ( ​_› ​_› ​ › ) (d) ​y  ​  = ​a  ​  + __ ​    ​  ​    ​a  ​  – ​a  ​  × ​b  ​   ​. ​_›

a2



​_›

+

+

​_› (b) – ​a  ​  ​_› (d) 3​a  ​. 

​_›

and ​b  ​  =

Column I (A) The projection of



30°

​_›

_ ​› ​_› ​a  ​  on ​b  ​  is ​_›

​_

_ ​›

_ ​›

__

​_

180°

120°

4. Match the following Columns: Column I

Column II

(A) If a be any vector, the value of (P) ​_›

​_›

​_›

2 |​a  ​| 

​_›

|(|​a  ​  ◊  |2 + |​a  ​  ◊  |2 + |​a  ​  ◊  |2​)1/2 ​ ​| is

+ 2 + 2 

› (B) The projection of ​b  ​  on ​a   ​  is

Column II (P) (Q)

÷ 

___

26 ​ ___ ​   ​ ​   2 ___

​÷26 ​     ____ ​   ​    4

__ _ ​›

(B) If a be any vector, the value of |  (Q) ​÷2 ​     |​a  ​|  ​_›

× (​a  ​  × )|2 × )|

​_›

​_›

– (​a  ​  × )|2 – (​a  ​  __ ​_›

formed (R) (C) The area of a _​triangle ​_› › by the vectors ​a  ​  and ​b  ​  is

1 __ ​   ​  3

   |​a  ​|  (C) If a be any vector, the value (R) ​÷3 ​  _ _ _ ​› ​› ​› 2 2 of (|(|​a  ​  × | + |​a  ​  × | + |​a  ​  × |2​)1/2 ​ ​|

(D) The area of a parallelogram (S)

1 ___ ​  __  ​  ​ 3 ​    ÷

(D) If a be any vector, the value of (S)

having diagonals

(B) If a, b and c be unit vectors (Q) such that a is ​_perpendicular to ​_› ​_› › b and c and |​a  ​  + ​b  ​  + ​c  ​|  = 1, the angle between b and c is

› ​_› › › (D) If |​​_a   ​  ◊ ​b  ​|  = ​÷3 ​   | ​a  ​  × ​b  ​| , the angle (S) between a and b is

1. Match the following Columns:

Let ​a  ​  =

60°

_ ​›

Matrix Match (For Jee-Advanced Examination Only)

(A) If a, b and c be three vec- (P) ​_› unit _ _ ​› ​› tors such that ​a  ​  + _​​b  ​  – ​c  ​ ​_=› 0, › the angle between ​a  ​  and ​b  ​  is

​_

​_› (a) ​a  ​   ​_› (c) 2 ​a  ​  

Column II

 ​  + ​b  ​  + ​c  ​  = 0 and |​a  ​|  = (R) (C) If ​a  ​_› ​_› 1, |​b   ​| = _​5 |​c   ​| =​_› 7, the angle › between ​a  ​  and ​b  ​  is

​_›

(iii) The vector (​x  ​  + ​y  ​)  is

3. Match the following Columns: Column I

_ ​_› 1 ​_› ​ › ​_› (d) ​x  ​  = __ ​  2  ​ ​ ( ​a  ​  + ​b  ​  × ​a  ​  )​ a ​_› (ii) The vector ​y   ​ is



5.27

_ ​› ​_› ​a  ​  and ​b  ​  is

​_›

​_›

​_›

|​a  ​| 

​_›

|(​a ​  ◊   )  + (​a  ​◊   )  + (​a  ​  ◊  )   | is

2. Match the following Columns: Column I

​_›

​_›

​_›

​_›

Column II

(A) If |​a   ​ + ​b   ​| = |​a   ​ – ​b   ​|, the angle (P) _ ​› ​_› between ​a  ​  and ​b  ​  is _ ​

_ ​

› › ​_› › (B) If |​​_a   ​  + 2​b  ​|  = |​a  ​  – 2​b  ​| , the angle (Q) _ ​ › ​_› between ​a  ​  and ​b  ​  is

_ ​› ​_› |​a  ​  + ​b  ​| 

(C) If the angle

_ ​

_ ​_› ​› ​_› = 2​b  ​|  and |​a   ​|  = |​b  ​| , ​_› _ ​› between ​a  ​  and ​b  ​  is ​_› |​a  ​  –

_ ​

(R)

› › ​_› ​_› › (D) If |​​_a   ​  + 2​b  ​|  = |​a  ​  – 3​b  ​| , and |​a  ​|  = 1, (S) _ ​ › ​_› the angle between ​a  ​  and ​b  ​  is

60°

5. Match​_ the following Columns: ​_› › ​_› If ​a  ​,  ​b  ​  and ​c  ​  are three non-coplaner vectors such ​› _ ​_› _ ​›

that [​a  ​,  ​b  ​,  ​c  ​]  = 2. 45° 0°

90°

Column I

Column II

(A) The value of _ ​ _ ​ [​  ​_​a ›  ​ + ​b › ​,  ​b › ​  + ​_​c › ​,  ​_​c › ​  + ​_​a › ​  ]​ is

(P)

12

(B) the value of

(Q)

16

[​  ​_​a › ​  +

​_› 2 ​b  ​, 

​_› 2 ​b  ​  +

​_›

​_›

​_›

3 ​c  ​,  3 ​c  ​  + ​a  ​  ]​ is

5.28  Integral Calculus, 3D Geometry & Vector Booster (C) The value of _ ​›

​_›

​_›

_ ​› _ ​›

_ ​›

​[ ​a  ​  +  ​b  ​,   ​b  ​  +  ​c  ​,   ​c  ​  + ​a  ​  ]​ is

(D) The value of

_ ​› ​_› _ _ _ ​› ​› _ ​› ​› ​ ​a  ​  × 2 ​b  ​,  2 ​b  ​  × ​c  ​,  ​c  ​  × ​a  ​   ​ is

[ 

(R)

9

(S)

4

​__›

+ 4  and C​ ​    = 3  + triangle is 5 ​÷6 ​     sq.u. Column I

]

6. Match the following Columns: If a, b, c and a¢, b¢, c¢ be the reciprocal systems of vectors. Column I

Column II

(A) The value of (a + b + c) is

(P)

15

(B) The value of (a + c + d) is

(Q)

11

(C) The value of (b + c + d) is

(R)

19

(D) The value of (a + b + c + d) is

(S)

14

10. Match​_ the following Columns: _ _ ​› › ​› If ​a  ​,  ​b  ​  and ​c  ​  be unit vectors satisfying

(B) The value of (Q) a¢ (a + b) + b¢ ◊ (b + c) + c¢ ◊ (c + a) is

0

|​a  ​  – ​b  ​| 2 + |​b  ​  – ​c  ​| 2 + |​c  ​  – ​a  ​| 2 = 9.

(C) The value of (a + b + c) ◊ (a¢ + b¢ + c¢) is

(R)

1

(A) The value of |2 ​a   ​ + 5 ​b   ​ + 4 ​c  ​  (P) | is

1

(D) The value of (a × a¢ + b × b¢ + c × c¢) is

(S)

3

› › (B) The value of |2 ​a    ​ + 3 ​b   ​ + 3​c  ​  (Q) | is

5

› › (C) The value of |2 ​a   ​  + ​b  ​  + ​c  ​|  is

(R)

4

(D) The value of |2 ​a   ​ + 7 ​b   ​ + 7 ​c  ​  (S) | is

3

(P)

​_›

Column I

Column II (P)

1

(B) The value of (b 2 + 1) is

(Q)

2

(C) The value of (l + 1) is

(R)

0

(D) The value of (b + g ) is

(S)

3

​_› ​c  ​  =

Let + , + , and a a + b b. If the ​_› vectors – 2 + , 3 + 2 – and the vector ​c   ​ are coplanar. Column I

Column II

(A) The value of (​ a + 3b  +  2 )​ is

(P)

1

a (B) The value of ​ __ ​   ​  + 4  ​ is b

(Q)

4

b 2 The value of 3 ​ __ ​    ​  + ​ __  ​  ​ is a 3 (D) a b The value of 3 ​ __ ​   ​  + __ ​    ​   ​ + 11 is b a

(R)

6

( 

(C)

)

(  )

(  )

​_›

(S)

​_›

​__›

​_›

​_›

​_›

​_›

​_

​_›

​_

_ ​›

​_›

Column II

​_

​_›

​_›

11. Match the following Columns: Column II

(A) The volume of the parallelopiped (P) ​› _ _ ​› _ ​› determined by the vectors ​a  ,​  ​b  ,​  ​c  ​ is 2. The volume of the parallelopiped ​› _ ​› _ determined by the vectors 2 (​a  ​ × ​b  )​  , ​_› ​_› ​_› ​_› 3 (​b   ​ × ​c   ​) and (​c   ​ × ​a   ​) is

100

(B) The volume of the parallelopiped (Q) ​_› determined by the vectors ​a   ​, ​_› ​_ › ​b   ​, ​c ​   is 5. The volume of the parallelopiped determined by the

30

​_›

​_›

​_›

​_›

vectors 3 (​a   ​ + ​b   ​), (​b   ​ + ​c   ​) and ​_› ​_› 2 (​c   ​ + ​a  ​)  is

​_›

​_›

24

​_›

(2 ​a  ​  + 3 ​b  ​)  and (​a  ​  – ​b  ​)  is

2

​_›

​__›

​_›

(C) The area of a triangle with (R) adjacent sides determined by ​_› ​_› the vectors ​a   ​ and ​b   ​ is 20. The area of the triangle with adjacent sides determined by the vectors

Given that ​A   ​, ​B   ​, ​C​   form a triangle such that ​A   ​ = ​B  ​  + ​C​ .  If ​A  ​  = a  +

​_›

​_›

​_›

9. Match the following Columns: ​_›

​_›

Column I

8. Match the following Columns: ​_› ​b  ​  =

_ ​›

​_

(A) The value of (a + 1) is

​_› ​a  ​  =

_ ​›

Column I

7. Match the following Columns: _ ​› If ​_a + b + g = 2 and ​a  ​  = a   + b  + g   , +  ( × a) › = ​0 ​ . 



Column II

2

(A) The value of a ◊ a¢ + b ◊ b¢ + c ◊ c¢ is



– 2  and the area of the

__

+ b + c  and ​B  ​  = d  + 3

(D) The area of a parallelogram with (S) adjacent​_sides determined by the ​_› › vectors ​a   ​ and ​b  ​  is 30. The area of the parallelogram with adjacent ​_› sides by the vectors (​a  ​  ​_› determined ​_› + ​b   ​) and ​a   ​ is

60

Vectors 

Questions asked in Previous Years’ JEE-Advanced examinations 1. The value of A  {(B + C) × (A + B + C)} is (a) 0 (b) [ABC] + [BCA] (c) [ABC] (d) none [IIT-JEE, 1981]



2. Let A, B, C be there unit vectors. Suppose that A  B = 0 = A  C and the angle between B and C is p /6. Then A = ± 2 (B × C). Is it true or false? [IIT-JEE, 1981] 3. For non-zero-vectors a, b, c |(a × b)  c| = |a||b||c| holds if and only if (a) a  b = 0, b  c = 0 (b) c  a = 0, b  c = 0 (c) c  a = 0, a  b = 0 (d) a  b = b  c = c  a = 0 [IIT-JEE, 1982] 4. A1, A2, ..., An are the vertices of a regular polygon with n sides and O its centre. Show that n – 1

​S ​ ​ ​ (OAi × OAi + 1) = (1 – n) (OA2 × OA1 + 1). i = 1

[IIT-JEE, 1982]

5. Find all values of l such that (x, y, z) π (0, 0, 0) and x (i, j, 3k) + y (3i – 3j + k) + z (– 4i + 5j) = l (x i + y j + z k), where i, j, k are unit vectors along the co-ordinate axes. [IIT-JEE, 1982] 6. The points with position vectors 60i + 3j, 40i – 8j, a i – 52j are collinear if (a) a = – 40 (b) a = 40 (c) a = 20 (d) None. [IIT-JEE, 1983] 7. If X  A = 0 = X  B = X  C for some non-zero vector X, then [A B C] = 0. Is it true or false? [IIT-JEE, 1983] 8. The volume of the parallelopiped whose sides are given by OA = 2i – 3j, OB = i + j – k and OC = 3i – k is (a) 4/13 (b) 4 (c) 2/7 (d) None. [IIT-JEE, 1983] 9. If c be given non-zero scalar and A and B be given non zero vectors such that A ^ B. Find the vector X which satisfies the equations A  X = c, A × X = B [IIT-JEE, 1983] 10. A vector A has components A1, A2, A3 in a right handed rectangular cartesian co-ordinate system

5.29

OXYZ. The co-ordinate system is rotated about the p  x-axis through an angle __ ​   ​ . Find the components of 2 A in the new co-ordinate system in terms of A1, A2, A3 [IIT-JEE, 1983] 11. The points with position vectors a + b, a – b and a + k b are collinear for all real values of k. Is it true or false? [IIT-JEE, 1984] 12. Let a = a1i + a2 j + a3k, b = b1i + b2 j + b3k and c = c1i + c2 j + c3k be three non-zero vector such that c is a unit vector perpendicular to both the vectors a and b. If the angle between a and b be p /6, then

 | |

a 1 ​ b  ​ 1 ​  c1









a 2 ​b 2 ​  c2

a3   ​b 3 ​    ​ is equal to c3

(a) 0 (b) 1 1 (c) ​ __ ​ ​  ​a2​1​​  + ​a2​2​​  + a​ 2​3​  ​ ​ ​b2​1​​  + b​ 2​2​​  + b​ 2​3​  ​ 4 3 (d) ​ __ ​ ​  ​a2​1​​  + ​a2​2​​  + ​a2​3​  ​ ​ ​b2​1​​  + ​b2​2​​  + b​ 2​3​  ​ ​ ​c2​1​​  + ​c2​2​​  + c​ 2​3​  ​ 4 [IIT-JEE, 1986] 13. A vector a has components 2p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter-clockwise sense. If, with respect to the new system, a has component p + 1 and 1, then (a) p π 0 (b) p = 1 or p = – 1/3 (c) p = – 1 or p = 1/3 (d) p = 1 or p = – 1 [IIT-JEE, 1986] 14. The position vectors of the points A, B, C and D are 3i – 2j – k, 2i + 3j – 4k, – i + j + 2k and 4i + 5j + l k respectively. If the points A, B, C and D lie on a plane, find the value l. [IIT-JEE, 1986] 15. The number of vectors of unit length perpendicular to vectors a = (1, 1, 0) and b = (0, 1, 1) is (a) 1 (b) 2 (c) 3 (d) infinite [IIT-JEE, 1987]

( 

) ( 

)

( 

) ( 

) ( 

)

16. If the vectors a i + j + k, i + b j + k and i + j + c k, (a, b, c π 1) are coplanar, the value of 1 1 1 ​ _____     ​ + _____ ​       ​ + _____ ​       ​ is ... 1–a 1–b 1–c [IIT-JEE, 1987]

5.30  Integral Calculus, 3D Geometry & Vector Booster 17. Let b = 4i + 3j and c be two vectors perpendicular to each other in the xy-plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by ... [IIT-JEE, 1987] 18. If A, B, C, D are four points in the space, prove that |AB × CD × BC × AD × CA × BD| = 4 (area of D ABC) [IIT-JEE, 1987] 19. Let a, b, c be three non-coplanar vectors and p, q r are vectors defined by the relations b×c c×a a×b p = ​ _______     ​, q = ​ _______     ​ and r = ​ _______      ​, [a, b, c] [a, b, c] [a, b, c] the value of the expression (a + b)  p + (b + c) q + (c + a)  r is equal to

(a) 0 (c) 2

(b) 1 (d) 3

[IIT-JEE, 1988] 20. The components of a vector a along and perpendicular to a non-zero vector b are ... and ... respectively. [IIT-JEE, 1988] 21. Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the mid-point of OA. Using vectors method, prove that BD and CO intersect in the same ratio. Determine the same ratio. [IIT-JEE, 1988] 22. For any three vectors a, b, c, (a – b)  {(b – c) × (c – a)} = 2a  (b × c). Is it true or false? [IIT-JEE, 1989] 23. If vectors a, b and c are coplanar, show that

| 

|

b  c  a   a  a  a  c  ​ ​     ​  ​   ​ ​     ​  ​ = 0 a  b   b  a b  b b  c

[IIT-JEE, 1989]

24. In a triangle OAB, E is the mid-point of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, determine the ratio OP : OD, using vector method. [IIT-JEE, 1989] 25. Let A = 2i + k, B = i + j + k and C = 4i – 3j + 7k. Determine a vector R satifying R × B = C × B and R  A = 0. [IIT-JEE, 1990] 26. Determine the value of c so that for all real x, the vectors c x i – 6j – 3k and x i + 2j + 2c x k make an obtuse angle with each other. [IIT-JEE, 1991]

27. Given that a = (1, 1, 1), c = (0, 1 –1,) a  b = 3 and a × b = c, then b = ... [IIT-JEE, 1991] 28. A unit vector coplanar with i + j + 2k and i + 2 j + k and perpendicular to i + j + k is ... [IIT-JEE, 1992] 29. Let a, b, c be distinct non-negative numbers. If the vectors ai + aj + ck, i + k and ci + cj + bk lie on a plane, then c is (a) the AM of a and b (b) the GM of a and b (c) The HM of a and b (d) equal to zero. [IIT-JEE, 1993] 30. Let a = 2i – j + k, b = i + 2j – k, and c = i + j – 2k be three vectors. A vector in the plane of b and c, __ 2 whose projection on a is ​ ​ __ ​ ​  , is 3 (a) 2i + 3j – 3k (b) 2i + 3j + 3k

÷ 



(c) –2i – j + 5k

(d) 2i + j + 5k

[IIT-JEE, 1993] 31. In a triangle ABC, D and E are points on BC and AC respectively, such that BD = 2DC and AE = 3EC. Let P be the point of intersection of AD and BE. Find BP the ratio ___ ​    ​, using vector method. PE [IIT-JEE, 1993] 32. Let p and q be the position vectors of P and Q, respectively, with respect to O and |p| = p,  |q| = q. The points R and S divide PQ internally and externally in the ratio 2 : 3 respectively. If OR and OS are perpendicular, then

(a) 9p2 = 4q2

(b) 4p2 = 9q2



(c) 9p = 4q

(d) 4p = 9q

[IIT-JEE, 1994] 33. Let a, b and g be distinct real numbers. The points with position vectors a i + b j + g  k, b i + g j + a k and g  i + a j + b k (a) are collinear (b) form an equilateral triangle (c) form a scalene triangle (d) form a right angled triangle. [IIT-JEE, 1994] 1 34. The vector d = __ ​   ​  (2i – 2j + k) is 3

(a) a unit vector.

Vectors 

p (b) makes an angle __ ​   ​  with the vector. 3 (2i – 4j + 3k) 1 (c) parallel to the vector ​ – i + j – ​ __  ​ k  ​ 2

( 

)



(d) perpendicular to the vector (3i + 2j – 2k) [IIT-JEE, 1994] 35. A unit vector perpendicular to the plane determined by the points P (1, –1, 2), Q (2, 0, –1) and R (0, 2, 1) is ... [IIT-JEE, 1994] 36. If the vectors a, b, c, d are not coplanar, prove that the vector (a × b) × (c × d) + (a × c) × (d × b) + (a × d) × (b × c) is parallel to a. [IIT-JEE, 1994] 37. Let a = i – j, b = j – k, c = k – i. If d be a unit vector such that a  d = 0 = [b, c, d], then d equals

(  ( 

)

( 

)



i  +  j – 2k __ ​   (a) ± ​ ​ _________   ​ ​÷6    ​ 

i  +  j – k __ ​   (b) ± ​ ​ ________   ​ ​ 3 ​    ÷



i  + j + k __ ​   (c) ± ​ ​ ________  ​ ​ 3 ​    ÷

(d) ± k

)

[IIT-JEE, 1995] 38. If , b and c be non-coplanar unit vectors such that 1 a × (b × c) = ___ ​  __  ​  (b + c), the angle between a and ​ 2 ​    ÷ b is 3p p (a) ​ ___ ​   (b) ​ __ ​  4 4 p (c) ​ __ ​   (d) p 2 [IIT-JEE, 1995] 39. Let u, v and w be the vectors such that u + v + w = 0. If |u| = 3, |v| = 4, |w| = 5, the value of u  v + v   w + w  u is (a) 47 (b) – 25 (c) 0 (d) 25 [IIT-JEE, 1995] 40. If a, b and c are three non-coplaner vectors,

(a + b + c) ◊ {(a + b) × (a + c)} is

(a) 0

(b) [a, b, c]



(c) 2 [a, b, c]

(d) – [a, b, c]

[IIT-JEE, 1995] 41. A non-zero vector a is parallel to the line of intersection of the plane determined by the vectors i, i + j and the line determined by the vectors i – j, i + k. The angle between a and the vector i – 2j + 2k is ... [IIT-JEE, 1996]

5.31

42. If b and c any two non-collinear unit vectors and a be any vector, then a  (b  × c) (a  b) b + (a  c) c + _________ ​   ​     (b × c) = ... |(b × c)| [IIT-JEE, 1996] 43. The position vectors of the vertices A, B, C of a tetrahedron ABCD are i + j + k, i and 3i, respectively. The altitude from vertex D to the opposite face ABC, meets the median line through A of the D ABC at E. If the length of the side AD is 4 and the volume of __ 2​÷2 ​    ____ the tetrahedron is ​   ​  .  Find the position vector of 3 E for all its possible positions. [IIT-JEE, 1996] 44. Let p, q and r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation p × [(x – q) × p] + q × [(x – r) × q] + r × [(x – p) × r] = 0, then x is given by 1 (a) ​ __ ​  (p + q – 2r) 2 1 (c) ​ __ ​  (p + q + r) 3

45.

46.

47. 48. 49.



50.

1 (b) ​ __ ​  (p + q + r) 2 1 (d) ​ __ ​  (2p + q – r) 3 [IIT-JEE, 1997] Let OA = a, OB = 10a + 2b and OC = b where O, A and C are non-collinear points. Let p denotes the area of the quadrilateral OABC and q denotes the area of the parallelogram with OA and OC as adjacent sides. If p = kq then k = ... [IIT-JEE, 1997] Let a, b, and c be three vectors having magnitudes 1, 1 and 2, respectively. If a × (a × c) + b = 0, the acute angle between a and c is ... [IIT-JEE, 1997] If A, B and C are vectors such that |B| = |C|. Prove that |(A + B) × (A + C)| × (B × C)  (B + C) = 0 [IIT-JEE, 1997] Let a, b and c be non-coplaner unit vectors, equally inclined to one another at an angle q. If a × b + b × c = p a + q b + r c, find scalars p, q and r in terms of q. [IIT-JEE, 1997] If a = i + j + k, b = 4i + 3j + 4k and c = i + a j __ + b k are linearly independent vectors and |c| = ÷ ​ 3 ​    , then (a) a = 1, b = 1 (b) a = 1, b = ± 1 (c) a = –1, b = ± 1 (d) a = ± 1, b = 1 [IIT-JEE, 1998] For the vectors u, v and w, which of the following expressions is not equal to any of the remaining three?

5.32  Integral Calculus, 3D Geometry & Vector Booster (b) (v × w) ◊ u (d) (u × w) ◊ w [IIT-JEE, 1998] 51. Which of the following expressions are meaningful?



(a) u ◊ (v × w) (c) v ◊ (u × w)

(a) u ◊ (v × w)

(b) (u ◊ w) ◊ w

(d) u × (v ◊ w) [IIT-JEE, 1998] 52. For any two vectors u and v, prove that (i) (u ◊ v)2 + |u × v|2 = (u2 v2)

(c) (u ◊ v) × w

2

2



(ii) (1 + |u| ) (1 + |v| )

53.

= |u + v + (u × v)|2 + (1 – (u ◊ v))2 [IIT-JEE, 1998] Let a and b be two non-collinear unit vectors. If u = a – (a  b) b and v = a × b, then |v| is (a) |u| (b) |u| + |u  a| (c) |u| + |u  b| (d) |u| + u  (a + b) [IIT-JEE, 1999]

planes determined by the pair of vectors a, b and c, d respectively, then the angle between P1 and P2 is

(a) 0



p (c) ​ __ ​   3

[IIT-JEE, 2000] 59. If a, b and c are unit coplanar vectors, then the value of [2a – b 2b – c 2c – a] is

(a) 0



(c) – ​÷3 ​   

that a ◊ c = |c|, |c – a| = 2 ​÷2 ​     and the angle between (a × b) and c is 30°, the value of |(a × b) × c| is (a) 2/3 (b) 3/2 (c) 2 (d) 3. [IIT-JEE, 1999] 55. Let a = 2 i + j + k and b = i + 2 j – k and a unit vector c be coplanar. If c is perpendicular to a, then c is

1__ (a) ​ ___   ​  (– j + k) ​ 2 ​    ÷

1__ (b) ​ ___   ​  (– i –  j – k) ​ 2 ​    ÷



1__ (c) ​ ___   ​  (– i – 2j) ​÷5 ​   

1__ (d) ​ ___   ​  (i – j – k) ​ 3 ​    ÷

[IIT-JEE, 1999] 56. Let u and v be unit vectors. If w be a vector such that 1 w × (w × u) = v, prove that |(u × v)  w| £ __ ​   ​ and that 2 the equality holds if and only if u is perpendicular to v. [IIT-JEE, 1999] 57. If the vectors a, b and c from the sides BC, CA and AB, respectively, of a triangle ABC, then (a) a ◊ b + b ◊ c + c ◊ a = 0

(b) a × b + b × c = c × a (c) a ◊ b = b ◊ c = c ◊ a



(d) a × b + b × c + c × a = 0

[IIT-JEE, 2000] 58. Let the vertices a, b, c and d be such that (a × b) × (c × d) = 0. Let P1 and P2 be the two

__

(b) 1

__

(d) ​÷ 3 ​ 



[IIT-JEE, 2000]

60. If a, b and c are unit vectors, then |a – b|2 + |b – c|2 + |c – a|2 does not exceed

(a) 4 (c) 8

(b) 9 (d) 6

[IIT-JEE, 2000] 61. Let a = i – k, b = x i + j + (1 – x) k and c =

54. Let a = 2i + j – 2k and b = i + j. If c be a vector such __

p (b) ​ __ ​  4 p (d) ​ __ ​  2



y i + x j + (1 + x – y) k, then [a b c] depends on (a) only x (b) only y (c) neither x nor y (d) both x and y. [IIT-JEE, 2001]

62. Find 3-dimensional vectors v1, v2, v3 satisfying v1 ◊ v1 = 4, v1 ◊ v2 = – 2 and v1◊v3 = 6, v2  v2 = 2, v2 ◊ v3 = 5 and v3◊v3 = 29. [IIT-JEE, 2001] 63. Let A (t) = f1 (t) i + f2 (t) j and B (t) = g1 (t) i + g2 (t) j, t Œ [0, 1], where f1, f2, g1, g2 are continuous functions. If A (t) and B (t) are non-zero vectors for all t and A (0) = 2i + 3j, A (1) = 6i + 2j, B (0) = 3i + 2j, B (1) = 2i + 6j, show that A(t), B(t) are parallel for some t. [IIT-JEE, 2001] 64. Let V be the volume of the parallelopiped formed by the vectors a = a1i + a2 j + a3k, b = b1i + b2 j + b3k and c = c1i + c2 j + c3k. If ar, br, cr where r = 1, 2, 3, are non-negative real numbers and 3

​S  ​ ​ ​ (ar + br + cr) = 3L, r = 1

Show that V £ L3.

[IIT-JEE, 2002] 65. If a and b are two unit vectors such that a + 2b and 5a – 4b are perpendicular to each other, the angle between a and b is p p (a) ​ __ ​   (b) ​ __ ​  4 3

Vectors 

(  )

(  )

1 (c) cos–1 ​ __ ​   ​   ​ 3

2 (d) cos–1 ​ __ ​   ​   ​ 7 [IIT-JEE, 2002] 66. Let v = 2 i + j – k, w = i + 3 k and u is a unit vector, the maximum value of [u v w] is



(a) –1



(c) ​÷59 ​    

__ ___ (b) ​÷ 10 ​ + ​÷6 ​    ___ (d) ​÷ 60 ​ 

___



[IIT-JEE, 2002] 67. The value of a be such so that the volume of a parallelopiped formed by the vectors i + a j + k, j + a k, a i + k becomes minimum, is (a) –3 (b) 3 __ __ (c) 1/​÷3 ​    (d) ​÷ 3 ​  [IIT-JEE, 2003] 68. If u, v, w are three non-coplaner unit vectors and a, b, g are the angle between u and v, v and w and w and u respectively, and x, y, z are unit vectors along the bisectors of the angle a, b, g respectively. Prove that [x × y, y × z, z × x]

(  )

(  ) (  )

g b a 1 = ___ ​    ​ [u v w]2 sec2 ​ __ ​   ​   ​ sec2 ​ __ ​   ​   ​ sec2 ​ __ ​    ​  ​ 2 2 2 16 69. 70. 71.



[IIT-JEE, 2003] If a, b, c and d are distinct vectors satisfying relation a × b = c × d and a × c = b × d. Prove that a ◊ b + c ◊ d + a ◊ c + b ◊ d [IIT-JEE, 2004] If a = i + j + k, a. b = 1 and a × b = j – k, then b is (a) i – j + k (b) 2 j – k (c) i (d) 2 i – k [IIT-JEE, 2004] The unit vector which is orthogonal to the vector 5 i + 2 j + 6 k and is coplanar with the vectors 2 i + j + k and i – j + k is 1 ___ (a) ​ ____    ​ (2i ​ 41 ​     ÷ 1 ___ (b) ​ ____    ​ (2i ​÷29 ​     1 ___ (c) ​ ____    ​ (3j ​ 10 ​     ÷ 1 ___ (d) ​ ____    ​ (2i ​÷69 ​    

– 6j + k)

73. Let a, b, c be three non-coplanar vectors and a ◊ b a ◊ b b1 = b – ​ ____  ​  a, b2 = b + ____ ​  2 ​  a, 2 |a| |a| c ◊ a c ◊ b c1 = c – ____ ​  2 ​  a + ____ ​  2 ​  b1, |a| |c| b1 ◊ c c ◊ a c2 = c – ​ ____2 ​  a – ____ ​  2 ​   b1, |a| |b1| c ◊ a b ◊ c c3 = c – ____ ​  2 ​  a + ____ ​  2 ​  b1, |c| |c| c ◊ a b ◊ c and c4 = c – ____ ​  2 ​  a – ____ ​  2     ​ b1, |c| |b1| the triplet of pairwise orthogonal vectors is (a) (a, b1, c1) (b) (a, b1, c2) (c) (a, b2, c2) (d) (a, b1, c3) [IIT-JEE, 2005]



74. Let a = i + 2 j + k, b = i – j + k and c = i + j – k. A vector in__ the plane of a and b, whose projection on c is 1/​÷3 ​    , is

(a) 4 i – j + k

(b) 3 i + j + k



(c) 2 i + j + 2k

(d) 4 i + j – 4 k



[IIT-JEE,2006]

75. The number of distinct real values of g which the vectors – g 2 i + j + k, i – g 2 j + k and i + j – g  2 k are coplanar is (a) 0 (b) 1 (c) 2 (d) 3 [IIT-JEE, 2007] 76. Let a, b and c be unit vectors such that a + b + c = 0, Which one of the following is correct? (a) a × b = b × c = c × a = 0 (b) a × b = b × c = c × a π 0 (c) a × b = b × c = a × c π 0 (d) a × b, b × c, c × a are mutually perpendicular. [IIT-JEE, 2007]

– 5j) – k) – 8j + k)

[IIT-JEE, 2004] 72. Let v be a unit vector along the incident ray, w be a vector along the reflected ray and a be a unit vector along the outward normal to the plane mirror at the point of incidence P. Express w in terms of a and v. [IIT-JEE, 2005]

5.33

77. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a regular hexagon. Statement I: PQ × (RS + ST) π 0 Statement II: PQ × RS = 0 and PQ × ST π 0

[IIT-JEE, 2007]

78. Let two non-collinear unit vectors a and b form an acute angle. A point P moves so that at any time t, the position vector OP (where O is the origin) is given by a cos t + b sin t, where P is the farthest from origin O, let M be the length of OP and u be the unit vector along OP. Then

5.34  Integral Calculus, 3D Geometry & Vector Booster

a+b (a) u = ​ ______     ​ and M = (1 + a ◊ b)1/2 |a + b| a–b (b) u = ​ ______     ​ and M = (1 + a ◊ b)1/2 |a – b| a+b (c) u = ​ ______     ​ and M = (1 + 2 a ◊ b)1/2 |a + b|

a–b (d) u = ​ ______     ​ and M = (1 + 2 a ◊ b)1/2 |a – b| [IIT-JEE, 2008] 79. The edges of a parallelopiped are of length and parallel to non-coplanar unit vectors a, b, c such 1 that a ◊ b = b ◊ c = c ◊ a = ​ __  ​. The volume of the 2 parallelopiped is 1__ 1__ (a) ​ ___   ​   (b) ​ ____    ​  ​ 2 ​    2​÷2 ​    ÷

___



(a) 8/9

(b) ​÷ 17 ​/ 9



(c) 1/9

(d) 4​÷5 ​   / 9

__

[IIT-JEE, 2010] 85. Let non-zero vectors a, b and c such that a ◊ b = 0, (b – a) ◊ (b + c) = 0 and 2 |b + c| = |b – a|. If a = m b + 4 c, the possible values of m are ...



__



​ 3 ​    ÷ (c) ​ ___ ​   2

1__ (d) ​ ___   ​  ​ 3 ​    ÷

[IIT-JEE, 2008] 80. If a, b, c and d are unit vectors such that 1 (a × b) ◊ (c × d) = 1 and (a × c) = __ ​   ​ , 2 then (a) a, b, c are non-coplanar (b) b, c, d are non-coplanar (c) b, d are non-parallel (d) a, d are parallel and b, c are parallel

[IIT-JEE, 2009]

81. The volume of the parallelopiped with its edges represented by the vectors i + j, i + 2j and i + j + p k is... [IIT-JEE, 2009] 82. Angle between vectors a and b where a, b and c are unit vectors satisfying a + b + R3c = 0 is ... [IIT-JEE, 2009] 83. Let P, Q, R, S be the points on the plane with position vectors – 2 i – j, 4 i, 3 i + 3j and – 3 i + 2j respectively. The quadrilateral PQRS must be a

(a) parallelogram, which is neither a rhombus nor a rectangle (b) square (c) rectangle but not a square (d) rhombus but not a square.



[IIT-JEE, 2010]

84. Two adjacent sides of a parallelogram ABCD are given by AB = 2 i + 10 j + 11 k and AD = – i + 2 j + 2 k. The side AD is rotated by an acute angle a in the plane of the parallelogram so that AD becomes AD ¢. If AD ¢ makes a right angle with the side AB, the cosine of the angle a is given by

[IIT-JEE, 2010] 86. If a and b be vectors in the space given by i  –  2 j 2i +  j + 3k ___ ​ a = ______ ​  __ ​   and ​ __________    ,  then the value of ​ 14 ​     ÷ ​÷5 ​    (2a + b) ◊ {(a × b) × (a – 2 b)} is [IIT-JEE, 2010] 87. Let a = i + j + k, b = i – j + k and c = i – j – k be three vectors. A vector v in the plane of a and b, 1 whose projection on c is ___ ​  __  ​,  is given by ​ 3 ​    ÷ (a) i – 3 j – 3 k (b) – 3 i – 3 j + k (c) 3i – j + 3k (d) i + 3 j – 3 k [IIT-JEE, 2011] 88. The unit vector(s) which is/are coplanar with vectors i + j + 2 k, i + 2 j + k and perpendicular to the vector i + j + k is given by (a) j – k (b) – i + j (c) i – j (d) – j + k [IIT-JEE, 2011] 89. Let a = i – k, b = – i + j and c = i + 2 j + 3 k be three given vectors. If r be a vector such that r × b = c × b and r ◊ a = 0, the value of r ◊ b is ... [IIT-JEE, 2011] __

__

90. If a = j + ​÷3 ​     k, b = – j + R3 k and c = 2 ​÷3    ​  k form a triangle, the internal angle of the triangle between a and b is. [IIT-JEE, 2011] 91. If a, b and c are unit vectors satisfying |a – b|2 + |b – c|2 + |c – a|2 = 9, then |2a + 5b + 5c| is. [IIT-JEE, 2012]



___

92. If a and b are vectors such that |a + b| = ÷ ​ 29    ​ and a × (2i + 3j + 4k) = (2i + 3j + 4k) × b, a possible value of (a + b) ◊ (– 7i + 2j + 3k) is

(a) 0 (c) 4

(b) 3 (d) 8.

[IIT-JEE, 2012] 93. Let PR = 3i + j – 2k and SQ = i – 3j – 4k determine diagonals of a parallelogram PQRS and PT = i + 2j + 3k be another vector. The volume of the parallelopiped determined by the vectors PT, PQ and PS is

Vectors 



(a) 5 (c) 10

(b) 20 (d) 30

[IIT-JEE, 2013] 94. The volume of the parallelopiped determined by the vectors a, b and c is 2. The volume of the parallelopiped determined the vectors (a × b), 3 (b × c) and (c × a) is (a) 100 (b) 30 (c) 24 (d) 60 [IIT-JEE, 2013] 95. The volume of the parallelopiped determined by the vectors a, b and c is 5. The volume of the parallelopiped determined the vectors 3 (a + b), (b + c) and 2 (c + a) is (a) 100 (b) 30 (c) 24 (d) 60 [IIT-JEE, 2013] 96. The area of a triangle with adjacent sides determined by the vectors a and b is 20. The area of the triangle with adjacent sides determined by the vectors (2a + 3b) and (a – b) is (a) 100 (b) 30 (c) 24 (d) 60 [IIT-JEE, 2013] 97. The area of a parallelogram with adjacent sides determined by the vectors a and b is 30. The area of the parallelogram with adjacent sides determined by the vectors (a + b) and a is (a) 100 (b) 30 (c) 24 (d) 60 [IIT-JEE, 2013]

__

98. Let x, y and z be three vectors each of magnitude ÷ ​ 2 ​    p and the angle between each pair of them is __ ​   ​ . If a 3 be a non-zero vector perpendicular to x and (y × z) and b is another non-zero vector perpendicular to y and (z × x), then (a) b = (b ◊ z) (z – x) (b) a = (a ◊ y) (y – z) (c) (a ◊ b) = (a ◊ y) (b ◊ z) (d) a = (a ◊ y) (z – y) [IIT-JEE, 2014]

99. If a, b and c are three non-coplaner unit vectors such p that the angle between every pair of them is ​ __ ​ . If 3 a × b + b × c = pa + qb + rc, where p, q and r are scalears, find the value of

( 

)

p2  +  2q2 + r2 ​ ​ ____________  ​       ​ is... q2

[IIT-JEE, 2014] ​_›

​› ​___› _

​___› ​_ ›

1. (d) 6. (d) 11. (d) 16. (b)

2. (b) 7. (b) 12. (c) 17. (d)

3. (c) 8. (c) 13. (d) 18. (b)

4. (b) 9. (a) 14. (d) 19. (d)

5. (b) 10. (b) 15. (b) 20. (b)

​___›

100. Let PQR be a triangle. ​a  ​  = QR​ ​  ,  ​b  ​  = RP​ ​  ,  ​c  ​  = PQ​ ​    ​_›

​_›

​_› ​_ ›

__

If |​a  ​|  = 12, |​b  ​|  = 4​÷3 ​   ,  and ​b  ​  ◊ ​c  ​  = 24, which of the following is (are) true? _

​ | ​​ ​c ›  ​ | ​2​​ ​  – |​​_a › ​|  = 12 (a) ​ ____ 2



​_›

| ​​ ​c   ​ | ​2​​ ​  + |​​_a › ​|  = 30 (b) ​ ____ 2 _​ __ › ​_› ​_› ​_› (c) |​a   ​ × ​b   ​ + ​c  ​  × ​a  ​|  = 48​÷3 ​   



​› _ ​› _

(d) ​a  ​  ◊ ​b  ​  = – 72



[IIT-JEE, 2015] 2

101. In R , if the magnitude of the projection vector of __

__

the ​ 3 ​      + is ÷ ​ 3 ​     and a = 2 +​ __ vector a  + b  on ÷ ÷ 3 ​  b, find the possible values of |a |. [IIT-JEE, 2015] ​_› ​_› ​_› 102. Suppose that ​p   ​, ​q   ​ and ​r ​   are three non-coplanar vectors in R3. ​_› ​_› ​_›    Let the components of a vector ​s ​  , along ​p   ​, ​q  ​  ​_› and ​r ​   be 4,​_3 and 5, respectively. If ​_the components ​_› ​_› ​_› ​_› ​_› › › of ​_a vector ​ s ​     along ​( – ​p   ​ + ​q   ​ + ​r ​     )​, (​  ​p   ​ – ​q   ​ + ​r ​    )​ and​ _ _ ​ ​ ( – ​p ›  ​ – ​q ›  ​ + ​r ​ ›  )​ are x, y and z, respectively, find the value of 2x + y + z. [IIT-JEE, 2015] 103. Let

​__›

= u1  + u2  + u3  be a unit vector in R3 and w​ ​   

_ ​› 1 = ___ ​  __  ​ ( + + ). Given that there exists a vector ​v  ​  ​÷6 ​    ​_› ​_› ​_› ​_› in R3 such that |​u   ​ × ​v  ​|  = 1 and . (​u  ​  × ​v  ​)  = 1.

   Which of the following statement (s) is (are) correct? _ ​› (a) There is exactly one choice for such ​v  ​.  ​_› (b) There are infinitely many choices for such ​v   ​. ​_› (c) If ​u   ​ lies in the xy-plane, then |u1| = |u2|. ​_›



(d) If ​u  ​  lies in the xz-plane, then 2 |u1| = |u3|. [IIT-JEE, 2016]



Answers LEVEL II

5.35



21. (a) 26. (b) 31. (c) 36. (b)

22. (a) 27. (c) 32. (a) 37. (a)

23. (**) 28. (a) 33. (b) 38. (b)

24. (b) 29. (d) 34. (d) 39. (a)

25. (a) 30. (c) 35. (d) 40. (b)

5.36  Integral Calculus, 3D Geometry & Vector Booster

LEVEL-IV

COMPREHENSIVE LINK PASSAGES



1. [– 5, 5]



2. – ​ __  ​  – __ ​    ​ + ___ ​  __  ​  2 2 ÷ ​ 2 ​   



3. |​r ​ | 2



4. –   + 2 + 5 p 5. ​ __ ​  2



​_›

__



​ 3 ​    ÷ 6. ​ ___ ​ . 2



1 2__ 7. ​ ___ ​  __  ​,  ___ ​    ​  ​ ​ 3 ​    ÷ ​ 3 ​    ÷



8. (i) 2



5p 9. ​ ___ ​  6

( 

)

(ii) –1 (iii) 12

(ii) (b) (ii) (b) (ii) (c) (ii) (c) (ii) (a) (ii) (c) (ii) (d) (ii) (c) (ii) (a) (ii) (b) (ii) (b)

(iii) (c) (iii) (a) (iii) (c) (iii) (a) (iii) (d) (iii) (b) (iii) (c) (iii) (a) (iii) (a) (iii) (c) (iii) (c)

P-XII :

(i) (a)

(ii) (b)

(iii) (a)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

12. a = – 1, b = – 2, g = 3. 13. m = 6 14. 101 1 1 15. cos–1 ​ ___ ​  __  ​  ​, cos–1 ​ __ ​   ​   ​ 3 ​ 3 ​    ÷

(  )

(  )

INTEGER TYPE QUESTIONS 1. 3 6. 6 11. 3

2. 3 7. 2 12. 2

3. 3 8. 8 13. 2

4. 4 9. 4 14. 4

5. 7 10. 3

Hints

1. Let q the angle between a and b.

Now,

a ◊ b = a b cos (q)



a ◊ b cos (q) = ____ ​   ​  a b



6  ___ – 6 +___0 cos (q) = ​ _________  ​  =0 ​ 14 ​  ​    ÷ 13 ​  ÷



p q = __ ​   ​  2

p Hence, the angle between a and b is __ ​   ​ . 2 2. We have, a + b = (i + 2j – 3k) + (3 i + j + 2k)

(i) (a) (i) (c) (i) (b) (i) (a) (i) (b) (i) (a) (i) (d) (i) (b) (i) (b) (i) (a) (i) (a)

MATRIX MATCH

11. 9 (–  + )



P-I : P-II : P-III : P-IV : P-V : P-VI : P-VII : P-VIII : P-IX : P-X : P-XI :

= (4 i + 3j – k)

and

(A)Æ(R), (A)Æ(S), (A)Æ(S), (A)Æ(S), (A)Æ(S), (A)Æ(S), (A)Æ(P), (A)Æ(S), (A)Æ(S), (A)Æ(S),

(B)Æ(S), (B)Æ(S), (B)Æ(R), (B)Æ(P), (B)Æ(P), (B)Æ(S), (B)Æ(P), (B)Æ(P), (B)Æ(P), (B)Æ(P),

(C)Æ(P), (C)Æ(P), (C)Æ(P), (C)Æ(Q), (C)Æ(S), (C)Æ(S), (C)Æ(S), (C)Æ(P), (C)Æ(Q), (C)Æ(P),

(D)Æ(P) (D)Æ(P) (D)Æ(Q) (D)Æ(S) (D)Æ(Q) (D)Æ(Q) (D)Æ(Q) (D)Æ(P) (D)Æ(R) (D)Æ(Q)

11. (A)Æ(R), (B)Æ(S),

(C)Æ(P),

(D)Æ(Q)

solutions Also, a – b = (i + 2j – 3k) – (3i + j + 2k) Now,

= (– 2 i + j – 5k) (a + b) ◊ (a – b) = – 8 + 3 + 5 = 0

Thus, (a + b) is perpendicular to (a – b). 3. Given,

(a + b + c) = 0

fi ​| (a + b + c) |2​ = 0 fi  |a|2 + |b|2 + |c|2 + 2 (a ◊ b + b ◊ c + c ◊ a) = 0 fi  9 + 16 + 25 + 2(a ◊ b + b ◊ c + c ◊ a) = 0 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – 50 fi  (a ◊ b + b ◊ c + c ◊ a) = – 25

Vectors 





|(a + b – c)|

Now,



= |a|2 + |b|2 + |c|2 + 2 (a ◊ b – a ◊ c + b ◊ c)





=1+1+1+0



=3 __ |a + b – c| = ÷ ​ 3 ​   



4. We have, 2

fi and

5. As we know that the projection of a on b



a ◊ b = ____ ​   ​  . |b| 3_________ –2+2 3 = ​  __________       ​ = ___ ​  __  ​ = ​ 1  + 4  +  1 ​ ​÷6 ​ ÷   

÷ 

__

3 ​ __ ​   ​ ​   2

6. Given 2 a + b = i + j and a + 2b = i – j Solving, we get

1 1 a = __ ​   ​    (i + 3j) and b = __ ​    ​  (i – 3j) 3 3

Since,

a ◊ b = a b cos (q )



a ◊ b cos (q ) = ____ ​   ​  a b 1 __ ​   ​  (1  –  9) 9 8 4 ________ cos (q ) = ​   ​    = – ​ ___  ​ = – ​ __ ​  10 10 5 ___ ​   ​  9





(  )

4 (q ) = cos–1 ​ – ​ __ ​   ​ 5

7. Let r = a i + b j + c k. r We have to find = __ ​    ​.  |r| Here, r is perpendicular to the given vectors, so a – 2 b + c = 0 and 2a + b – 3c = 0 Solving, we get a b c ​ _____     ​ = _____ ​       ​ = _____ ​       ​ 6–1 2+3 1+4

r ◊ a = r a cos (45°) _______

__ 1 __  ​  x+y=÷ ​ x  2  +  y2 ​   ◊ ​÷2 ​     ◊ ​ ___ ​ 2 ​    ÷ ______

x+y=÷ ​ x  2  +  y2   ​

...(i)

r ◊ b = r b cos (60°) ______

1 3 x – 4y = ​÷x  2 + y2   ​ ◊ 5 ◊ ​ __ ​  2 ______ 2 fi ​ __ ​  (3 x – 4 y) = ÷ ​ x  2 + y2   ​ 5 From Eqs. (i) and (ii), we get fi



x i + y j r _______  = ​ __  ​ = ​ ________  ​  |r| ​÷x  2 + y2 ​ 



13 y i + y j _________ = ​ __________        ​ ​÷169y   2 + y2   ​

9. Given Let

...(ii)

x = 13 y

Thus,



13 i + j ____ ​  = ​ ______ . ​ 170 ​     ÷ a ◊ b = 0 = a ◊ c = b ◊ c |a| = |b| = |c| = l

Now, (a + b + c) ◊ a = |a + b + c||a| cos (q1) fi  |a + b + c||a| cos (q1) = (a ◊ a + a ◊ b + a ◊ c) fi  |a + b + c||a| cos (q1) = |a|2 l |a| fi  cos (q1) = _________ ​        ​ = _________ ​       ​ |a + b  +  c| |a + b  +  c| l |b| Similarly, cos (q2) = _________ ​        ​ = _________ ​       ​ |a + b  +  c| |a + b + c| and

l |c| cos (q3) = _________ ​       ​ = _________ ​       ​ |a + b + c| |a + b  +  c|

Thus,

cos (q1) = cos (q2) = cos (q3)



(q1) = (q2) = (q3).

___

a b __ c fi ​ __ ​  = __ ​    ​ = ​    ​ 5 5 5

10. Let r = x i + y j + z k such that |r| = ÷ ​ 51 ​    . It is given that





Thus,

a = b = c = l (say) l (i  +  j + k) (i  +  j + k) r __ ​ __ ​  = __ ​    ​ = ​ __________      = ​ _________   . |r|  l ​÷3 ​    ​÷3 ​   

8. Let the vector be r = x i + y j. r We have to find = ​ __  ​.  |r|

Let

a = i + j and b = 3i – 4j

5.37



cos (q1) = cos (q2) = cos (q3)

a ◊ r b ◊ r c ◊ r fi ​ ____   ​ = ____ ​     ​ = ____ ​    ​  |a||r| |b||r| |c||r| a ◊ r b ◊ r ___ c◊r fi ​ ____ ​ = ____ ​   ​ = ​   ​  |a| |b| |c| fi

a ◊ r = b ◊ r = c ◊ r (   |a| = 1 = |b| = |c|)

x  –  2y + 2z ________ y – 4x – 3z __ fi ​ __________  ​      = ​   ​    = ​    ​ 3 1 5

5.38  Integral Calculus, 3D Geometry & Vector Booster x  –  2y + 2z ________ y – 4x  –  3z __ fi ​ __________  ​      = ​   ​    = ​    ​ = l (say) 3 1 5 Solving, we get Also,

___

x + y + z = 51



25l2 + l2 + 25l2 = 51



51 l2 = 51

fi Also,



l =1



l = ± 1



r = ± (– 5i + j + 5k)



cos (q1) = cos (q2) = cos (q3)

c ◊ r ___ ​   ​  |c|

a ◊ r = b ◊ r = c ◊ r



2x + y + z = 0 z ​ __  ​  5 z __ ​    ​  = l (say) 1

= ± ( j + k)

13. We have, 1 ​   |a| = ___ ​  __  ​ = |b| = |c|  ​ |( – )|2 ​ 2 ​    ÷ = | | + | |2 –2 (  ◊  ) fi x+y=y+z=x+z fi

( 

x + y = y + z = x + z = l (say)

Also, fi

= [1 + 1 – 2 (  ◊  )]



= 2 – 2 (  ◊  )

l x = – ​ __  ​  = y = z 2



= 2 – 2 cos q



= 2 (1 – cosq)

|r| = 4



2

2

2

x +y +z =4

l2 l2 __ l2 fi ​ __ ​  + __ ​   ​  + ​   ​  = 4 4 4 4 3l2 fi ​ ___ ​   = 4 4 16 fi l2 = ___ ​   ​  3 fi

4__ l = ± ​ ___   ​  ​ 3 ​    ÷

4__ Therefore, r = ± ​ ___   ​ (i + j + k) ​ 3 ​    ÷ 12. Let

)



Solving, we get

a = (i + 2j + k),

(  ) q fi ​|  –  |​ = 2 sin ​( __ ​   ​  )​ 2 q 1 fi sin ​( __ ​   ​  )​ = __ ​   ​  ​   |  –  |​ 2 2 14. Given

...(i)

r ◊ c = 0

y x ​ __  ​ = ___ ​    ​ = 0 – 5 y x fi ​ __  ​ = ___ ​    ​ = 0 – 1 r Therefore, = __ ​    ​  |r|

a ◊ r b ◊ r ____ c ◊ r fi ​ ____  ​ = ____ ​     ​ = ​    ​  |a| |r| |b|r| |c| |r|



3x – y – z = 0

Solving Eqs. (i) and (ii), we get

11. Let r = x i + y j + z k such that |r| = 4. It is given that

b ◊ r ____ ​   ​ = |b|

|  |

r ◊ (a × b) = 0

 x  y  z fi ​ 1​    ​ 2​    ​ 1​    ​  ​ = 0 112

2

a ◊ r fi ​ ____ ​ = |a|

c = (2i + j + k)

2





and

such that r = (x i + y j + z k). It is given that r, a and b lie in the same plane, so

|r| = ÷ ​ 51 ​     2

b = (i + j + 2k)

and r be a vector

x = – 5l, y = l, z = 5l

2



q = 2 × 2 sin2 ​ __ ​   ​   ​ 2

 ◊  = 0 =  ◊  =  ◊ 

and ​|   |​ = 1 = |​   |​ = |​   |​ We have,

( – ) ◊ ( – )



= ​(   ◊  – ◊ –  ◊  +  ◊   )​



= (0 – 0 –  ◊  + 0)

...(ii)

Vectors 



= – | |2



= – 1.

15. Given

| |=1=| |=| + |

Also, fi fi

| + |=1



| + |2 = 1 2

Also,

| | + | + 2 (  ◊  ) = 1



1 + 1 + 2 (  ◊  ) = 1



2 cos (q ) = 1 – 2 = – 1



1 cos (q ) = – ​ __  ​ 2

Thus,

sin (q ) = ÷ ​ 1  – cos2    (q ) ​



​ 3 ​    ÷ 1 ___ = ​   ​  sin (q ) = ​ 1  – ​ __ ​ ​   4 2

fi ​÷x  2  +  y2 +   z2 ​ = 1

__________

÷ 

__

______

__

​ 3 ​    ÷ 16. It is given that, a ◊ i = |a| |i| cos (30°) = ___ ​   ​  2 1 and b ◊ i = |b| |i| cos (120∞) = – ​ __ ​  2 Clearly, the angle between a and b is 90°.

=1+1+0



=2

__

17. Given,

)

a2 __ ​  4  ​ + a

b2 __ ​  4 ​  – b

2 (a ◊ b) ______ ​  2 2 ​    a  b

1 = __ ​  2  ​ + a

1 __ ​  2  ​ – a

2 (a ◊ b) ______ ​  2 2 ​    a  b

)

Now,

|(w ◊  )| = |– 3| = 3.

19. Given

a ◊ b = 0 = a ◊ c

Also,

p 1 b ◊ c = |b||c| cos ​ __ ​   ​   ​ = __ ​   ​  3 2

u ◊  = 0 x+y=0 x = – y

(  )

|a + b + c|2 = |a|2 + |b|2 + |c|2 + 2 (a ◊ b + b ◊ c + c ◊ a) 1 = 1 + 1 + 1 + 2 ​ 0 + __ ​   ​  + 1  ​ 2 =4 |a + b + c| = 2.

( 

...(i)

)

2 (a ◊ b + b ◊ c + c ◊ a) = 0 |a + b + c|2



= |a|2 + |b|2 +|c|2 + 2 (a ◊ b + b ◊ c + c ◊ a)



= 9 + 16 + 25 + 0

Thus,

= 50 2 |a + b + c| = 5.

|  |

2



| ​​  |2​​ ​  + ​​|   |2​​ ​ + 2(  ◊   ) = ​ _________________     ​ | ​​  |2​​ ​ + | ​​  |2​​ ​ – 2 (  ◊   )



1  +  1  + 2 cos (60°) = ​ ________________       ​ 1 + 1 – 2 cos (60°)



1  +  1 + 1 = ​ _________   ​ 1+1–1



= 3.

= x i + y j + z k such that | | = 1.

Now, fi fi

r = ± k

​​|  +   |​​ ​ + 2 _______ ​​ ​ _____   ​  ​​ ​ = ​   ​  – ​​|  –  |2​​ ​

a–b 2 = ​​ ​ _____    ​  ​​ ​ a b 18. Let

Thus,

21. We have,

a2  +  b2 – 2 (a ◊ b) = ​ _______________  ​       a2 b2

( 

0 + 0 + z2 = 1 z = ± 1

20. Given Now,

fi ​|  +  |​ = ÷ ​ 2 ​   

b 2 __ ​  2  ​   ​​ ​ = b

fi fi

Thus,

​​|  +  |2​​ ​ = | |2 + | |2 + 2(  ◊  )

( 

x2 + y2 + z2 = 1



We have,

a ​​ __ ​  2  ​ – a



Now,

(  ◊  ) = 0



| |=1 __________

2



Thus,

...(ii)

From Eqs. (i) and (ii), we get x=0=y

We have,

v ◊  = 0 x–y=0 x = y

5.39

5.40  Integral Calculus, 3D Geometry & Vector Booster

|  |

__ +  Thus, ​ _____ ​   ​  ​ = ÷ ​ 3 ​    –

fi  b2 + c2 + 2 b c cos (p – A) = a2

22. Given,

fi  2 b c cos (A) = b2 + c2 – a2 (a + b + 3c) = 0



(a + b + c) = (– 2c)

fi  b2 + c2 + 2 b c cos (A)= a2

We have,

|a + b + c|2 = |(– 2c)|2

b2  + c2 – a2 fi  cos (A) = ​ ___________     ​  2 b c Hence, the result. _​ __›

​ __› ​_› _

​___›

​___›

_ ​›

_​ __›

​_›

25. Let ​BC​  = ​a  ​,  CA​ ​   = ​b  ​  and AB​ ​   = ​c  ​ 

fi  |a|2 + |b|2 + |c|2 + 2 (a ◊ b + b ◊ c + c ◊ a) = 4|c|2 68 17 fi  1 + 16 + ___ ​   ​ + 2 (a ◊ b + b ◊ c + c ◊ a) = ___ ​   ​  9 9 68 – 17 fi  2 (a ◊ b + b ◊ c + c ◊ a) = ​ _______  ​   – 17 9 51 fi  2 (a ◊ b + b ◊ c + c ◊ a) = ___ ​   ​ – 17 9 17 fi  2 (a ◊ b + b ◊ c + c ◊ a) = ___ ​   ​ – 17 3 34 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – ​ ___ ​  3

We have,

17 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – ​ ___ ​  3 23. Let the resultant force be F such that

fi ​b  ​  + ​c  ​  = – ​a  ​ 



F = F1 + F2 + F3

i.e.

F = 2j – k

Now,

AB = 2 i + 4 j – k



= (2 j – k) ◊ (2i + 4j – k)



= 8 + 1 = 9.

24.

​_›

​_›

_ ​›

​_›

_ ​›

_ ​›

​_›

fi ​a  ​  + ​b  ​  + ​c  ​  = ​0 ​   ​› _ ​› _

_ ​›

_ ​› _ ​›

_ ​› _ ​›

fi ​a  ​  ◊ ​b  ​  + ​a  ​  ◊ ​c  ​  = – ​a  ​  ◊ ​a  ​  fi

a b cos (p – C ) + a c cos (p – B ) = – a2



– a b cos (C) – a c cos (B) = – a2



\ Work done = (Force) ◊ (Displacement)

​___›

​BC​  + CA​ ​   + AB​ ​   = ​0 ​  

a = b cos (C) + c cos (B)

26.

_ ​› ​___› ​___› _ _ ​ › ​___› ​› Let ​BC​  = ​a  ​,  CA​ ​   = ​b  ​  and AC​ ​   = ​c  ​ 

_​ __›

Here, ​OP​  = a  + b ​___›

and ​OQ​  = c  + d



​___› ​___› ​___› We have ​BC​  + CA​ ​   + AB​ ​   = _ ​› _ _ ​› ​› fi ​a  ​  + ​b  ​  + ​c  ​  = 0 _ ​› ​_› ​_› fi ​b  ​  + ​c  ​  = – ​a  ​  ​_›

_ ​›

_ ​›

fi ​​( ​b  ​  + ​c  ​  )​​ ​ = (– ​a  ​)  2 2

fi  b2 + c2 + 2 b ◊ c = a2

​___› ​___›

0

​___

​___

|  › | |  › |

Now, ​OP​   ◊ ​OQ​  = ​ OP​  ​   ​ ​ OQ​  ​   ​ cos (– POQ) Now,

(a  + b ) ◊ (c  + d )

______

______

= ​÷a  2 + b2 ​  ​÷c  2 + d2   ​ cos (A – B) fi

cos (A – B)

Vectors 

(​  a  + b  )​ ◊ ​( c  + d  )​ ______ ______ = ​ __________________       ​  ​ ÷ ​ c  2 + d2   ​ ÷​ a  2 + b2  a c + b d ______    ______ = ​ _______________     ​ 2  ​ ÷ ​ c  2 + d2   ​ ÷​ a  + b2  d a c b ______ ______ = _______ ​  ______      ​ ◊ ​ _______      ​ + ________ ​  _______      ​ ◊ ​ _______      ​ 2 2 2 2 2 2  2  ​ ÷ ​ c  + d    ​ ​÷a  + b    ​ ​÷c  + d2   ​ ÷​ a  + b   = cos A ◊ cos B + sin A ◊ sin B 27.

30. Now,

5.41

|  |

 i a × b = ​ 1​    ​  3

 j ​  2  ​   – 2

k   ​ 3 ​   ​ 1



= 8 i + 8 j – 8 k



= 8 (i + j – k)

Area of the parallelogram = |a × b| __

= 8​÷3 ​     sq.u.

31. Now,

|  |

 i a × b = ​ 1​    ​  3



 j ​  1  ​   – 4

k   ​ 1 ​   ​ 1

= 5 i + 2 j – 7 k

Area of the parallelogram Here, and

​___› ​OP​  =

​___› ​OQ​  =



1 = ​ __ ​  |a × b| 2



___________ 1 = __ ​   ​  × ÷ ​ 25    +  4 +   49 ​ 2



​ 78 ​     ÷ = ____ ​   ​   sq.u. 2

32. Let and Now, and

a = 3 i – j + 2 k, b=i–j–k c = 4 i – 3 j + k. a b = – 2 i – 3 k a c = i – 2 j – k

\

 i  j a b × a c = ​ – 2 ​    ​   ​  0  ​   1 – 2

a  + b c  + d

___

Now, ​___› ​___›

​___

​___

|  › | |  › |

​OP​   ◊ ​OQ​  = ​ OP​  ​   ​ ​ OQ​  ​   ​ cos (– POQ) fi

a c – b d = (OP) (OQ) cos (A + B)



a c – b d cos (A + B) = ​ _________    ​  (OP) (OQ)



a c b d = ___ ​     ​  ◊ ​ ____    ​ – ___ ​     ​  ◊ ​ ____      ​ OP OQ OP OQ



= cos (A) cos (B) – sin (A) sin (B)

28. We have,

|  |

 i a × b = ​ 2​    ​  1



 j ​    ​  – 1 – 3

 k ​  1 ​   ​  –5

= 8 i + 11 j – 5 k

1 29. Area of a triangle = __ ​   ​    |a × b| 2 Now,

|  |

 i a × b = ​ 3 ​    ​  5

 j 4​    ​ 7

k   ​ 0 ​   ​ 0

= (21 – 20) k =k

1 Thus, the area of the triangle = __ ​   ​  sq.u 2



|  |

 k ​    ​  ​ – 3 – 1

= – 6 i – 5 j + 4 k

1 Area of the triangle = __ ​   ​  |a b × a c| 2 ___________ 1 = ​ __ ​  ​÷36   + 25    + 16 ​ = 2 33. Let a = 2 i – j + k and b = 3 i – 4 j – k. A unit vector perpendicular to a and b  (a × b) = ±​ _______ ​  |a × b| Now,

|  |

 i (a × b) = ​ 2​    ​  3

 j ​    ​  – 1 – 4

 k ​  1 ​   ​ – 1



= 5i + 5j – 5k



= 5 (i + j – k)

___

​ 77 ​     ÷ ____ ​   ​   sq.u 2

5.42  Integral Calculus, 3D Geometry & Vector Booster (a × b) Thus, the unit vector = ± ​ ______ ​  |a × b|

and Therefore,

1__ = ± ​ ___   ​ (i + j – k). ​ 3 ​    ÷



|(a × k)|2 = a12 + a22

| 

|2

​​| a ×  |2​​ ​ + ​​ a ×   ​​ ​ + | ​​ a ×  |​​ ​ 2

34. We have,



= (a22 + a32 + a12 + a32 + a12 + a22)

a × (b + c) + b × (c + a) + c × (a + b)



= 2 (a12 + a22 + a32)



= 2a2

= a × b + a × c + b × c + b × a + c × a + c × b = a × b – c × a + b × c – a × b + c × a – b × c = 0 35. Given

a × b = c × d

...(i)

and

a × c = b × d

...(ii)

(b × c) = ± ​ ______   ​ |b × c|



Subtracting Eq. (ii) from Eq. (i), we get

38. Given a ◊ b = 0 = a ◊ c Thus, a is perpendicular to b and c. A unit vector perpnedicular to b and c

a×b–a×c=c×d–b×d



a × (b – c) = (c – b) × d



a × (b – c) – (c – b) × d = 0



a × (b – c) + (c – b) × d = 0



a × (b – c) – d × (b – c) = 0



(a – d) × (b – c) = 0

(b × c) = ± ​ __________      ​ p |b| |c| sin ​ __ ​   ​   ​ 6 (b × c) = ± ​ ______  ​    1/2



(  )



= ± 2 (b × c).





(a + b + c) = 0



b × (a + b + c) = b × 0 = 0



b×a+b×b+b×c=0



b×a+b×c=0

39. Given, fi \ fi fi 40. Given, fi \ fi fi Also,



b × c = – b × a

– 6 l – 6l = 1





b × c = a × b



1 l = – ​ ___  ​  12

Thus,

1 R = – ​ __ ​  (–3 i + 4 j – 6k). 2

Thus, (a – d) is parallel to (b – c). 36. Given, (a + b + c) fi

a × (a + b + c) = a × 0 = 0



a×a+a×b+a×c=0



a×b+a×c=0



a × b = – a × c



a × b = c × a

...(i)

Also,

...(ii)

From Eqs. (i) and (ii), we get

a×b=b×c=c×a

37. Let

a = a1i + a2j + a3k

Now,

(a × i)



= (a1i × i + a2j × i + a3 k × i)



= (– a2k – a3j)

Thus,

|(a × i)|2 = a22 + a32

41. Now,

2

2

Similarly, |(a × j)| = a1 + a3

2



a×b=a×c a × (b – c) = 0 (b – c) is parallel to a (b – c) = l a b – c + l a, l ŒR R× R× R is R= R=

B=R×C (B – C) = 0 parallel to (B – C) l (B – C) l (– 3 i + 4 j – 6 k)

R ◊ A = 1

|  |

 i a × b = ​ 1​    ​  0

 j 1​    ​ 1

k   ​ 0 ​   ​ 1

=i–j+k

Unit vector perpendicular to a and b

...(i)

Vectors 



a×b = ± ​ ______     ​ |a × b|

= ± (i – j + k) Thus, the number of vectors of unit length = 2. 42. As we know that, if a, b and c form a right handed system, then

|  |



c=a×b



 i c = ​ ​  x  ​  0

43. Given,

 j  ​ y ​ 1

 k ​ z  ​  ​ = – z i + x k 0

5.43

Comparing, we get

(z – y) = 0, (x – z) = 1, (y – x) = – 1

Solving, we get fi

5 2 x = __ ​   ​ , y = __ ​   ​  = z 3 3

Thus,

1 b = __ ​   ​  (5 i + 2 j + 3 k) 3

46. The vector [a – (a ◊ b) b] lies in the plane of a and b and the vector (a × b) is perpendicular to each of a and b Thus, the angle between (a – (a ◊ b) b) and (a × b) = 90°.



r × a = b × a and r × b = a × b



r × a = – a × b and r × b = a × b



r × a = – r × b



r×a+r×b=0



r × (a + b) = 0

\

r is parallel to (a + b)



r = l (a + b)



r = l (a + b)



r × b = l (a × b + b × b)



r × b = l (a × b)

Here,



a × b = l (a × b)

Given a + b = 3 i + 4 j



l=1

Now,

|a + b|2 = |a|2 + |b|2 + 2 (a ◊ b)

Therefore, r = (a × b)



|a + b|2 = |a|2 + |b|2 = 2 |a|2





2 |a|2 = |a + b|2 = |a + b|2 = (32 + 42) = 25



25 |a|2 = ___ ​   ​  2

= 3 i + j – k

44. Given that

r × a = b and r ◊ a = 0



r×a=b



a × (r × a) = a × b



(a ◊ a) r – (a ◊ r) a = a × b 2

47.



|a| = |b| and (a ◊ b) = 0

25 \ Area of a square = |a|2 = ___ ​   ​ . 2

48. Let

A = (1, – 2, 2) and B = (2, – 1, 3)

Thus,

r = BA = OA – OB = – i – j – k



|a|  r – 0 = a × b

Therefore, Momentum about the point B



a×b r = ​ _____    ​  |a|2



=r×F

45. Given

a × b = c and a ◊ b = 3



Let

b = x i + y j + z k

 i  j  k = ​ – 1 ​    ​   ​ – 1    ​   ​ – 1    ​  ​ 3 2 – 4

Thus,

x+y+z=3



= 6 i – 7 j + k

49. Here,

PQ = – 6 i – j – k

|  |

 i and ​ ​ 1   ​  x fi

 j ​  1 ​ y

 k ​ 1 ​  ​ z

(z – y) i + (x – z) j + (y – x) k = j – k

|  |

Thus, moment of the couple

=M



= PQ × F

5.44  Integral Calculus, 3D Geometry & Vector Booster

|  |

​___›



 i  j  k = ​ – 6 ​    ​   ​ – 1    ​    ​   ​ – 1    ​  5 0 1

Here, ​OP​  = a  + b



= – i + j + 5 k

Now,

OP × OQ = (a d – b c) 

50. Here,

r = (i – j + 2 k) – (2 i + j + k)



[(OP) (OQ) sin (–POQ)]  = (a d – b c) 



r = i – 2 j + k



(a d – b c) – sin (A – B) = ​ _________     ​ (OP) (OQ)



a d ___ b c = ___ ​     ​  ◊ ​ ____    ​  ◊ ​     ​  ◊ ​ ____      ​ OP OQ OP OQ



= cos A ◊ sin B – sin A ◊ cos B



sin (A – B) = sin A ◊ cos B – cos A ◊ sin B

​___›

and ​OQ​  = c  + d

Thus, torque about the point

|  |



=r×F



 i = ​1 ​    ​  4



= – 2 i – 3 j + 8 k.

51. Given

D ABC, a = BC, b = CA, c = AB

 j k   ​    ​   ​ 1 ​   ​ – 2 0 1

Hence, the result. 54. We have, [a + b, + b + c, c + a] = (a + b) ◊ (b + c) × (c + a) = (a + b) ◊ (b × c + b × a + c × c + c × a) = (a + b) ◊ (b × c + b × a + c × a) = (a ◊ b × c + a ◊ b × a + a ◊ c × a)

_ ​›

​_›

+ (b ◊ b × c + b ◊ b × a + b ◊ c × a)

= [a, b, c] + [a, b, c]

_ ​›

Clearly, ​a  ​  + ​b  ​  + ​c  ​  = 0

= 2 [a, b, c]



55. We have,



_ _ ​› ​› _ _ _ ​_› ​› ​› ​› fi ​a  ​  × ​b  ​  = ​b  ​  × ​c  ​  = ​c  ​  × ​a  ​ 

_ _ ​› ​› _ _ _ ​_› ​› ​› ​› fi ​ ​a  ​  × ​b  ​   ​ = ​ ​b  ​  × ​c  ​   ​ = ​ ​c  ​  × ​a  ​   ​

| 

| | 

|

| 

|

fi ​| a b sin (p – C) |​ = |​ b c sin (p – A) |​ = ​| c a sin (p – B) |​



a b sin C = b c sin A = c a sin B

a b sin C _______ b c sin A _______ c a sin B fi ​ _______     ​  = ​        ​ = ​        ​ a b c a b c a b c sin C ____ sin A ____ sin B fi ​ _____ ​ = ​  a     ​ = ​       ​ c    b sin C sin A ____ sin B _____ fi ​ ____ ​ = ​       ​ = ​  c     ​ a    b Hence, the result. 52.

[2 a – b, 2b – c, 2c – a] = (2 a – b) ◊ (2b – c) × (2c – a) = (2 a – b) ◊ (4 b × c – 2 b × a + c × a) = (2 a – b) ◊ (4 b × c + 2 a × b + c × a) = (8 a ◊ b × c – b ◊ c × a) = 7 [a, b, c] = 0,      a, b and c are coplaner vectors 56. We have, [a, b + c, a + b + c] 57.

= a ◊ (b + c) × (a + b + c) = a ◊ (b × a + b × c + c × a + c × b) = (a ◊ b × c + a ◊ c × b) = (a ◊ b × c – a ◊ c × b) = 0. We have, [a + b + c, a + b, a + c] = (a + b + c) ◊ (a + b) × (a + c) = (a + b + c) ◊ (a + c + b × a + b + c) = (a ◊ b × c + b ◊ a × c + c ◊ b × a)

Vectors 

58.

= (a ◊ b × c – a ◊ b × c + c ◊ b × a) = [a, b, c] – [a, b, c] + [a, b, c] = [a, b, c] We have, [a – b, b – c, c – a] = (a – b) ◊ (b – c) × (c – a) = (a – b) ◊ (b × c – b × a + c × a) = (a – b) ◊ (b × c + a × b + c × a) = (a ◊ b × c – b ◊ c × a) = [a, b, c] – [a, b, c] = 0.

59. We have,

a ◊ (b × c) = |a| |b| |c|



(a × b) ◊ c = |a| |b| |c|



|a| |b| |c| sin (q ) cos (q ) = |a| |b| |c|



sin (q ) cos (j) = 1



sin (q ) = 1, cos (j) = 1



p q = __ ​   ​ , j = 0 2

p Hence, the angle between a and b is q = __ ​   ​  2 60. We have, 1 ​ __ ​  (b × c) ◊ (a + b + c) 2 1 = __ ​   ​  ((b × c) ◊ a + (b × c) ◊ b + (b × c) ◊ c) 2 1 = __ ​   ​  ((b × c) ◊ a + 0 + 0) 2 1 = ​ __ ​  (b × c) ◊ a 2 1 = ​ __ ​    [a, b, c] 2 1 = __ ​   ​  × 4 = 2 2 61. Since the given vectors are coplanar, so

|  |

2  ​ 1​  ​  3 fi fi

–1    ​  ​  – 1 – 2

l   ​ 2 ​   ​ = 0 1

6 – 5 + l (– 2 + 3) = 0 1+l=0

fi l = – 1 62. The volume of the parallelopiped

|  |



= [a, b, c]



3   = ​1 ​  ​  1

– 2    1 ​ 1 ​     ​  1 ​   ​ 1 – 2



= 3 (– 3) + 2 (– 3) + 0



= |– 3| = 3 c.u.

5.45

63. We have,

2 (a + b + c) = 6 i + 8 j – 12 k



(a + b + c) = 3 i + 4 j – 6 k

Thus, a = i + j – k, b = k, c = 2 i + 3 j – 5 k Hence, the volume of the parallelopiped

 | |



 1 = ​ ​0  ​  2

 1 ​ 0​  3

64. Given

[a, b, c] = 5

Now,

[3 (a + b), (b + c), 2 (c + a)]

– 1   ​ 1 ​   ​ = 1 c.u. – 5



= 3.2 [(a + b), (b + c), 2 (c + a)]



=  6 [(a + b), (b + c), 2 (c + a)]



= 6 × 2 [a, b, c]



=6×2×5

= 60. 65. The volume of the parallelopiped,

|  |

1  V = ​ 0​  ​  a



a  1​  ​  0

1  a   ​ ​   ​ 1



= 1 + a (a2 – 1)



= a3 – a + 1

dV fi ​ ___ ​ = 3a2 – 1 da For maximum or minimum, dV ​ ___ ​ = 0 da gives fi

3a2 – 1 = 0



1__ a = ± ​ ___   ​  ​ 3 ​    ÷ –

+



+

1__ 1__ ___ – ​ ___   ​ ​      ​  ​ 3 ​    ​÷3 ​    ÷

1 By sign scheme, the point of minima is a = ___ ​  __  ​  . ​ 3 ​    ÷ 67. Since the given vectors are coplanar, so

|  | | 

1  1  b​  ​  1​   ​  ​ = 0 1 c – a 1   –a a  1   C Æ C  2 – C1 fi ​ 1​  ​  ​b     ​     ​  ​ = 0, ​  ​ 2     ​   ​ 0    –  ​ 1  ​C3 Æ C3 – C1 ​ 1 c–1 0

a  ​ 1​  ​  1

|

( 

)

5.46  Integral Calculus, 3D Geometry & Vector Booster __

fi  a (b – 1) (c – 1) (a – 1) (c – 1)



​ 3 ​    ÷ __  ​  = ​ ____ 2​÷2 ​   

fi  (1 – b) (1 – c) + (1 – a) (1 – c)

70. Let

a × b = a1i + a2j + a3k

+ (1 – a) (1 – b) = 0 Dividing both the sides by (1 – a) (1 – b) (1 – c), we get a 1 1 ​ _____     ​ + _____ ​       ​ + _____ ​       ​ = 0 1–a 1–b 1–c a 1 1 fi ​ 1 + _____ ​       ​  ​ + _____ ​       ​ + _____ ​      ​  = 1 1–a 1–b 1–c 1 1 1 fi ​ _____     ​ + _____ ​       ​ + _____ ​       ​ = 1 1–a 1–b 1–c

We have,



[a, b, i] i + [a, b, j] j + [a, b, k] k

68. Let a = a1i + a2j + a3k,



= a1i + a2j + a3k

b = b1i + b2j + b3k and c = c1i + c2 j + c3k We have, [a, b, c]2

= (a × b) Hence, the result. 71. Let a = a1i + a2 j + a3k,



+ (1 – b) (1 – b) = 0.

( 

)

 | | |  |



= [a, b, c] [a, b, c]



a 1 b​ 1 ​  = ​  c1



a 2 b​ 2 ​  c2

a3   b3 ​  ​ × ​  c3

a 1 ​ b​ 1 ​  c1

a 2 ​b 2 ​  c2

a  3 b​ 3 ​  ​   c3

a12 + a2 2 + a32 a1b1 + a2 b2 + a3 b3 a1c1 + a2 c2 + a3 c3 b1a1 + b2 a 2 + b3 a3 b12 + b2 2 + b32 b1c1 + b2 c2 + b3 c3 c1a1 + c2 a2 + c3 a3 c1b1 + c2 b2 + c3 b3 c12 + c2 2 + c32

| 

|

a ◊ a   a ◊ b   a ◊ c   = ​ b ◊ a ​      ​ b ◊ b ​      ​ b ◊ c ​      ​  ​ c ◊ a c ◊ b c ◊ c

 |

69. As we know that,

|

=

1 2 1 2

1 2

1 2

1

1

1 2

= a1i

Similarly, [a, b, j] j = a2j and

[a, b, k] k = a3k

Thus,

b = b1i + b2 j + b3k and c = a = c1i + c2 j + c3k Also, let m = m1i + m2 j + m3k and

n = n1i + n2 j + n3k

Now,

[a, b, c] (m × n)

|  | |  |





b   a    c   = ​ ​ a ◊ m     ​   ​  ​     ​  ​ b ◊ m        ​  c ◊ m  a ◊ n b ◊ n c ◊ n

| 

a 2 b​ 2 ​  c2

a3   ​b 3 ​  ​ × c3

a 1 = ​ b​ 1 ​  c1

 i m ​  ​   1 ​  n1

|

 j m ​   2 ​  n2

 k m ​  3  ​  ​   n3

r ◊ (b × c) = x a ◊ (b × c) + y b ◊ (b × c) + z c ◊ (b × c)

1

(  ) ( 



72. Given r = x a + y b + z c Taking scalar product of (b × c)

a ◊ a   a ◊ b   a ◊ c   [a, b, c]2 = ​ b ◊ a ​     ​ ​   ​ ​   ​  ​ b ◊ b   b ◊ c     c ◊ a c ◊ b c ◊ c 1

[a, b, i] i = ((a × b) ◊ i) i

)

1 1 1 __ 1 = ​ 1 – __ ​   ​   ​ + __ ​   ​ ​  __ ​    ​ – ​   ​   ​ 2 2 4 2



r ◊ (b × c) = x a ◊ (b × c)



[r, b, c] = x [a, b, c]



[r, b, c] x = ​ _______   ​  [a, b, c]

[r, c, a] [r, a, b] Similarly, y = ​ _______     ​ & z = ​ _______     ​ [a, b, c] [a, b, c]

3 1 1 __ = __ ​   ​  – __ ​   ​  = ​    ​ 2 8 8

Hence,

​ 3 ​    ÷ Thus, [a, b, c] = ____ ​  __  ​  2​÷2 ​   

73. Given,

__

Therefore, the volume of the parallelopiped

[r b c] r = ​ ______   ​ a + [a b c]

[r c a] ​ ______     ​ b + [a b c]



1 [a b, a × b] = __ ​   ​  4



1 (a × b) ◊ (a × b) = __ ​   ​  4

[r a b] ​ ______   ​ c [a b c]

Vectors 

fi fi fi fi fi 74. Given fi fi

1 |(a × b)|2 = __ ​   ​  4 1 __ |(a × b)| = ​   ​  2 1 a b sin (q ) = __ ​   ​  2 1 sin (q ) = __ ​   ​  2 p q = __ ​   ​ . 6 = x (a × b) + y (b × c) + z (c × a)  ◊ c = x (a × b) ◊ c + y (b × c) ◊ c + z (c × a) ◊ c

Now, |2a + 5b + 5c| = |2a + 5 (b + c)| = |2a + 5 (– a) = |– 3 (a)| = |– 3| |a| = 3. 77. Let Now,

= x (a × b) ◊ c = x [a b c]  ◊ c x = _______ ​      ​ [a, b, c]



a = i + j, b = j + k and c = k + i

|  |

 i (a × b) = ​ 1​    ​  0

 j 1​    ​ 1

k   ​ 0 ​   ​ = (i – j + k) 1

(a × b) 1 = ​ _______     ​ = ___ ​  __  ​  (i – j + k) |(a × b)| ​÷3 ​   

 ◊ c  ◊ b Similarly, y = _______ ​    ​  , z = _______ ​    ​  [a, b, c] [a, b, c]

similarly,

(b × c) 1 = ​ _______     ​ = ___ ​  __  ​  (i + j – k) |(b × c)| ​÷3 ​   

Thus,

x+y+z

and

(c × a) 1 = ​ _______     ​ = ___ ​  __  ​  (i + j – k) |(c × a)| ÷ ​ 3 ​   

 ◊ c  ◊ a  ◊ b = _______ ​      ​ + _______ ​      ​ + _______ ​      ​ [a, b, c] [a, b, c] [a, b, c]

Volume of a parallelopiped



 ◊ (a  +  b + c) = ____________ ​         ​ [a, b, c]



1 1   1 1__ ___ = ___ ​  __  ​  ◊ ​ ___   ​  ◊ ​  __  ​  ​ ​  1 ​       ​÷3 ​     – 1 ​ 3 ​     ​÷3 ​ ÷



 ◊ (a  +  b + c) = ____________ ​   ​      1/8





= 8 a ◊ (a + b + c).

1 1__   = ​ ____    ​ ​ ​  1 ​   3​÷3 ​     – 1



2 = ____ ​  __    ​ (1 + 1) 3​÷3 ​   



75. Volume of the tetrahedron

| 

 | |  0 ​ 2​  0

1 = __ ​   ​  [a, b, c] 6





1  1 = __ ​   ​  × ​ 1​  ​  6 1

4__ = ​ ____    ​ c.u 3​÷3 ​   

78. Given

a + b + c = a d

and

b + c + d = b a

 1  1 ​    ​     ​  1 ​   ​ – 1 2 – 1

|

– 1    1 ​ 1 ​     ​ – 1    ​    ​  1 1

 1 ​      ​ (C2 Æ C2 + C1) – 1 ​  1



|  |



1 = __ ​    ​ (– 1 + 2 + 3) 6



d = – b – c – b a



a d = – a b – a c – a b a



2 = __ ​   ​  c.u. 3



a + b + c = a b – a c – a b a

76. Given |a – b|2 + |b – c|2 + |c – a|2 = 9 fi  2 (a2 + b2 + c2) – 2 (a ◊ b + b ◊ c + c ◊ a) = 9 fi  6 – 2 (a ◊ b + b ◊ c + c ◊ a) = 9 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – 3 fi  (a2 + b2 + c2) + 2 (a ◊ b + b ◊ c + c ◊ a) = 3 – 3 fi  |a + b + c|2 = 0 fi  (a + b + c) = 0

5.47

Comparing, the co-efficients of the vectors, we get

a = – 1, a b = – 1



a = – 1, b = 1

Now. a + b + c + d + 4 = a d + d + 4 = – d + d + 4 = 4. 79. Let a = 3 i + 2 j + 6 k, b = 2 i + j + k

5.48  Integral Calculus, 3D Geometry & Vector Booster c = i – j + k.

and

a  ×  (b × c) We have to find ±  ​ ___________        ​. |a  ×  (b × c)|

|  | |  |

Now,

 i (b × c) = ​ 2​    ​  1



 j ​  1  ​   – 1



 i a × (b × c) = ​ 3​    ​  2

 j ​  2  ​   – 1

(21 i – 7 k) ________   = ± ​ _________  ​ ​÷441   + 49 ​  

80. We have, a × (a × b) = (a ◊ b) a – (a ◊ a) b = a – |a|2 b = a – 3 b



|  |  j 1​    ​ 1

 k ​  1 ​   ​ – 1

= – 2 i + j + k Thus, from Eq. (i), we get

3 b = (i + j + k) – (– 2 i + j + k)



3 b = 3 i



b=i

81. We have, fi

1 (a × (b × c)) = __ ​   ​  b 2 1 (a ◊ c) – (a ◊ b) c = __ ​    ​ b 2 1 = __ ​   ​ , (a ◊ b) = 0 2

1 1 (a ◊ c) = ___ ​  __  ​ , (a ◊ b) = ___ ​  __  ​  ​ 2 ​    ​ 2 ​    ÷ ÷



1 1 a c cos(q1) = ___ ​  __  ​ and a b cos (q2) = ___ ​  __  ​  ​ 2 ​    ​ 2 ​    ÷ ÷



1 1 cos (q1) = ___ ​  __  ​ and cos (q2) = ___ ​  __  ​  ​ 2 ​    ​ 2 ​    ÷ ÷



(3 i – 7 k) ___ ​  = ± ​ ________   ​ 10 ​     ÷

 i a × (a × b) = ​ 1​    ​  0





(21 i – 7 k) ___ ​  = ± ​ _________   7​÷10 ​    

Now,

1 cos (q1) = __ ​   ​  and cos (q2) = 0 2 p p (q1) = __ ​   ​ , (q2) = __ ​   ​  3 2

82. We have, 1 (a × (b × c)) = ___ ​  __  ​ (b + c) ​ 2 ​    ÷ 1 fi (a ◊ c) b – (a ◊ b) c = ___ ​  __  ​ (b + c) ​ 2 ​    ÷

 k ​  6 ​   ​ – 3

3 b = a – a × (a × b)



Hence, the result.

= 21 i – 7 k Thus, a  ×  (b × c) ±  ​ ___________       ​ |a × (b × c)|



1 a c cos (q1) = __ ​   ​  and a b cos (q2) = 0 2



k   ​ 1 ​    ​ 1

= 2 i – j – 3 k Also,



...(i)

p p q1 = __ ​   ​  and q2 = __ ​   ​  4 4 p q2 = __ ​   ​  4

p Hence, the angle between a and b is __ ​   ​  4 83. Given, a × (a × c) + b = 0 fi a × (a × c) = – b fi |a × (a × c)| = |– b| p fi |a| |(a × c)| sin ​ __ ​   ​   ​ = 1 2 fi |a| |(a × c)| = 1

(  )



|(a × c)| = 1



a c sin q = 1 1 sin q = __ ​   ​  2 p q = __ ​   ​  6

fi fi

p Hence, the angle between a and c is ​ __ ​ . 6 84. We have, a × (b × c) ◊ (a × b) × c = 0 fi {(a ◊ c) b – (a ◊ b) c}◊{(c ◊ a) b – (c ◊ b) a} = 0 fi ((a ◊ c) b)2 – (a ◊ c) (c ◊ b) (b ◊ a) – (a ◊ b) (c ◊ a) (c ◊ b) + (a ◊ b)(c ◊ b) (c ◊ a) = 0 fi ((a ◊ c) b)2 – (a ◊ c) (c ◊ b) (b ◊ a) = 0 fi (a ◊ c) {(a ◊ c) b2 – (a ◊ b) (b ◊ c) = 0 fi (a ◊ c) = 0, {(a ◊ c) b2 – (a ◊ b) (b ◊ c)} = 0 Hence, (a ◊ c) = 0

Vectors 

85. Given, 1 (a × b) × c = __ ​   ​  |b| |c| a 3 1 fi c × (a × b) = – ​ __ ​  |b| |c| a 3 1 fi (c ◊ b)a – (a ◊ a) b = – ​ __ ​  |b| |c| a 3 1 __ fi (c ◊ b) = – ​    ​ |b| |c| a 3 1 fi |c| |b| cos (q) = – ​ __ ​  |b| |c| 3 1 fi cos q = – ​ __ ​  3 __ _____    1 2​÷2 ​ fi sin q = ​ 1 – ​ __ ​ ​  = ____ ​   ​    9 3 Hence, the result. 86. Given,

÷ 



a ◊ b = 0



r = m a + n b + p (a × b) ...(i) r ◊ a = m (a ◊ a) + n (a ◊ b) + p (a ◊ (a × b)) m=0 r ◊ b = m (a ◊ b) + n (b ◊ b) + p (b ◊ (a × b)) 1 = 0 + n (b ◊ b) + 0 n=1 r ◊ a × b = m (a ◊ a × b) + n (b ◊ a × b)

Let Now, fi Also, fi fi Again,



+ p [(a × b) ◊ (a × b)]



1 = 0 + 0 + p |(a × b)|2



p=1

Hence, from Eq. (i),

r = b + (a × b)

87. We have,

1 a × (b × c) + b × (c × a) = __ ​   ​  a 2

1 fi  (a ◊ c) b – (a ◊ b) c + (b ◊ a) c – (b ◊ c) a = __ ​   ​  a 2 1 fi  (a ◊ c) = 0, (a ◊ b) = 0, (b ◊ a) = 0, (b ◊ c) = – ​ __ ​  2

Thus,

|(a × c)|

(  )



p = a c sin ​ __ ​   ​   ​ 2 = 7. 1. 1



= 7.



88. We have, (d + a) ◊ [a × b × (c × d)]

= (d + a) ◊ (a × [(b ◊ d) c – (b × c) d]



= (d + a) ◊ [(a × c) (b ◊ d) – (a × d) (b ◊ c)]



= [d ◊ (a × c) (b ◊ d) + a ◊ (a × c) (b ◊ d)

  – d ◊ (a × d) (b ◊ c) – a ◊ (a × d) (b ◊ c)]

= [a, c, d] (b ◊ d)

89. Given, fi

px + (x × a) = b p (a ◊ x) + a ◊ (x × a) = a ◊ b



p (a ◊ x) + 0 = a ◊ b



p (a ◊ x) = a ◊ b (a ◊ b) p = _____ ​   ​   (a ◊ x)



px + (x × a) = b p (a × x) + a × (x × a) = a × b



p (a × x) + (a ◊ a) x – (a ◊ x) a = a × b



(a ◊ a) x = (a ◊ x) a – a × b – p (a × x)



(a ◊ b) (a ◊ a) x = _____ ​  p      ​ a – a × b – p (a × x)



(a ◊ b) (a ◊ a) x = _____ ​  p      ​ a – a × b – p (p x – b)



(a ◊ b) (a2 + p2) x = _____ ​  p    ​ a – a × b – p b  



(a ◊ b) _____ ​  p      ​ a  –  a × b – p b x = ​ ___________________      ​    (a2 + p2)

90. Given fi fi

[x a b] = 0 x, a, b are coplanar vectors x = m a + n b

(a ◊ c) = 0



a c cos (q1) = 0



x ◊ a = m (a ◊ a) + n (b ◊ a)



cos (q1) = 0



x ◊ a = m (a ◊ a) + n (b ◊ a)



0 = m |a|2 + 0



m=0

Also,

x = m a + n b



x ◊ b = m (a ◊ b) + n (b ◊ b)



(  )

p = cos ​ __ ​   ​   ​ 2

(  )

p q1 = ​ __ ​   ​   ​ 2

...(i)

Also, fi

Now,



5.49

5.50  Integral Calculus, 3D Geometry & Vector Booster fi

1 = 0 + |b|2



(x × a) × a = b × a



1 n = ___ ​   2   ​ |b|



a × (x × a) = – b × a = a × b



(a ◊ a) x – (a ◊ x) a = a × b

Thus,

b x = m a + n b = ___ ​   2 ​ = |b|



|a|2 x = a × b



a  ×  b x = _____ ​  2    ​.  |a|

b ​ ___  ​  |b|

91. We have, [a × (b + c), b × (c – 2a), c × (a + 3b)] = [a × b + a × c, b × c – 2b × a, c × a + 3c × b] = [a × b – c × a, b × c + 2a × b, c × a – 3b × c] = [x – z, y + 2x, z – 3y] where x = a × b, y = b × c, z = c × a



= (x – z) ◊ (y + 2x) × (z – 3y)

96. Given, fi

r×b=a×b (r – a) × b = 0

fi fi

(r – a) = l b, l Œ R r = a + l b

fi  r ◊ c = (a ◊ c) + l (b ◊ c)

= (x – z) ◊ (y × z – 6 x × y + 2x × z) = x ◊ (y + z) + 6 z ◊ (x + y)



(a ◊ c) l = – ​ _____   ​ (b ◊ c)

Thus,

(a ◊ c) r = a – ​ _____ ​     ​   ​b. (b ◊ c)

= 7 x ◊ (y × z) = 7 [x y z] 2

= 7 [a b c] 92.

97. Given,

= 28 We have, [(a – b), (a – b – c), (a + 2 b – c)] = (a – b) ◊ (a – b – c) × (a + 2 b – c)

x a + y b + z c = d Taking scalar product of (b × c), we get x a ◊ (b × c) + y b◊ (b × c) + z c◊ (b × c) = d ◊ (b × c)

= (a – b) ◊ [2 a × b – a × c – b × a + b × c – c × a – 2c × b] = a ◊ (b × c) – 2a ◊ (c × b) + b ◊ (a × c) + b ◊ (c × a) = a ◊ (b × = 3 [a, b, = 15 93. We have,

c) + 2a ◊ (b × c) – b ◊ (c × a) + b ◊ (c × a) c]

94. Given,

= 576 × 4 = 2304

[(2a × 3b), (3b × 4c), (4c × 2a)] = [x × y, y × z, z × x] where 2a = x, 3b = y, 4c = z = [x, y, z]2 = [2 a, 3 b, 4 c]2 = 4. 9. 16 [a, b, c]2

x×b=a×b fi (x – a) × b = 0 fi (x – a) = l b, fi x = a + l b. 95. We have, x×a=b

(  )



x a ◊ (b × c) + 0 + 0 = d ◊ (b × c)



x a ◊ (b × c) = d ◊ (b × c)



d ◊ (b × c) [d b c] x = ​ ________   ​ = ​ ______   ​ a ◊ (b × c) [a b c]

Similarly, we can easily find that [d c a] [d a b] y = ​ ______   ​ and z = ​ ______   ​ [a b c] [a b c] 98. We have, x+y=a fi

(x + y) ◊ a = a ◊ a



x ◊ a + y ◊ a = a ◊ a



1 + y ◊ a = |a|2

...(i)

Also, x × y = b

where l ΠR



a × (x × y) = a × b



(a ◊ y) x – (a ◊ x) y = a × b



(|a|2 – 1) x – y = a × b [from Eq. (i)] ...(ii)

Again x + y = a Adding Eqs. (ii) and (iii), we get

(|a|2) x = (a × b + a)

...(iii)

Vectors 

(a × b  +  a) x = ​ __________      ​  |a|2



Thus,

From Eq. (iii), we get (a  ×  b + a) y = a – x = a – ​ __________      ​  |a|2

Hence,



 | |  j ​  3 ​ 3

 k ​ 0 ​   ​ 4

= 12 i – 8 j + 6 k π 0



(a  ×  b + a) (a × b  +  a) x = ​ __________     ​,  y = a – ​ __________        ​ 2 |a| |a|2

a = 2 i + 3 j and b = 3 j + 4 k  i a × b = ​ ​ 2   ​  0



5.51

3. Resultant of P and Q



AB = 3 i + 7 j – 5 k

= (2 i – 5 j + 6 k) + (– i + 2 j – k) = (i – 3 j + 5 k). Displacement, = AB = (6 i + j – 3 k) – (4 i + 3 j – 2 k) = (2 i + 4 j – k)



BC = – 7 i – j + 5 k

Workdone = Force ◊ Displacement

CA = 4 i – 6 j

= (i – 3 j + 5 k) ◊ (2 i + 4 j – k) = |2 – 12 – 5| = |– 15| = 15units. 4. We have,



1. We have,

and

Unit vectors along A B, B C, C A are 1 ___ ​ ____    ​   (3i + 7j – 5k) ​ 83 ​     ÷ 1 ___ ​ ____    ​   (– 7i + j + 5k) ​÷75 ​    



(a × b)2 = (a b sin q )2



= a2 b2 sin2 q

1 ___ and ​ ____    ​   (4 i – 6 j). ​÷52 ​    



= a2 b2 (1 – cos2q )



= a2 b2– a2 b2 cos 2q

Since the forces P, Q, R are of 15 KN each, so



= a2 b2 – (a ◊ b)2



15 P = ____ ​  ___  ​ (3 i + 7 j – 5 k) ​ 83 ​     ÷





15 Q = ____ ​  ___  ​ (– 7 i – j + 5 k) ​÷75 ​    



= (b × c)



= – (c × b)



15 and R = ____ ​  ___  ​ (4 i – 6 k) ​÷52 ​     Thus, the resultant S is given by



(a × b) + (c × b) = 0



(a × c) × b = 0



15 15 = ____ ​  ___  ​   (3 i + 7 j – 5 k) + ____ ​  ___  ​   (– 7 i – j + 5 k) ​ 83 ​     ÷ ​÷75 ​     15 ___  ​ (4 i – 6 j)   + ​ ____ ​÷52 ​    

) ( 

)

3 6 7 7 4 1 = 15​ ​ ____ ​  ___    ​ – ____ ​  ___    ​ + ____ ​  ___    ​  ​ i + ​ ____ ​  ___    ​ – ____ ​  ___    ​ + ____ ​  ___    ​  ​ j ​ 83 ​     ​÷75 ​ ​ 83 ​     ​÷75 ​     ​÷52 ​         ​÷52 ​     ÷ ÷

( 

5 ___   + ​ – ​ ____    ​ + ​ 83 ​     ÷

(a × b) = (b × c) π 0

fi a × c = k b, where k is a scalar. 6. Sum of the vectors

= P + Q + R

[ ( 

5. Given,

)]

= (2 i + 4 j – 5 k) + (S i + 2 j + 3 k)

= (2 + S) i + 6 j – 2 k Unit vector parallel to the sum of the vectors

(2 + S) i + 6 j – 2 k _______________ = ​ _________________       ​ ​÷(2   + S)2 + 36   + 4 ​



(2 +  S) i + 6 j – 2 k = _________________ ​  ___________        ​ 44 ​ ÷​ S  2+  4S +  

5 ____ ​  ___    ​  ​ k  ​ ​÷75 ​     Also, it is given that

2. As a × b = 0 does not imply that the vectors a and b are null vectors, let



(2  + S) i + 6 j – 2 k ___________ (i + j + k) ◊ ​ ________________        ​ = 1 44 ​ ÷​ S  2 + 4S +  

5.52  Integral Calculus, 3D Geometry & Vector Booster ___________



(2 + S) + 6 – 2 = ÷ ​ S  2 + 36  +     44 ​

Thus, the vector r is



(S + 6)2 = (S2 + 4S + 44)





S2 + 12 S + 36 = (S2 + 4S + 44)

10. We have |a| = ÷ ​ 144    +  16    + 9 ​ = 13



8S = 8

___________

fi S=1 7. Since the vectors (2i – j + k),

____________

____



|b| = ÷ ​ 64   + 144    + 81  ​= ÷ ​ 289      ​= 17

and

|c| = ÷ ​ 1089   + 16 +   576 ​ = ÷ ​ 1681 ​     = 41

_______________

_____

Thus, the length of the edges are 13, 17 and 41 respectively. \ Area of the faces = |a × b|, |b × c|, |c × a|

(i + 2j – 3k) and (3i + aj + 5k)

|  |

are coplanar, so,

2  –1    1 ​ 1​  ​    ​2 ​   –3 ​    ​    ​ = 0 3 a 5 fi

= ± (– 5i + j + 5k).



3 (3 – 2) – a (– 6 – 1) + 5(4 + 1) = 0

= 220, 435, 455

Volume of the parallelopiped = [a, b, c]

 |



3 + 7a + 25 = 0



7a = – 28



a = – 4.



8. Given,

|a + b| = |a – b|



|a + b|2 = |a – b|2



a2 + b2 + 2a ◊ b = a2 + b2 – 2a ◊ b

= 3696 11. Since a, b and c are non-coplanar vectors, so [a, b, c] π 0.



4 a ◊ b = 0



a ◊ b = 0

|

12  4  3   = ​ ​ 8 ​   ​   – 9  ​  ​ –12  ​ ​   33 – 4 –24

Now,

[x, y, z] = x ◊ (y × z)



c×a b×c a×b = ​ _______     ​ ◊ ​​ _______     ​ × ​ _______      ​  ​ [a, b, c] [a, b, c] [a, b, c]

...(i)



Let the vector r makes an angle q with the vectors a, b and c.

1 = ​ ________      ​ [b × c, c × a, a × b] [a, b, c]3



1 = ​ ________   3   ​ [a, b, c]2 [a, b, c]



1 = _______ ​       ​ π 0. [a, b, c]

Thus, a and b are perpendicular to each other. 9. Let r = x i + yj + z k fi

x2 + y2 + z2 = 51

r ◊ a r ◊ b r ◊ c cosq = ​ ____  ​ = _____ ​    ​ = ____ ​    ​  |r| |a| |r| |b| |r| |c| r ◊ a r ◊ c r ◊ b r ◊ c fi  ____ ​    ​ = ____ ​    ​ and _____ ​    ​ = ____ ​    ​  |r| |a| |r| |c| |r| |b| |r| |c| Thus,

1 1 __ ​   ​  (– 4x –  3z) ​ __ ​  (x  –  2y + 2z) y y 3 5 ___ ​ ___ ​ ___ fi  ​ _____________      = ____ ​  ___    ​; ___________ ​       = ​ ____    ​  ​÷51 ​     ​÷51 ​     ​÷51 ​     ​÷51 ​     fi

x – 5y + 2z = 0; 4x + 5y + 3z = 0

Solving, we get x ​ ___  ​ = – 5

y __ ​    ​ = 1

z __ ​    ​  = l (say) 5

From Eqs. (i) and (ii), we get

25l2 + l2+ 25l2 = 51



51l2 = 51

fi fi

l2 = 1 l = ± 1

...(ii)

( 

)

Thus, x, y and z are non-coplanar vectors. Now, x ◊ (a + b) + y ◊ (b + c) + z ◊ (a + b) (b × c) ◊ (a +  b) + (c × a) ◊ (b + c) + (a × b) × (c + a) = ​ ______________________________________________         ​     [a, b, c] (b × c) ◊ a + (c × a) ◊ b + (a × b) ◊ c = _______________________________ ​        ​     [a, b, c] [a, b, c]  +  [a, b, c] + [a, b, c] = ​ __________________________      ​    [a, b, c] 3[a,  b,  c] = _________ ​   ​     [a, b, c] = 3

Vectors 

12. Given,

r×b=c×b





(r – c) × b = 0

fi (r – c) is parallel to b. or r is coplanar with the vectors b and c. Also, r ◊ a = 0 fi r is perpendicular to a. Again a ◊ b π 0 fi neither a nor b is a null vector or a is not perpendicular to b. 13. Given, a+b+c=0 fi  (a + b + c)2 = 0 fi  a2 + b2 + c2 + 2 (a ◊ b + b ◊ c + c ◊ a) = 0 fi  1 + 1 + 1 + 2 (a ◊ b + b ◊ c + c ◊ a) = 0 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – 3 – 3 fi  (a ◊ b + b ◊ c + c ◊ a) = ___ ​   ​  2 14. As we know that, if a, b, c form a right handed system, so a×b=c fi c=a×b fi

|  |

   i  j k c = ​ ​  x  ​  ​  y  ​ ​ z  ​  ​ 01 0 = x k – z i = – z i + x k

15. Since a, b and c are lie in the same plane, so they are coplanar. Thus, [a, b, c] = 0 fi

a ◊ (b × c) = 0

16. Given,

A=B+C

= 10 i – (2d – 12) j + (9 – d) k __

Given the area of the triangle is 5​÷6 ​   .  __ 1 fi  __ ​   ​  |A × B| = 5 ​÷6 ​    2 __

fi  |A × B| = 10 ​÷6 ​   

________________________

fi  100 + (2d + 12)2 + (9 – d)2 = 600 fi  (2d + 12)2 + (9 – d)2 = 500 fi  4d 2 + 48d + 144 + 81 – 18d + d 2 = 500 fi  5 d 2 + 30 d – 275 = 0 fi  d 2 + 6 d – 55 = 0 fi  (d + 11) (d – 5) = 0 fi  d = –11, 5 Hence,

a = 8, b = 4, c = 2, d = 5

or

a = – 8, b = 4, c = 2, d = –11

17. We have, (a + b) × (a × b) = a × (a × b) + b × (a × b)

= (a ◊ b)a – (a ◊ a) b + (b ◊ b)a – (b ◊ a)b



=a–b+a–b

= 2 (a – b) 18. Ans. (c) 19. Ans. (d) 20. Also, Let , be unit vectors on form​_ a right handed system › Let ​b   ​ = b1  + b2  + b3  C

fi  ai + bj + ck = di + 3j + 4 k + 3i + j – 2k

A

R

B

fi  a = d + 3, b = 4, c = 2.



We have,

Then ​P  ​  = ÷ ​ 3 ​     ( × ​b  ​) 

|  | |  |



   i  j k = ​ a  ​    ​  4​    ​ ​ 2 ​   ​ d3 4



= 10 i – (4a – 2d ) j + (3a – 4d) k



= 10 i – (4d + 12 – 2d) j + (3d + 9 – 4d)k

__

2 fi  ​÷100   + (2d + 12)     + (9 – d)2 ​ = 10​÷6 ​   

Q

 i  j k   (A × B) = ​ a   ​   ​  b​    ​  ​c  ​   ​ d3 4

5.53

P

​_›

​_›

__ __

= ÷ ​ 3 ​     (b2  – b3  ) ​__›

​_›

​_›

and ​Q​   = ​b  ​  – (  ◊ ​b  ​)    = (b2  + b3  ) ​_› ​__›

​P   ​ ​Q​   Then cos A = _____ ​ _​ › _​ _›  ​  =0 |​P   ​||​Q​  |

A = 90°

​_›

​_›

​__›

Also, ​R  ​  = ​P  ​  – ​Q​  

so that , ,

5.54  Integral Calculus, 3D Geometry & Vector Booster __

__

23. Let BP as x-axis and BY as y-axis.

= (​÷3 ​  b   2 – b3)  – (​÷3 ​  b   2 – b2)  Now, cos B =

​_› ​_› ​P  ​ ​ R  ​  _____ ​ _​ › _​ ›  ​  |​P  ​|  |​R ​ | 

( 

__

) (  ) __ 3 ​( ​b2​2​​  + ​b2​3​ )​ – 2 ​÷3 ​     b2 b3 – 1 __________________ B = cos  ​ ​      ​  ​ __     2 2 ​÷3 ​ ​    ( ​b​2​​  + b ​ 2​3​ )​

Let i and j be unit vectors along x-axis and y-axis, respectively.

C = 180° – 90° – B = 90° – B

Here,

3 ​ ​b2​2​​ + b​ 2​3​  ​– 2 ​÷3 ​     b2 b3 = ​ __________________     ​ __     2 2 ​÷3 ​ ​     ​b​2​​  + ​b2​3​  ​ Thus, Also,

( 

)

Hence, the result,

p a + b = __ ​   ​  2 Let q the angle between BP and CP fi

Question asked in Past IIT-JEE Examinations 21. Let x be a unit vector such that x = ai + bj Thus, |x| = 1

Now,



|a i + b j| = 1





​÷a  2 + b2    ​= 1



a2 + b2 = 1

_______

...(i)

Also (ai + bj) ◊ (i + j) = |(ai + bj)| ◊ |(i + j)| cos (45°) fi fi Again,

__  1 a + b = 1 ◊ ​÷2 ​     ◊ ___ ​  __  ​  ​ 2 ​    ÷

a + b = 1

...(ii)

(ai + bj) ◊ (3i – 4j) = |(ai + bj)| ◊ |(3i – 4j)| cos (60°) 1 fi 3a – 4b = 1.5 ◊ ​ __ ​  2 5 fi 3a – 4b = __ ​   ​   2 On solving (ii) and (iii), we get 13 1 a = ___ ​   ​ and b = ___ ​    ​  14 14 1 Thus, x = ___ ​    ​ (13i – j) 14

|  |

22. Since the given vectors are coplanar, so 2  –1    1 ​ 1​   ​   ​2  ​  – 3 ​    ​     ​ = 0 3 l 5 fi  3(3 – 2) – l (– 6 – 1) + 5 (4 + 1) = 0 fi  3(3 – 2) – l (– 6 – 1) + 5 (4 + 1) = 0 fi  3 + 7l  + 25 = 0 fi  7l + 28 = 0 fi  l = – 4

2a + 2b = p

...(ii)

CP = i cos (a + b) + j sin (a + b)

(  )

(  )

p p = i cos ​ __ ​   ​   ​ + j sin ​ __ ​   ​   ​ = j 2 2 p Thus, BP ◊ CP = i ◊ j = __ ​   ​ . 2 Therefore, the angle between the angle bisectors of angles B and C is 90°. 24. As we know that, a vector in the direction of the bisector of the angle between two vectors a and b is a b 1 1 ​ __  ​ + ___ ​    ​   = ​ __  ​ (i – 2j + 2k) + __ ​    ​ (2i + j + 2k) |a| |b| 3 3

1 = __ ​   ​  (3i – j + 4k) 3

25. We

a=b×c = b × (a × b)



= (b ◊ b) a – (b ◊ a) b



= |b|2a – (b ◊ a) b

Comparing, we get

|b|2 = 1, (b ◊ a) = 0

fi Also,

|b| = 1, a ^ b c=a×b



= (b × c) × b



= (b ◊ b) c – (b ◊ c) b

= |b|2 c – (b ◊ c) b Comparing, we get |b|2 = 1,(b ◊ c) = 0 fi

|b| = 1, b ^ c

Thus,

|b| = 1 and a = c

26. Ans. (a) 27. Ans. (d)

Vectors 

28. Given,

x×y=b



(x × y) × a = b × a



a × (x × y) = – b × a



31. Given

p b = and a = (4n + 1) __ ​   ​ , n ŒI 2 |(a × b) ◊ c| = |a| |b| |c|



|a| |b| |c| sinq cosj = |a| |b| |c|



sinq cosj = 1



sinq = 1 and cosj = 1 p q = __ ​   ​  and j = 0 2



=a×b



(a ◊ y) x – (a ◊ x) y = a × b



(a ◊ y) x – y = a × b

...(i)



Also,

x + y = a

...(ii)

Similarly, |(a × b) ◊ c| = |a| |b| |c|



x ◊ a + y ◊ a = a ◊ a



1 + y ◊ a = a2



y ◊ a = a2 – 1

...(iii)

From Eqs. (i) and (iii), we get

2

(a – 1) x – y = a × b

...(iv)

Adding and subtracting Eq. (ii) from Eq. (iv), we get

1 x = __ ​  2  ​ (a + a × b) a 1 y = a – __ ​  2  ​ (a + a × b). a



|(b × c) ◊ a| = |a| |b| |c|



b^c

Again

|(a × b) ◊ c| = |a| |b| |c|



|(c × a) ◊ b| = |a| |b| |c|



a ^ c

Thus,

a ^ b, a ^ c and b ^ c

32. Given,

x+y+z=a



(x + y + z) ◊ a = a ◊ a



(x ◊ a + y ◊ a + z ◊ a) = |a|2

30. We have,



3 ​ __ ​   ​  + 2

a × (b × c) + (a ◊ b) b = (4 – 2b – sina) b + (b 2 – 1)c



fi  (a ◊ c) b – (a ◊ b) c + (a ◊ b) b

Also,

and 29. Ans. (b)

2



= (4 – 2b – sina) b + (b – 1) c

Comparing, we get

(a ◊ c + a ◊ b) = 4 – 2b – sina

...(i)

2

and

(b – 1) = – (a ◊ b)



b 2 = 1(a ◊ b)

Also

(c ◊ c) a = c



(c ◊ c) (a ◊ c) = (c ◊ c)

...(ii)

fi (a ◊ c) = 1 From Eqs. (i) and (iii), we get

...(iii)



...(iv)

1 + (a ◊ b) = 4 – 2b – sina

Adding Eqs. (ii) and (iv), we get

( 

)

7 __ ​   ​  + z ◊ a  ​ = 4 4 13 3 (a ◊ z) = 4 – ___ ​   ​ = __ ​   ​   4 4

...(i)



x+y+z=a



x ◊ x + y ◊ x + z ◊ x + a ◊ x



3 1 + y ◊ x + z ◊ x = __ ​   ​  2



1 y ◊ x + z ◊ x = ​ __  ​ 2

...(ii)

3 Similarly, x ◊ y + z ◊ y = __ ​    ​ 4

...(iii)

and

1 x ◊ z + y ◊ z = – ​ __  ​    4

...(iv)

Adding Eqs. (ii), (iii) and (iv), we get

1 x ◊ y + y ◊ z + z ◊ y = ​ __ ​  2



4 – 2b – sina + b 2 = 2

Hence,



b2 – 2b + 2 = sina

3 1 x ◊ y = __ ​   ​ , y ◊ z = 0, z ◊ x = – ​ __ ​  4 4

Now,

x × (y × z) = b

fi (b – 1)2 + 1 = sina It is possible only when



(x ◊ z) y – (x ◊ y) z = b





3 1 – ​ __ ​  y – __ ​   ​  z = b 4 4

(b – 1) = 0 and sina = 1

5.55

...(v)

5.56  Integral Calculus, 3D Geometry & Vector Booster Also,

(x × y) × z = c





z × (x × y) = – c

Solving Eqs. (iii) and (vi), we get



(z ◊ y) x – (z ◊ x) y = – c



1 0x + __ ​   ​  y = – c 4



y = –  4c

...(vi)

From Eqs. (v) and (vi), we get fi

3 c – __ ​    ​ z = b 4 4 z = __ ​   ​  (c – b) 3

Finally, x + y + z = a fi

x=a–y–z



8 4 x = a + __ ​   ​  b + __ ​   ​  c 3 3 __ __  1 x ◊ y = ​÷2 ​     ◊ ​÷2 ​     cos (60°) = 2 ◊ ​ __ ​  2

Thus,

x ◊ y = 1 = y ◊ z = z ◊ x



x ◊ x = 2 = y ◊ y = z ◊ z

Now,

x × (y × z) = a



(x ◊ z) y – (x ◊ y) z = a



y – z = a

Also,

y × (z × x) = b



(y ◊ z) z – (y ◊ z) x = b



z–x=b y – x = a + b

Again,

(x × y) = c



x × (x × y) = x × c



(x ◊ y) x – (x ◊ x) y = x × c



x – 2y = x × c y × (x × y) = y × c



(y ◊ y) x – (y ◊ x) y = y × c



2x – y = y × c

Subtracting Eq. (iv) from Eq. (v), we get

x + y = (y – x) × c

(a  +  b) × c – (a + b) x = ​ __________________      ​    2



(a  +  b) × c + (a + b) y = ​ __________________      ​    2

and

b  –  a + (a + b) × c z = ​ _________________  ​       2

34. Let

r = (a × b) × c



r ^ (a × b) and r ^ c



[(a × b) × c] ^ c



–2a + 3b – c = lp + mq + nr

fi ...(i)



where  l, m, n ŒR – 2a + 3b – c = l (2a – 3b) + m (a – 2b + c) + n (– 3a + b + 2c) = (2l + m – 3n) a



+ (– 3l – 2m + n) b + (m + 2n) c

Comparing, we get ...(ii) ...(iii)



(2l + m – 3n) = – 2,



(– 3l – 2m + n) = 3

and

(m + 2n) = –1

Solving, we get ...(iv)

Finally, x × y = c fi



and A = i, B = i + j, C = i + j + k Now, AB ◊ CD + BC ◊ AD + CA ◊ BD = –1 + 0 + 1 = 0. 36. Since a, b and c are non-zero and non-coplanar vectors, so any vector can be expressed as a linear combination of these three vectors, i.e.

Adding Eq. (i) and (ii), we get

...(vi)

35. Let D be the origin.

33. We have,

x + y = (a + b) × c

7 1 Therefore, –2a + 3b – c = – ​ __ ​  q + __ ​   ​  r. 5 5 37. According to the question,

...(v)

7 1 l = 0, m = – ​ __  ​, n = __ ​   ​  5 5

fi fi

( 

a c = l ​ __ ​    ​ + |a|

(  ( 

)

b ___ ​    ​   ​, |b|

where l ŒR

)

7i  –  4j – 4k – 2i – j + 2k c = l ​ ​ ___________  ​      + ​ ___________  ​       ​ 9 3 i – 7j + 2k c = l ​ ​ __________  ​       ​ 9

)

Vectors 

It is given that, __ |c| = 3​÷6 ​    fi

|c|2 = 54



1  +  49 + 4 54 = l2 ​ ​ _________  ​       ​ 81

( 

l = 81



l = ± 9



y  +  y × a x = ​ _________     ​  |y|2



( 

)

i  –  7j + 2k Therefore, c = ± 9 ​ ​ __________  ​       ​ 9

|y|2 x = y + y × a

)

2







= ± (i – 7j + 2k)

38. Given r = x1r1 + x2r2 + x3r3



fi  (2a – 3b + 4c)

(  ) (  ) (  ) a×b a×b ​( ​ _____     ​  )​ – ​( ​ _____ ​  )​ × a c c    = ​ ____________________      ​    a_____ ×b ​​( ​  c    ​  )​​ ​ b× a b× a – ​ _____ ​  c    ​  ​  – ​ ​ ____ ​  ​ × a c    ____________________ = ​       ​    b×a2 ​​ ​ _____       ​  ​​ ​ c

2

c ((a × b)  +  (a × b) × a) = ______________________ ​           ​ (a × b)2

= (a – b + c) x1 + (b + c – a) x2 + (c + a – b) x3

Finally, y × z = b

= (x1 – x2 + x3) a + (– x1 + x2 – x3) b



y × (y × z) = y × b

  + (x1 + x2 + x3) c



(y ◊ z)y – (y ◊ y)z = y × b

Comparing, we get



y – |y|2 z = y × b



|y|2z = y – y × b



y  –  y × b z = ​ _________  ​    |y|2



x1 – x2 + x3 = 2



– x1 + x2 – x3 = – 2

fi x1 + x2 + x3 = 4 On solving, we get,

7 1 x1 = __ ​   ​ , x2 = 1, x3 = – ​ __ ​  2 2

39. Given,

x×y=a



b × (x × y) = b × a



(b ◊ y)x – (b ◊ x) y = b × a

Also,

y×z=b



y ◊ (y × z) = y ◊ b



0 = y ◊ b



y ◊ b = 0 – (b ◊ x) y = b × a



b×a b×a y = – ​ _____   ​  = – ​ _____ ​   c    (b ◊ x)

Again

x×y=a



y × (x × y) = y × a



(y ◊ y) x – (y ◊ x) y = y × a

fi fi

...(ii)

...(iii)

c ((a × b)  –  (a × b) × b) = ______________________ ​           .​ (a × b)2



r = a (b × c) + b (c × a) + g  (a × b) where a = (a ◊ d), b = (b ◊ d), g = (c ◊ d)

Now,

r ◊ a = a [a, b, c]



r ◊ b = b [a, b, c]



r ◊ c = g  [a, b, c]

Thus, r ◊ (a + b + c) = (a + b + g ) [a, b, c] fi  r ◊ (a + b + c) = (a ◊ d + b ◊ d + c ◊ d) [a, b, c] fi  r ◊ (a + b + c) = (a + b + c) ◊ d [a, b, c] fi  (r – d [a, b, c]) (a + b + c) = 0

|y| x – (y ◊ x)y = y × a |y| x – y = y × a





2  2 

) (  ) (  )



40. Let r = (a ◊ d) (b × c) + (b ◊ d) (c × a) + (c ◊ d) (a × b)

From Eqs. (i) and (ii), we get

( 

[\  (y ◊ z) = 1]

a×b a ×  b ​ _____ ​  c    ​  ​ – ​ ​ _____ ​  ​ × b c    ____________________ = ​       ​    a×b 2 ​​ ​ _____       ​  ​​ ​ c

...(i)

5.57

[ (y ◊ x) = 1]

fi  (r – d [a, b, c]) = 0 [ coplanar]

a, b, c are non-

5.58  Integral Calculus, 3D Geometry & Vector Booster fi  r – d [a, b, c] = 0 fi  r = d [a, b, c] fi  |r| = |d [a, b, c]|

(a × b) b v = ​ ___   ​ + ​ ________     ​ 2 |b | |(a × b)|2

Therefore, 43. Given,



r ◊ (a + b) = 0 and r ◊ (b – c) = 0

1 a × (b × c) = __ ​   ​ (b + c) 2 1 fi (a ◊ c) b – (a ◊ b) c = __ ​   ​ (b + c) 2 Comparing, we get 1 1 a ◊ c = __ ​   ​ , a ◊ b = –  ​ __ ​  2 2 1 1 fi cos q1 = __ ​   ​  and cos q2 = – ​ __  ​ 2 2 p 2p __ ___ fi q1 = ​   ​  and q2 = ​   ​  3 3 2p Thus, the angle between a and b is ___ ​   ​ . 3 44. Area of a given parallelogram 1 = ​ __ ​  |d1 × d2| 2 i j k 1       = ​ __ ​   ​ ​  2​    ​  ​  3  ​   – 6 ​     ​  ​  ​ 2 3 – 4 –1



3y + z = 0 and 3z = 0





y = 0 and z = 0

fi  |r| = |[a, b, c]| ( d is a unit vector) which is independent of d. Thus,   |(a ◊ d) (b × c) + (b ◊ d) (c × a) + (c ◊ d) (a × b)|  

= [a, b, c]

41. Let

r = xi + yj + zk

Now,

a + b = (i + j – k) + (– i + 2j + 2k) = (3j + k)

and b – c = (– i + 2j + 2k) – (– i + 2j – k) = 3k It is given that,



Since r is a unit vector, so



x2 + y2 + z2 = 1





2

|   |  | |

|

1 = ​ __ ​   ​  (– 27i – 16i – 17k)  ​ 2 1 _______________ = __ ​   ​  ​÷729   + 256  +     289 ​ 2 _____ 1 = __ ​   ​  × ÷ ​ 1274 ​     2 39.5 = ____ ​   ​   = 19.75 2



x =1



x = ± 1



Thus,

r = ± i

45. We have,



rˆ = ± i

(– 4i + 5j) a + (3i – 3j + k) b (i + j + 3k)c

Hence, the result. 42. Here, v, b and a × b are coplanar.



= l (ai + bj + ck)

Thus,

v = a b + b (a × b)

(– 4a + 3b + c)i + (5a – 3b + c)j + (b + c)k = l (ai + bj + ck) Comparing, we get



v ◊ b = a b ◊ b + b (a × b) ◊ b v ◊ b = a |b|2 + 0

(– 4a + 3b + c) = l a,

fi fi

Now,

1 = a |b|2 + 0 1 a = ___ ​   2 ​  |b| [v, a, b] = 1



v ◊ (a × b) = 1



l3 + 4l2 – 25l = 0



(a b + b (a × b)) ◊ (a × b) = 1



l (l2 + 4l – 25) = 0



(a b ◊ (a × b) + b (a × b) ◊ (a × b)) = 1



l = 0 and (l2 + 4l – 25) = 0



(a 0 + b (a × b)2) = 1 1 b = ________ ​       ​ |(a × b)|2





– 4 ± ​÷116 ​     l = 0 and l = _________ ​   ​    2



l = 0 and l = – 2 ± ​÷29 ​    



(5a – 3b + c) = l b and (b + 3c) = l c.

| 

|

3    – 4 – l    1    Thus, ​ ​         ​ –3 – l  ​       ​   ​  ​ 5 ​ 1          0 1 3–l

____

___

Vectors 

46. Let Given,

r = xi + yj + zk



x – 2y + 5z = 0

r ◊ a = 0, r ◊ b = 0





2x + 3y – z = 0 y z x Thus, ​ ______      ​ = ______ ​       ​ = ____ ​       ​ 2 – 15 10 + 1 3+ 4 y z x ____ fi ​     ​ = ___ ​    ​ = __ ​    ​  = l (say) – 13 11 7 Also,

r ◊ (2i + j + k) + 8 = 0



2x + y + z + 8 = 0

...(i)

...(ii)



– 26l + 11l + 7l + 8 = 0



– 8l + 8 = 0



l=1

(Tougher Problems for Jee Advanced) 1. We have,

​› ​_› _

|​a  ​  + ​b  ​| 2 = a2 + b2 + 2 (​a  ​  ◊ ​b  ​) 



= 1 + 1 + 2cosq



= 2 (1 + cosq)



q = 2.2 cos2 ​ __ ​   ​   ​ 2



2

(  ) q = 4 cos  ​( __ ​   ​  )​ 2

(  ) 3 q __ ​   ​ ​ | ​a ​ + ​b ​ |​ = 3 cos ​( __ ​   ​  )​ 2 2 _ ​› ​_› q |​a  ​  + ​b  ​|  = 2 cos ​ __ ​   ​   ​ 2 ​_›   

​_›   

fi Also,

Hence, r = – 13i + 11j + 7k 47. Let the position vector of the third vertex be x i + y j.

_ ​›

​_›





From Eqs (i) and (ii), we get

​_›

_ ​›

​› ​_› _

|​a  ​  – ​b  ​| 2 = a2 + b2 – 2 (​a  ​  ◊ ​b  ​) 



= 1 + 1 – 2 cosq



= 2 (1 – cosq)

(  ) q |​a ​ – ​b ​| = 2 sin ​( __ ​   ​  )​ 2 q 2 |​a ​ – ​b ​| = 4 sin ​( __ ​   ​  )​ 2 q = 4 sin2 ​ __ ​   ​   ​ 2



​_›   



​_›   



​_›   

​_›   

Thus, Here,

AC = (x + 1)i + (y – 3)j



BO = i + 3j

Since

AC ^ BO



AC ◊ BO = 0



(x + 1) + 3(y – 3) = 0



x + 3y = 8

Also,

BC = (x – 2)i + (y – 5) j

and

OA = 2i – j

Again,

BC ◊ OA



2 (x – 2) – (y – 5) = 0



2x – y = 1

| 

| 



(  )

|

= [– 5, 5]. _ ​›

...(i)

...(ii)

5 17 x = __ ​   ​ , y = ___ ​   ​  7 7 5 17 = __ ​    ​ i + ___ ​   ​  j. 7 7

|

_ ​› ​_› 3 ​_› _​ › Hence, the range of __ ​   ​ ​  ​a  ​  – ​b  ​   ​ + 2 |​a  ​  – ​b  ​|  2

Hence, the position vector of the thrid vertex is

(  )

​_› ​_› q q 3 ​_› ​_› ​ __ ​ ​  ​a  ​  + ​b  ​   ​ + 2|​a  ​  – ​b  ​|  = 3cos ​ __ ​   ​   ​ + 4sin ​ __ ​   ​   ​ 2 2 2

On solving Eqs (i) and (ii), we get

5.59

2. Let ​a  ​  = x  + y + z , where It is given that, ​_› ​_› 1 ​a   ​ ◊ ​k   ​ = ___ ​  __  ​  ​ 2 ​    ÷ 1 fi z = ___ ​  __  ​  ​ 2 ​    ÷ ​_›

x2 + y2 + z2 = 1

Also,

|​a  ​  +

+ |=1



|(x + 1)  + (y + 1)  + z  | = 1  



(x + 1) + (y + 1)2 + z2 = 1



1 (x + 1)2 + (y + 1)2 + __ ​   ​  = 1 2 1 2 2 (x + 1) + (y + 1) = ​ __ ​  2



2

5.60  Integral Calculus, 3D Geometry & Vector Booster _ _ ​› ​› ​_› p Thus, the angle between (2​a  ​  + ​b  ​)  and ​b  ​  is __ ​   ​ . 2 ​___› 6. Now, ​AB​  = 2  + +

1 x2 + y2 + 2 (x + y) + 2 = __ ​   ​  2 1 1 __ __ ​   ​  + 2 (x + y) + 2 = ​   ​  2 2

fi fi

_​ __›



x + y = –1

...(i)

Also,

1 x2 + y2 = __ ​   ​   2

...(ii)

and ​AC​  = (t + 1)  – Thus,

1 ​___› ​___› ) ar (D ABC) = __ ​   ​  ​ ​( AB​ ​   × AC​  ​   ​  ​ 2

| 

|

|   |  |

From Eq. (i) and (ii), we get   1 1 x = –​ __ ​  = y, z = ___ ​  __  ​  2 ​÷2 ​   



1        = ​ __ ​   ​ ​  ​     ​ 1​    ​ ​  1 ​   ​  ​ 2     2 (t + 1) 0 –1

​_› kˆ 1 Thus, ​a  ​  = – ​ __ ​  ( + ) + ___ ​  __  ​  2 ​ 2 ​    ÷



1 = ​ __ ​   ​  ​( –  + (t + 3)  – (t + 1)   )​  ​ 2



3.



_​ _› ​_› It is given that |​r ​   + bs​ ​  |  is minimum ​__› ​__› _ ​› Hence, the value of |​r ​   + bs​ ​  | 2 + |​bs​ | 2



when b = 0

​_›

4. Let ​R  ​  = a + b + c .



​› ​_› _ (​u  ​  ◊ ​R  ​  –

10)  +

​› ​_› _ (​v  ​  ◊ ​R  ​  –



1 = __ ​   ​  ​   ÷  2



1 = __ ​   ​  ​÷2t   2 + 8t +    11 ​ 2

Let 20)  +

___________________ 2 1 + (t + 3)    +  (t + 1)2 ​ ____________

_ ​›

= |​r ​ | 2

It is given that

|

​__› ​_› (​w​   ◊ ​R  ​)   

=0

z = 2t2 + 8t + 11

dz fi ​ __ ​  = 4t + 8 dt

fi (a – 2b + 3c)  + (2a + b + 4c) 







d 2z ___ ​  2 ​ = 4 > 0 dt z is minimum



Area is minimum.

+ (a + 3b + 3c)  = 10  – 20 – 20 

Comparing the co-efficients, we get a – 2b + 3c = 10, 2a + b + 4c = – 20 and a + 3b + 3c = – 20 Solving, we get a = –1, b = 2, c = 5 ​_›

Hence, ​R  ​  = –  + 2 + 5 .



5. It is given that,





_ ​› ​_› |​a  ​  + ​b  ​|  = 1 _ ​› _ ​› |​a  ​  + ​b  ​| 2 = 1



a2 + b2 + 2 (​a  ​  ◊ ​b  ​)  = 1



1 + 1+ 2 (​a  ​  ◊ ​b  ​)  = 1



​_› ​_›

​_› ​_›



​_› ​_› (​a  ​  ◊ ​b  ​) 

Now,

(2​a  ​  + ​b  ​)   ◊ ​b  ​  = (2​a  ​  ◊ ​b  ​  + ​b  ​  ◊ ​b  ​) 



​_›

For maximum or minimum, dz ​ __ ​  = 0 gives 4t + 8 = 0 dt t = – 2 Thus, the minimum area is

1 = –  ​ __ ​  2

​_›

_ ​›

​_›

_ ​›



|​a  ​  + ​b  ​|  = 1



|​a  ​  + ​b  ​| 2 = 1



|​a  ​| 2 + |​b  ​| 2 + 2 (​a  ​  ◊ ​b  ​)  = 1



1 + 1 + 2 (​a  ​  ◊ ​b  ​)  = 1

​› ​_› _

​› ​_› _ 2(​a  ​  ◊ ​b  ​) 

(  )

_ ​› _ ​›

+

​_› |​b  ​| 2



1 = 2 ​ –  ​ __ ​   ​ + 1 2



= –1 + 1



= 0.

​_›

_ ​›

​› _ ​› _

​_› ​_›

_

​_› ​ › 1 (​a  ​  ◊ ​b  ​)  = – ​ __ ​ . 2 It is also given that,



_ ​› _ ​›

=

7. Given,

3 1 ___________ ___ = __ ​   ​  ​÷8  –  16 +   11 ​ = ​  __  ​  2 ​ 2 ​    ÷

_ ​›

_ ​›

​_›

​c  ​  = l ​a  ​  + m ​b  ​  ​_›

​› ​_› _



|​c  ​| 2 = l2 + m2 + 2l m (​a  ​  ◊ ​b  ​) 



1 1 = l2 + m2 + 2l m ​ – ​ __ ​   ​ 2



(  )

= l2 + (2l)2 – l (2l)

|

Vectors 

fi fi fi Again



2 m = 2l = ___ ​  __  ​  ​ 3 ​    ÷

10. Given, ​_› _ _ ​› ​› ​a   ​ + ​b  ​  = m ​p  ​ 



( 

)

1 2__ (l, m) = ​ ___ ​  __  ​,  ___ ​    ​  ​ ​ 3 ​    ÷ ​ 3 ​    ÷ 8. It is given that,

Thus,





(  )

1 cosq = cos (cos–1) ​ __ ​   ​   ​ = 2

Now.,

1 __ ​   ​  4

​___›

​__›

_ ​›

​_›

_ ​›

​› _ ​› _

(  )

​_›

_ ​› ​__› (​2a​  × ​b  ​) 

​_› ​_ › Now, ​b  ​  ◊ ​c  ​  =

​_› ​_› ​a  ​  ◊ ​c  ​ 

​_› – 3 |​b  ​| 2

​_›

=

= – 6

2 2

2



= 4a b sin q + 144



= 64 sin2q + 144



3 = 64 × __ ​   ​  + 144 = 48 + 144 = 192 4



​_› ​_›

11. Let ​a  ​  =

+



–2 +

​_› ​b  ​  = ​_› and ​c  ​  =

–2

|  | |  |   |  |

– 2 +

+

​_›

____

__

|​c  ​|  = ÷ ​ 192 ​    = 8​÷3 ​   

​_› ​_ › Again, ​b  ​  ◊ ​c  ​  =

– 48

= – 3 – 3 – 3

Also,

|

_ ​›       ​_› ​_› ​a  ​  × (​b  ​  × ​c  ​)  = ​ ​  1  ​   ​  1 ​   – 2 ​   ​  ​   –3 – 3 – 3

| |

      = 3 ​ ​  1  ​     ​ 1 ​   – 2 ​    ​  ​   –1 –1 –1



      = 3 ​ ​  1  ​     ​ 1 ​     ​    ​  ​ – 2 –1 –1 –1



= – 48

​_› ​_› _ _ ​› ​› |​c  ​| 2 = |(2​a  ​  × ​b  ​)  |2 + 9 |​b  ​| 2 – 0

​_›

= |(​p  ​  ◊ ​q  ​)  |

– 3​b  ​ 

​› ​_› _ – 3(​a  ​  ◊ ​b  ​) 

_ ​›





9. Given, ​c  ​  =



​_› ​_›

_ ​›

Sum of the roots = –1 and the product of the roots = 12 Hence, sum of the values of m = –1 and the product of all values of m = 12.

Also,

_ ​› _ ​›

l = 2, m = m

1 16 = 4 + m2 + 4m ​ __ ​   ​   ​ 4 m2 + m – 12 = 0



_ ​› _ ​› _ ​›

= |(​p  ​  ◊ ​q  ​)  | |​b  ​| 

Now,





_ ​› _ ​› _ ​›

_ ​›

|(​a  ​  ◊ ​q  ​)  ​p  ​  – (​p  ​  ◊ ​q  ​)   ​a  ​|  = |(​p  ​  ◊ ​q  ​)  | |m ​p  ​  – ​a  ​| 





|​c  ​| 2 = 4 |​a  ​| 2 + m2|​b  ​| 2 + 4m (​a  ​  ◊ ​b  ​) 



_ ​› _ ​›

​_› _ ​›

​_›





​_› _ ​›

_ ​› _ ​›

fi ​a  ​  ◊ ​q  ​  + ​b  ​  ◊ ​q  ​  = m (​p  ​  ◊ ​q  ​) 

​_›       ​_› ​b  ​  × ​c  ​  = ​ ​  1  ​   – 2 ​     ​  ​ 1   ​  ​ – 2 1 1

\ ​c  ​  = 2a​ ​   + mb​ ​   



__

​ 3 ​    ÷ – 48 __ 3__ cosj = ________ ​      ​= – ​ ____    ​ = – ​ ___ ​  2 4 × 8​÷3 ​    2​÷3 ​    5p j = ___ ​   ​  6

​_› _ ​›

_ _​ _› _ ​› ​› ​_› ​   × ​b  ​  Also, ​c  ​  × ​b  ​  = 2a​ _ _​ _› _ ​› ​› ​_› fi (​c  ​  – 2a​ ​  )  × ​b  ​  = ​0 ​   ​_› ​__› ​_› \ (​c  ​  – 2a​ ​  )  is parallel to ​b  ​  ​_› ​__› ​_› fi (​c  ​  – 2a​ ​  )  = m ​b  ​  ​_› ​__› ​_› fi ​c  ​  = 2a​ ​   + m ​b  ​  ​_› _ ​› = l ​a  ​  + m ​b  ​ 

Thus,

|​b  ​|  |​c  ​|  cosj = – 48

fi ​a  ​  ◊ ​q  ​  = m (​p  ​  ◊ ​q  ​) 

​_› ​_›

​a  ​  ◊ ​b  ​  = ab cos (q) fi

​_› _ ​›

3l2 = 1 1 l2 = __ ​   ​  3 1 l = ___ ​  __  ​  ​ 3 ​    ÷



5.61

|

      = 3 ​ ​ 1   ​ ​  1 ​ ​   – 2 ​  ​ 0 0 – 3

12. It is given that,

= – 9 ( – )

[  ]



– 2 _ ​›   ​_› ​_› a ​a  ​  + b ​b  ​  + g ​c  ​  = ​ – 5 ​   ​   ​ 6



– 2  1    2  1 a ​ ​  0 ​    ​ + b ​ ​1  ​   ​ + g  ​   ​ 1 ​    ​ = ​ ​  – 5 ​   ​ 0 – 3 –1 6

(  ) (  ) (  ) (  )

5.62  Integral Calculus, 3D Geometry & Vector Booster fi

a + 2b + g = – 2





b + g = – 5



– 3a – g = 6

and 3x – y + z = 2 Solving, we get 1 1 x = 1, y = __ ​   ​ , z = –  ​ __ ​  2 2 Hence, the value of

Solving, we get a = 1, b = – 2, g = 3.

13.

​_› Let ​V  ​  =

a  + b + c

​_› ​X  ​  =

+2

Now,



|  |

​_›

= 2 (a – c)  + (2b + c) + (2a – b + 2c) 

2 (a – c)  + (2b + c) + (2a – b + 2c) 



= (2  + )

Comparing the coefficients of ,  , and  , we get a – c = 1, 2b + c = 0, 2a – b + 2c = 1. Solving, we get Now,

7 1 2 a = __ ​   ​ , b = __ ​   ​ , c = – ​ __  ​ 9 9 9 ​_›

_ ​›

9 |​V  ​| 2 = m



49  + 1 + 4 m = 9 × ​ ​ __________  ​       ​ 81



= 2 ( –

= 3

2. We have,

(a + b) ◊ p + (b + c) ◊ q + (c + a) ◊ r (a  +  b) ◊ (b × c) (b  +  c) ◊ (c × a) = ​ _____________        ​ + ​ _____________        ​ [a, b, c] [a, b, c] (c  +  a) ◊ (a × b) + ​ _____________        ​ [a, b, c]

​_›

3. It is given that, ​c ​   is parallel to the plane of the _ ​› ​_› vectors ​a  ​  and ​b  ​,  i.e.

c ^ (a × b) fi  (a × b) ◊ c = 0

+ ) x ( – 2 + 3 ) + y (2 +

= 2 ( –

 ​ = 1 + 1 + 1



_​_› _ ​__› ​› z ​C​   = ​B  ​  × C​ ​   



[a, b, c] ________ [a, b, c] [a, b, c] = ________ ​   ​  + ​     ​ + ​ _______  [a, b, c] [a, b, c] [a, b, c]

= 3

14. It is given that, ​_› y ​B  ​  +

1. We have,

[a, b, c] _______ [a, b, c] ________ [a, b, c] = ​ _______   ​ + ​     ​ + ​     ​ [a, b, c] [a, b, c] [a, b, c]

(  ) 54 = 9 × (​  ___ ​   ​  )​ = 6 81



= 101

a ◊ (b ×  c) + 0 b ◊ (c  ×  a) + 0 c ◊ (a × b)  +  0 = _____________ ​         ​ + ​ ____________        ​ + ​ ____________        ​ [a, b, c] [a, b, c] [a, b, c]

__

​_› x ​A  ​  +





3 |​V  ​|  = ÷ ​ m    ​ 





= 100 + 5 – 4

a ◊ (b × c) _________ b ◊ (c × a) _________ c ◊ (a ×  b) ​ _________   ​  + ​     ​  + ​   ​  (c × a) ◊ b (a × b) ◊ c (b × c) ◊ a

2​V  ​  + ​V  ​  × ​X  ​ 



​_›





= –2c + c + (2a – b)  ​_›

(100 x + 10 y + 8 z)

Integer type Questions

​_› ​_›       ​V  ​  × ​X  ​  = ​ a   ​   ​  b​   ​  ​ c  ​  ​ 120





15. Do yourself

_ ​›

and ​Y  ​  = 2 +

– 2x + y + z = – 2

– ) + z ( + )

+ )

 |

|

3       1 –2 fi ​ ​  2 ​ ​ 3 ​ ​          ​  ​ = 0 – 1     l 1 (2l – 1) fi  (6l – 3 + 1) + 2 (4l – 2 + l) + 3(2 – 3l) = 0

Comparing the co-efficients of the unit vectors, we get

fi  (6l – 2) + 2 (5l – 2) + 3 (2 – 3l) = 0





x + 2y = 2

fi  (6l – 2) + (10l – 4) + 3(6 – 9l) = 0 7l = 0

Vectors 

fi l=0 Hence, the value of (l2 + 2) is 2. 4. We have, r ◊ (a + b + c) = 0 fi r ◊ a + r ◊ b + r ◊ c = 0 Now, r ◊ a = P [b, c, a]

Thus, m = 0 Hence, the value of (m + 4) = 4.

b×c c×a a×b 7. Clearly, p = ​ _______     ​, q = ​ _______     ​, r = ​ _______      ​ [a, b, c] [a, b, c] [a, b, c] ​_›

​_›

​_›

​_›

​_›

Hence, the value of (​a  ​  + ​b  ​  + c) ◊ (​p  ​  + ​q  ​  + ​r ​ ) 

r ◊ b = Q [c, a, b]



and r ◊ c = R [a, b, c] Adding, we get

a ◊ b × c _______ b ◊ c × a _______ c ◊ a  ×  b = ​ _______     ​ + ​     ​ + ​     ​ [a, b, c] [a, b, c] [a, b, c]



[a, b, c] [a, b, c] [a, b, c] = ​ _______   ​ + ​ _______   ​ + ​ _______   ​ [a, b, c] [a, b, c] [a, b, c]



=3





P [b, c, a] + Q [c, a, b] + R [a, b, c] = 0



(P + Q + R) = 0

Hence, the value of (P + Q + R + 5) = 5. 5. It is given that _ ​›

​_›

​_›

_ ​›

​_›

​_› _​ _›

​_›



8. We have, ​_›

_ ​›

​a  ​  ^ (​b  ​  + ​c  ​)  , ​b  ​  ^ (​c  ​  + ​a  ​)  ,​ c​    ^ (​a  ​  + × ​b  ​)  ​_› ​_› ​_› fi ​a ​   ◊ (​b  ​  + ​c  ​)  = 0, _ ​› _ _ ​› ​› ​b  ​  ◊ (​c  ​  + ​a  ​)  = 0 _ ​› ​_› ​_› and ​c ​   ◊ (​a  ​  + ​b  ​)  = 0 _ ​› ​ › ​_ ​_› _ ​_› ​_› › Thus, ​a  ​  ◊ ​b  ​  + ​b  ​  ◊ ​c  ​  + ​c  ​  ◊ ​a  ​  = _ ​› ​_› ​_› Now, |​a  ​  + ​b  ​  + ​c  ​| 2

​_›

​_›

​_›

​_›

fi  2 (a2 + b2 + c2) – 2 (a ◊ b + b ◊ c + c ◊ a) = 9 fi  6 – 2 (a ◊ b + b ◊ c + c ◊ a) = 9 fi  – 2 (a ◊ b + b ◊ c + c ◊ a) = 3 fi  2 (a ◊ b + b ◊ c + c ◊ a) = – 3

0

Now,

|a + b + c|2



= a2 + b2 + c2 + 2 (a ◊ b + b ◊ a + c ◊ a)





=3–3=0



= a2 + b2 + c2

Thus,

|a + b + c| = 0



= 1 +1 + 4



a + c = – a

2

2

Hence, the value of

=6 Hence, the value of (m2 + 1) = 7.

6. In an AP,



​_›

 ​

1 tp = A + (p – 1) d = __ ​ a ​

(  ) 1 c–b q – r = __ ​   ​ ​( ​ _____      ​  ​ d cb )



( 

Now,

= 0

= |3a|



=3



+a +b ,

9.

​_› Let ​p  ​  =

a  + 2 + b 

_ ​› and ​r ​   = a  + b + 3  ​__› Now, ​pq​  = (a – 1)  + (2 – a)  ​__› and ​qr​  = + (b – 2) + (3 – b) 

)

( 

(a – 1)  + (2 – a) = l{(b – 2) + (3 – b) }

)

= {(q – r)  + (r – p) + (p – q)  } ◊ ​ __ ​ a ​  + __ ​   ​ + __ ​   ​  ​ b c 1 1 1 __ 1 1 __ 1 1 = _____ ​       ​ ​ __ ​   ​ – __ ​     ​+ ​   ​ – __ ​   ​ + ​   ​ – __ ​   ​  ​ abcd b c c a a b

( 



Since the vectors are collinear, so

1 a–c r – p = __ ​   ​ ​ ​ _____ ​  ​ ac    d u ◊ v



​_›

​_› ​q  ​  =

1 b–a p – q = __ ​    ​​ ​ _____    ​  ​ d ab

Thus,

_ ​›

|2​a  ​  + 5​b  ​  + 5​c  ​|  = |2a + 5 (b + c)| = |2a – 5a|

1 tq = A + (q – 1) d = __ ​    b 1 tr = A + (r – 1) d = __ ​ c ​



​_›

|​a  ​  – ​b   ​|2 + |​b   ​ – ​c   ​|2 + |​c   ​ – ​a  ​| 2 = 9

​› ​_› _ _ _ ​› _ ​› ​› _ ​› = a + b + c + 2 (​a  ​  ◊ ​b  ​  + ​b  ​  ◊ ​c  ​  + ​c  ​  ◊ ​a  ​)  2

5.63

)



(a –1) = 0, (3 – b) = 0

fi a = 1, b = 3 Hence, the value of (a + b) = 4. ​_›

10. Let ​n  ​  = a  + b + c .

5.64  Integral Calculus, 3D Geometry & Vector Booster _ ​›

Thus, ​_›

​n   ​ = ___ ​ ​_›  ​  |​n   ​|

Comparing the co-efficients, we get

Now, ​u  ​   ◊  = 0 fi a + b = 0 fi

​_› ​v  ​  ◊ 

=0fia–b=0

Hence, the value of



(u + 4v + w) = 17



_ ​›

​_› |​   ​  ◊ 

(u + 2v + w) = 7

and (u – v + 3w) = – 8 Solving, we get

Solving, we get a = 0, b = 0 and c = 1 Thus, ​n  ​  =



u = – 3, v = 5 and w = 0

Hence, the value of (u + v + w + 4) = – 3 + 5 + 0 + 4 = 6.

| = 3.

11. Clearly,

2x – y = 5

14. Let ​s ​   = x (​p  ​  + ​q  ​)  + y (​q  ​  + ​r ​ )  + z (​r ​   + ​p  ​) 

and

x – 2y = 4

Now, ​p  ​  ◊ ​s ​   = y (​p  ​  ◊ (​q  ​  × ​r ​ )  ) = y [​p  ​,  ​q  ​,  ​r ​ ] 

​_›

3x = 6



x=2

and so

y = – 1

​_›

_ ​› ​› _

Solving, we get

​_›

​_›

_ ​› _ ​›

​_›

_ ​›

​_›

​_›

_ ​› _ ​› _ ​›

​› ​_› _

​p   ​ ◊ ​s ​   y = ________ ​ ​_› ​_›    ​ ​_›   [​p   ​, ​q   ​, ​r ​  ]



_ ​› ​› _

​_ ​_

Hence, the value of (x + y + 2) = 3.

› › ​q   ​ ◊ ​s ​   ​r ​   ◊ ​s ​   Similarly, x = ________ ​  _​ › _​ ›    ​ and z = ________ ​  _​ › _​ ›    ​ _ _ ​›   ​›   [​p   ​, ​q   ​, ​r ​  ] [​p  ​,  ​q  ​,  ​r ​ ] 

12. It is given that,

Thus,

|– ​cu​ ,  ​v  ​,  cw​ ​  |  = 8



– 2  1  1   c2 ​ ​ 1 ​    ​   ​ 2 ​   ​ = 8 –1 ​     1 0 –1



– 2      1 –1 c2 ​ ​ 1 ​    ​ –1    ​   ​ 3 ​    ​ = 8 1 0 0

 | | |  |



c2(3 – 1) = 8



c2 = 4



c=2





(C3 Æ C1 + C3)

_ ​›

​_› ​_›

​_›

​_›

​_› ​_›

​_›

​_›

​› ​_› _

​_›

​_›

(​r ​   ◊ ​s ​  ) (​p   ​ × ​q   ​) + ​ ____________     ​ ​_› ​_› ​_ ›   [​p   ​, ​q   ​, ​r ​  ] ​› ​_› _

​_›

​_›



​_› ​_›

​_›

​_›

​_›

+ (​q  ​  ◊ ​s ​ )   (​r ​   × ​p  ​)  + (​r ​   ◊ ​s ​ )   (​p  ​  × ​q  ​) 

  ​_›

​_› ​_›

​_›

​_›

   + (​r ​   ◊ ​s ​ )   (​p  ​  × ​q  ​)  |

_ ​›

_ ​›

​_› _ ​› _ ​› _ ​›



= |​s ​   [​p  ​,  ​q  ​,  ​r ​ ]  |



= |​s ​ |  |[​p  ​,  ​q  ​,  ​r ​ ]  |



=1×4



=4

​_›

​_› ​_› ​_›

Questions asked in Past Iit-Jee Examinations

_ ​›

1. We have,

A ◊ {(B + C) × (A + B + C)} = A ◊ {B × A + B × B + B × C + C × A + C × B

_ ​›



(​p  ​  × ​q  ​)  × ​r  ​  = u​p  ​  + v​q  ​  + w​r ​  



7 + 17 – 8 = ( +



​_›

fi  ​s ​ [  ​p  ​,  ​q  ​,  ​r ​ ]  = (​p  ​  ◊ ​s ​ )   (​q  ​  × ​r ​ ) 

​_› ​_›

= 7 + 17 – 8

_ ​›

​_›

fi  |(​p  ​  ◊ ​s ​ )   (​q  ​  × ​r ​ )  + (​q  ​  ◊ ​s ​ )   (​r ​   × ​p  ​) 

      (p × q) × r = ​ – 5 ​    ​  ​ 3   ​ 2​    ​  ​ 1 13

It is given that,

​_› ​_›

​_›

​_› _ ​› _ ​› _ ​›

      (p × q) = ​ 1​    ​ 1​    ​ ​  1 ​   ​ = – 5 + 3 + 2 2 4 – 1

Thus,

​_›



|  | |  |

13. Now,

​_› ​_›

_ (​p   ​ ◊ ​s ​  ) (​q   ​ × ​r ​  ) (​____________ q  ​  ◊ ​s ​ )   (​r ​   × ​p  ​)  ​› fi  ​s ​   = ​ ____________     ​ + ​  ​_› ​_› ​_    ​ ​_› ​_› ​_ ›   ›   [​p   ​, ​q   ​, ​r ​  ] [​p  ​,  ​q  ​,  ​r ​ ] 

​__› _ ​› _ ​ _›



+ C × C} = A ◊ {B × A + B × C + C × A + C × B}

+ ) u

+ (2 + 4 + ) v + ( +

+ 3 ) w

= (u + 2v + w)  + (u + 4v + w) + (u – v + 3w) 

= A ◊ (B × A) + A ◊ (B × C) + A ◊ (C × A)

+ A ◊ (C × B)

Vectors 

= 0 + A ◊ (B × C) + 0 + A ◊ (C × B)



x + 3y – 4z = l x

= [A B C] – [A B C]



x – 3y + 5z = l y

and

3x + y = l z



(1 – l)x + 3y – 4z = 0



x – (3 + l) y + 5z = 0

and

3x + y – l z = 0

= 0

2. We have,

(  )



p 1 |(B × C)| = BC sin ​ __ ​   ​   ​ = __ ​   ​ . 2 6

Now,

(B × C) A = ± ​ ________     ​ = ± 2 (B × C). |(B × C)|

3. We have |a| |b| |c| = |(a × b) ◊ c| = Volume of a parallelopiped having three adjacent sides as a, b, c. = Volume of a rectangular parallelopiped having a, b, c as adjacenat sides.

| 

Eliminating x, y, z, we get

|

3 1 – l – 4        ​ ​      ​ – (l + 3)   ​       ​ 5 ​   ​ = 0 1 ​      3 – 5 1 fi

l3 + 2l2 + l = 0



l (l2 + 2l + 1) = 0



l (l + 1)2 = 0

fi  a ◊ b = b ◊ c = c ◊ a = 0



l = –1, 0





OP = p = 60i + 3j,

4. Let |OAi| = R, for every i

5.65

6. Let



OQ = q = 40i – 8j

and

OR = r = a i – 52 j

Since the points are collinear, so

Let p be a unit vector perpendicular to the plane of the regular polygon.

(  ) ] [  2p = ​[ R  sin ​( ___ ​  n ​  )​  ]​ p

2p OAi × OAi + 1 = ​ (OAi) (OAi + 1) sin ​ ___ ​  n ​   ​  ​ p



-20 - 11 =0 a - 60 - 55



-20 1 =0 a - 60 5



– 100 – a + 60



a = – 40.



X ◊ A = 0 = X ◊ B = X ◊ C

2

Thus,

(  (  ) ) 2p × OA ) = – ​( R sin ​( ___ ​  n ​  )​ )​p

n – 1 2p ​S ​ ​   ​ (OAi × OAi + 1) = (n – 1) ​ R2sin ​ ___ ​  n ​   ​  ​ p     

i = 1

Also,

(OA2

1

2

( 



60 3 1 R Æ R  2 – R1 -20 -11 0 = 0 ​  ​ 2      ​  ​ ​ R3 Æ R3 – R1 ​ a - 60 -55 0

We have, for 1 £ i £ n –1

60 3 1 40 -8 1 = 0 a -52 1

7. Since,



A, B, C are coplanar

n – 1

Thus,

[A, B, C] = 0

i = 1



Thus, ​S ​ ​   ​ (OAi × OAi + 1) = (1 – n) (OA2 × OA1) 5. Given x (i + j + 3k) + y (3i – 3j + k) + z (– 4i + 5j)

= l (x i + y j + z k)

8. V = [OA OB OC]



2 -3 0 = 1 1 -1 3 0 -1

)

5.66  Integral Calculus, 3D Geometry & Vector Booster 9. Given,

= 2 (–1 – 0) + 3 (–1 + 3) = – 2 + 6 = 4.

Now,

A ◊ B = 0, A ◊ X = c, A × X = B



A × (A × B) = A × B



(A ◊ X) A – (A ◊ A) X = A × B 2



cA – A X = A × B



A2X = cA – A × B

cA – A × B X = ​ ___________  ​      A2 10. Let i, j, k be the unit vectors along the positive directions of x, y and z axes respectively. fi

= |c| |a × b| cos (0) = |a × b| 1 = __ ​   ​  (ab) 2

Thus, a1 b 1 c1

a2 b2 c2

A1 = r sin q cos j,

and

A2 = r sin q sin j A3 = r cos q.

( 

( 

and

)

)

B3 = r cos q = A3.

11. The given statement is true. Let the position vectors of the points A, B and C are a + b, a – b and a + kb respectively. Then AB = – 2b Similarly, BC = (k + 1)b Clearly, AB is parallel to BC for all k in R Thus, A, B and C are collinear p 1 12. Given (a × b) = (a b) sin ​ __ ​   ​   ​ = __ ​   ​  (ab) 2 6 Now, [c a b] = c ◊ (a × b)

(  )

= [a b c]2

1 = __ ​   ​  a2 b2 4 1 = ​ __ ​  (a​ 2​1​​  + ​a2​2​​  + a​ 2​3​)​   (​b2​1​​  + b​ 2​2​​  + ​b2​3​)​  4 13. As the length of the vectors remain the same.

(2p)2 + 1 = (p + 1)2 + 1



4p2 = (p + 1)2



p + 1 = ± 2p 1 fi p = 1, – ​ __ ​ . 3 14. Given A, B, C and D are coplanar, so AB, AC and AD are also coplanar. AB = OB – OA



= (2i + 3j – 4k) – (3i – 2j – k)



= – i + 5j – 3k.

Also,

p When the x-axis is rotated through an angle of ​ __ ​ , the 2 new components of A are B1, B2, B3 respectively. p Thus, B1 = r sin q  cos ​ j + __ ​   ​   ​ 2 = – r sin q cos = – A1 p B2 = r sin q sin ​ j + __ ​   ​   ​ = r sin q cos j 2 = A1

2



Now,

Here,

a3 b3 c3

AC = OC – OA



= (– i + j – 2k) – (3i – 2j – k)



= 2i + 3j + 3k.

Finally,

AD = OD – OA



= (4i + 5j + lk) – (3i – 2j – k)

Given,

= i + 7j + (l + 1) k

fi 

[AB AC AB] = 0 -1 5 -3 2 3 3 =0 1 7 (l + 1)

fi  1 (15 + 9) – 7 (– 3 + 6) + (1 + l) (– 3 – 10) = 0 fi  24 – 21 – 13 (l + 1) = 0 fi  13 (l + 1) = 3 3 fi  (l + 1) = ___ ​    ​  13 3 10 fi  l = ___ ​    ​ – 1 = – ​ ___ ​  13 13 (a × b) 15. Number of unit vectors = ± ​ ________   ​  |(a × b)|

Vectors 

= 2 |a × b + b × c + c × a| Also, area of a triangle D ABC 1 = ​ __ ​  |a × b + b × c + c × a| 2 From, (i) and (ii), we get,

16. Given

a 1 1 1 b 1 =0 1 1 c



a 1- a 1- a C Æ C  2 – C1 1 b -1 0 = 0 ​  ​ 2      ​  ​ |AB × CD + BC × AD + CA × BD| ​ C3 Æ  C3 – C1 ​ 1 0 c -1 = 4 ar (D ABC)

( 

)

fi  a (b – 1) (c – 1) – (1 – a) (c – 1)

19. (a + b) ◊ p + (b + c) ◊ q + (c + a) ◊ r

   + (1 – a) (1 – b) = 0

(a + b) × (b × c) (b + c) ◊ (c × a) = ​ ______________     ​    + ​ _____________     ​    [a b c] [a b c]

fi  a (1 – b) (1 – c) + (1 – a) (1 – c)    + (1 – a) (1 – b) = 0 Divide both the sides by (1 – a) (1 – b) (1 – c), we get a 1 1 ​ _____     ​ + _____ ​     ​  + _____ ​     ​  =0 1– 1–b 1–c a 1 1 fi 1 + _____ ​     ​  + _____ ​       ​ + _____ ​       ​= 1 1– 1–b 1–c 1 1 1 fi ​ _____    ​  + _____ ​     ​  + _____ ​     ​  =1 1– 1–b 1–c ​_›

Also,

4a + 3b = a ​ __ ​ =   3 ​_›

0 0 b ​ ___  ​ = l – 4

(c + a) ◊ (a × b)   + ​ _____________     ​    [a b c] a ◊ (b × c) _________ b ◊ (c × a) _________ c ◊ (a × b) = _________ ​   ​    + ​   ​    + ​   ​     [a b c] [a b c] [a b c] [a b c] _______ [a b c] _______ [a b c] = _______ ​     ​ + ​   ​  + ​   ​  [a b c] [a b c] [a b c]



= (Projection of a on b) 



a ◊ b = ​ ____ ​   ​  ​   |b|



Let ​a  ​  = x  + y be the required vectors a ◊ b Projection of a along b = ____ ​      ​ = 1 b 4x + 3y ______  ​ _______    ​ = 1 ​÷16   + 9 ​   4x + 3y = 5 Also, projection of a along c is 2 a ◊ c ​ ____ ​ = 2 c    a x + b y _______  ​ ________    ​ = 2 ​÷a    2 + b 2   ​

...(i)

= 3 20. Component of a along b

17. Let ​c  ​   = a  + b ​_› ​_ › ​b  ​  ◊ ​c  ​   =

5.67



(  ) a ◊ b b = ​( ____ ​   ​  )​ ​ ___  ​  |b| |b|

(  )

a ◊ b = ​ ____ ​  2 ​  ​ b |b|

Component of a perpendicular to b a ◊b = a – ​ ____ ​  2 ​  ​ b |b|



|b|2 a – (a ◊ b) b = ​ _____________  ​      |b|2



b × (a × b) = ​ __________  ​    .  |b|2

...(i)

3x – 4y = 10 ...(ii) Solving (i) and (ii), we get, x = 2, y = – 1 Hence, the required vector is 2  – 18. Let the position vectors of the points A, B, C and D be a, b, c and d respectively w.r.t the origin O Now, AB = b – a, AD = d – a BC = c – b, BD = d – b CD = d – c, CA = a – c Now, |AB × CD + BC × AD + CA × BD|

(  )



21. Do Yourself By the help of internal section formula 22. (a – b) ◊ {(b – c) × (c – a)} = (a – b) ◊ (b × c – b × a – c × c + c × a) = (a – b) ◊ (b × c – b × a + c × a) = (a ◊ b × c – a ◊ b × a + a ◊ c × a)   – (b ◊ b × c – b ◊ b × a + b ◊ c × a) = (a ◊ b × c) – (b ◊ c × a) = [a b c] – [a b c] = 0

5.68  Integral Calculus, 3D Geometry & Vector Booster 23. Given

[a b c] = 0.

Let

a = a1i + a2 j + a3 k



b = b1i + b2 j + b3k

and

c = c1i + c2 j + c3k





=0

a3 i b3 ¥ a1 c3 b1

j a2 b2

25. Given,

R × B = C × B and R ◊ A = 0.

Now,

(R – B) × C = 0



R = B + l C

Also,

R ◊ A = 0



(B + l C) × A = 0



B ◊ A + l (C ◊ A) = 0



(2 + 1) + l (8 + 7) = 0

k a3 = 0 b3



15l + 3 = 0 1 fi l = – ​ __ ​  5 Hence, the vector



4 c < 0 and – ​ __ ​  < c < 0 3

27. Given, Now,

( a, b, c are coplanar vectors.) 24. Do yourself By the help of internal section formula and the vector equation of a line.





(  )

a b c a a ◊a b◊a a ◊ a a ◊ b a ◊ c = b a ◊ b b ◊ b b◊a b◊b b◊c c a ◊c b◊c a2 b2 c2

c < 0 and c (3c + 4) < 0

4 Hence, the value of c = ​ – ​ __  ​, 0  ​ 3

Then

a1 = b1 c1



1 R = (i + j + k) – __ ​   ​  (4i – 3j + 7k) 5 1 __ = ​   ​  (i + 8j – 2k) 5

a ◊ b = 3 and a × b = c a × (a × b) = a × c



(a ◊ b) a – (a ◊ a) b = a × c



3a – 3b = a × c



3b = 3a – a × c



= (i + j + k) – (– 2i + j + k)



= 3i

fi b=i 28. We have,

i j k (b × c) = 1 1 1 1 1 2 =i–j

Therefore,

i j k a × (b × c) = 1 2 1 1 -1 0 = i + j – 3k

Thus,

29. Given

a × (b × c) ____ 1 = ​ ___________       ​ = ​  ___    ​   (i + j – 3k). |a × (b × c)| ÷ ​ 11 ​     a a c 1 0 1 =0 c c b



a (0 – c) – a(b – c) + c(c) = 0



c2 = ab

26. Let

a = c x i – 6j – 3k

and

b = x i + 2j + 2c x k

Given,

a ◊ b < 0



c x2 – 12 – 6c x < 0



c x2 – 6c x – 12 < 0



= (i + 2j – k) + l(i + j – 2k)



c < 0 and D < 0



= (1 + l)i + (2 + l) j – (2l + 1) k



c < 0 and 36c2 + 48c < 0



c < 0 and 3c2 + 4c < 0

2 Now, the projection of v on a = ​ __ ​   ​ ​ .  3

Thus, c is the GM of a and b. 30. Let v be a vector in the plane of b and c. Then

v = b + lc

÷ 

__

Vectors 

÷ 

__

( 

v ◊ a 2 fi ​ ____ ​ = ​ __ ​   ​ ​   |a| 3 __

– l – 1 = 2



l = – 3

)

1 So, d is parallel to ​ – i + j – ​ __ ​  k  ​. 2

2(1 + l) – (2 + l) – (2l + 1) ___ ​÷2 ​    __ ​ fi ​ __________________________        = ​  __ ​  ​÷3 ​    ​÷6 ​    fi

Now,

d ◊ (3i + 2j – 2k) 1 = __ ​   ​  (2i – 2j + k) ◊ (3i + 2j – 2k) 3 1 = __ ​   ​  (6 – 4 – 2) = 0 3



Therefore, v = – 2i – j + 5k 31. Do yourself By the help of internal section formula and basic Geometry. 32. Given OP = p and OQ = q

Thus, d is parallel to (3i + 2j – 2k). QP × QR 35. Unit vector = ± ​ _________   ​  |QP × QR| 36. We have,

1 = ± ___ ​  __  ​ (2 + ​÷6 ​   

+ )

3p + 2q 3p – 2q OR = ________ ​   ​   and OS = _______ ​   ​    1 5



Now,



= p × (c × d), p = (a × b)

OR ^ OS = 0



= (p ◊ d)c – (p ◊ c) d



OR ◊ OS



= ((a × b) ◊ d)c – ((a × b) ◊ c) d

Thus,

( 

) ( 

)

3p + 2q _______ 2p – 2q fi ​ ________ ​   ​    ​ ◊ ​ ​   ​    ​ = 0 1 5 fi

9p ◊ p = 4q ◊ q 2

5.69

(a × b) × (c × d)

= [a b d]c – [a b c] d. Similarly,

(a × c) × (b × d) = [a c d]b – [a b c] d

and (a × d) × (b × c) = [a d c]b – [a d b]c

2



9p = 4q .

Therefore, x = (a × b) × (c × d) + (a × c) × (d × b)

33. Let

OP = a i + b j + g k,





OQ = b i + g j + a k

= [a b d] c – [a b c] d + [a c d] b – [a b c] d

and

OR = g i + a j + b k

  + [a d c] b – [a d b]c = – 2[a b c] d

Now, PQ = OQ – OP

= (b – a) i + (j – b) j + (a – g ) k



= (g – a) i + (a – b) j + (b – g ) k

Again,

QR = OR – OQ

Thus,

= (g – b) i + (a – g )j + (b – a) k |PQ| = |QR| = |PR| _________________________ (b – a)2 + (g –    b)2 + (a – g )2 ​

=÷ ​ 

Therefore, D PQR is an equilateral triangle. 34. Given, 1 d = __ ​   ​  (2i – 2j + k) 3 1 Clearly |d| = __ ​   ​  ◊ 3 = 1 3 Thus, d is a unit vector. 2 1 Also, d = – ​ __ ​ ​  – i + j – __ ​    ​ k  ​ 3 2

( 

= – 2[b c d] a Thus, x is parallel a.

Also, PR = OR – OP



+ (a × d) × (b × c)

)

37. Given fi Thus,

[b c d] = 0 b, c, d are coplanar vectors d = b + l c



= (j – k) + l (– i + k)

Also,

= (– l) i + j + (l – 1) k a ◊ d = 0



– l – 1 = 0



l = –1

Therefore, d = i + j – 2k Hence,

(i + j – 2k) d __ ​ = ±  ​ ___  ​ = ± ​  _________      . |d| ​÷6 ​   

38. Given

1 a × (b × c) = ___ ​  __  ​  (b + c) ​ 2 ​    ÷

5.70  Integral Calculus, 3D Geometry & Vector Booster fi

1 (a ◊ c) b – (a ◊ b) c = ___ ​  __  ​  (b + c) ​ 2 ​    ÷

Comparing the components of b and c, we get, fi fi fi

1__ 1 (a ◊ b) = – ​ ___   ​ and (a ◊ c) = ___ ​  __  ​  ​ 2 ​    ​ 2 ​    ÷ ÷ 1__ a b cos q = – ​ ___   ​  ​ 2 ​    ÷ 1__ cos q = – ​ ___   ​  ​ 2 ​    ÷ 3p q = ___ ​   ​  4

Volumne of the tetrahedron __



39. Given, u+v+w=0 fi  u2 + v2 + w2 + 2(u ◊ v + v ◊ w + w ◊ u) = – 50 fi  2 (u ◊ v + v ◊ w + w ◊ u) = – 50 fi  (u ◊ v + v ◊ w + w ◊ u) = – 25 40. Given, (a + b + c) ◊ {(a + b) × (a + c)} = (a + b + c) ◊ {(a × a) + (a × c) + (b × a)   + (b × c)} = (a + b + c) ◊ {(a × c) + (b × a) + (b × c)} = a ◊ (b × c) + b ◊ (a × c) + c ◊ (b × a) = [a b c] – [a b c] – [a b c] 41. Let N1 = normal to the plane parallel to i and i + j = i × (i + i) = k

and N2 = normal to the plane parallel to i – j, i + k

= (i – j) × (i + k)



= – i – j + k.

Note that a is parallel to N1 × N2 So, we can consider a = N1 × N2 = k × (– i – j + k)

= (i – j) Let q the angle between a and i – 2j + 2k. Thus, fi

2 cos q = 1 + _____ ​  __    ​ = ​ 2 ​     . 3 ÷ p __ q = ​   ​  4

1 ___ ​  __  ​  ​ 2 ​    ÷

42. If b is perpendicular to c, the given expression is equal to a. Otherwise can not be calculated. 43. Let DE = p.

__



|BC × BA| p = 4​÷2 ​   



2​÷2 ​     p = 4​÷2 ​   



p=2

__

__

Here, D ADE is a right-angled triangle. Thus,

AE 2 = AD 2 – DE 2 = 16 – 4 = 12



AE = 2​÷3 ​   

__

OM = OB + OC Now, ​ _______________  ​      = 2i 2 Thus, fi

= – [a b c]



__

2​÷2 ​    1 fi ​ __ ​    |BC × BA| p = ____ ​   ​    3 6

fi  (u + v + w)2 = 0



2​÷2 ​    ABCD = ____ ​   ​    3

AM = OM – OA = 2i – i – j – k = (i – j – k) __

AM = ​÷3 ​   

If E lies on AM produced, then M is the mid-point of AE. Then 1 ​ __ ​    (e + (i + j + k)) = 2i 2 fi e = 3i – j – k If E lies on MA produced, then A divides the join of E and M in the ratio 2:1. Thus, 2(2i) + e ​ ________  ​    =i+j+k 2  +  1 fi

e = – i + 3j + 3k

44. Let

|p| = |q| = |r| = l

Also,

p ◊ q = 0 = q ◊ r = r ◊ p

Let Now,

x = a p + b q + g r, (where a, b, g, Œ R) p × ((x – q) × p) = (p ◊ p)(x – q) – [p ◊ (x – q)] p = (p ◊ p)(x – q) – (p ◊ x – p ◊ q) p

Vectors 



= (p ◊ p)(x – q) – (p ◊ x) p 2

48. Given,

2



= p  (x – q) – (a p ) p



= l2 (x – q) – l2 a p

= l2 [(x – q) – a p] Similarly,

...(i)

a ◊a a ◊b a ◊c [a b c] = b ◊ a b ◊ b b ◊ c c◊a c◊b c◊c

q × [(x – r) × q] = l2 [(x – r) – b q]

...(ii)

r × [(x – p) × r] = l2 [(x – p) – g  r]



...(iii)

1 = l l



= (1 – l2) – l (l – l2) + l (l2 – l)



= 1 – l2 – l2 + l3 + l3 – l2



= 2l3 – 3l2 + 1.



[a b c]2 = 2l3 – 3l2 + 1



[a b c] = ÷ ​ 2l   3 – 3l2   + 1 ​

2

Adding Eqs. (i), (ii) and (iii), we get fi 45. Given,

0 = l2 (3x – (p + q + r) – x) 1 x = __ ​   ​  (p + q + r). 2 p = ar (quad OABC)



= ar (DOAB) + ar (DOCB) 1 1 = ​ __ ​  |a × (10a + 2b)| + __ ​   ​  |b × (10 a + 2b)| 2 2 1 1 = ​ __ ​  |2a × b| + __ ​   ​  |10b × a| 2 2 = |a × b| + 5|b × a|



= 6 |a × b|



Also,

q = ar (parallelogram OABC) = |a × b|

Here,

__________

Taking dot product of a × b + b × c = pa + pb + rc with a, b and c we get p + q cos q + r cos q = m ...(i)

p cos q + q + r cos q = 0

...(ii)

p cos q + q cos q + r = m

...(iii)



k = 6.

Adding, we get

a × (a × c) = – b

fi fi

|a × (a × c)| = |– b| p |a| |(a × c)| sin ​ __ ​   ​   ​ = 1 2 |a| |(a × c)| = 1



|(a × c)| = 1



a c sin q = 1 1 sin q = __ ​   ​  2 p __ q = ​   ​  6



fi fi

(  )

47. We have, [(A × C + B × A + B × C) (B × C) (B + C)] = (A × C + B × A + B × C) ◊ [(B × C) × (B + C)] = (A × C + B × A + B × C) ◊ [(B × C) + (C × B)] = (A × C + B × A + B × C) ◊ [(B × C) – (B × C)] = (A × C + B × A + B × C) ◊ 0 = 0.

(where l = cos q)

m = (1 – cos q ) ​÷1  + 2 cos q ​   





l l , 1

= m, (say)

p = 6q

a × (a × c) + b = 0

l 1 l

____________

Thus,

46. Given,

5.71



(p + q + r) (1 + 2 cos q )



2m (p + q + r) = ___________ ​       ​ (1 + 2 cos q)

...(iv)

Multiplying Eq. (iv) by cos q and subtracting from Eq. (i), we get,

2m cos q m – __________ ​        ​ = p (1 – cos q) 1 + 2 cos q

m 1 fi  p = ___________________ ​          ​ = ___________ ​  __________     ​ (1 + 2 cos q)(1 – cos q) ​÷1    + 2 cos q ​    Similarly, – 2 cos q 1 r = ___________ ​  __________     ​ and q = ___________ ​  __________       ​ ​÷1  +  2 cos q ​    ​÷1  + 2 cos q ​    49. Given that ​_› ​_› ​a   ​ = ( + + ), ​b   ​ = (4 + 3 + 4 ) ​_› and ​c ​   = ( + a +​_ b  ) are linearly independent › ​_› ​_› vectors ​c   ​ = l ​a   ​ + m ​b   ​ for some scalers l and m not all zeroes. + a  + b  = ( + 4m)  + (l + 3m) + (l + 4m)  l + 4m = 1 l + 3m = a Thus, l + 4m = b

5.72  Integral Calculus, 3D Geometry & Vector Booster On solving, we get, b =__1 Also, given that, |c| = ÷ ​ 3 ​    2 2 1 + a  + b  = 3 a = ± 1 50. Ans. (c) 51. Ans. (a) 52. We have,



55. Given c is coplanar with a and b. Thus,

(i) (u ◊ v)2 + |(u × v)|2



= u2 v2 cos2q + u2v2 sin2q



= u2v2 (cos2q + sin2q)



= u2v2



1 = ​ __ ​  |a × b| 2 3 = __ ​   ​ , where (a × b) = 2i – 2 j + k 2

(ii) |u + v + (u × v)|2 + (1 – (u ◊ v))2

c = a + l b



= (2i + j + k) + l (i + 2j – k)



= (2 + l) i + (1 + 2l)j + (1 – l) k

Also, fi

c is perpendicular to a c ◊ a = 0



2(2 + l) + (1 + 2l) + (1 – l) = 0



4 + 2l + 1 + 2l + 1 – l = 0



3l + 6 = 0

= (u + v)2 + |(u × v)|2 + 2(u + v) ◊ (u × v)



l+2=0

  + (1 – (u ◊ v))2



l = – 2

So,

c = – 3j + 3k

2

2

2

= (u + v) + |(u ◊ v) | + (1 – (u ◊ v)) 2

2

2 2

2

= u + v + 2u ◊ v + u v  sin q 2 2

+ 1 – 2u ◊ v + u v  cos q

2

2

2 2

= u + v + u v + 1 = (1 + u2) (1 + v2) = (1 + |u|2) (1 + |v|2). 53. We have |v| = |a × b| = a b sin q = sin q Also,

|u|2 = a2 – 2(a ◊ b) (a ◊ b) + (a ◊b)2 b2



= 1 – 2 (a ◊ b)2 + (a ◊ b)2



= 1 – (a ◊ b)2 = 1 – cos2q = sin2q



|u| = sin q = |v|

Again,

u ◊ b = (a ◊ b) – (a ◊ b)(b ◊ b)



= (a ◊ b) – (a ◊ b) b2



= (a ◊ b) – (a ◊ b) = 0

Thus, 54. Given,

2

|v| = |u| + |u ◊ b| __

|c – a| = 2​÷2 ​   

__

fi |c – a|2 = (​  2​÷2 ​     )2​ = 8 2 2 fi c + a – 2c ◊ a = 8 fi c2 + 9 – 2 c = 8 fi c2 – 2c + 1 = 8 fi (c – 1)2 = 0 fi c=1 We have, |(a × b) × c| = |a × b| |c| sin (30°)

1 = ___ ​  __  ​  (– j + k) ​ 2 ​    ÷ 56. Let u and v are not parallel. Let w be a linear combination of u, v and u × v Then w = a u + b v + g  (u × v).

Thus,



w × u = b (v × u) + g  ((u × v) × u) = b (v × u) + g  ((u ◊ u)v – (v ◊ u)u)

Now,

w+w×u=v



a u + b v + g (u × v) + g v – g (v ◊ u)u + b (v × u) = v



fi (a – g  (v ◊ u)) u + (b + g ) v + (g – b) (u × v) = v fi (a – g  (v ◊ u)) = 0, (b + g ) = 1, (g – b ) = 0 1 1 fi b = g = ​ __ ​ , a = __ ​    ​(v . u) 2 2 Also, fi

(u × v) ◊ w = a (0) + b (0) + g  (u + v) = g  (u × v) |(u × v) ◊ w|2 = g 2 |(u × v)|2



= g 2 (u2v2 – (u . v)2)



1 = __ ​   ​  (1 – (u ◊ v)2) 4



1 £ __ ​   ​  4 1 |(u × v) ◊ w| £ __ ​   ​  2

and the equality holds iff u ◊ v = 0 ¤ u and v are perpendicular to each other.

Vectors 

57. Given

a+b+c=0



a + b = – c



a × (a + b) = – a × c



(a × b) = c × a

Also,

a + c = – b



b × (a + c) = – b × b



b × c = – b × a = a × b

...(i)

...(ii)

From Eqs. (i) and (ii), we get

a×b=b×c=c×a

5.73

=1+x–x =1 = neither depends on x nor y.

62. Thre vectors v1, v2, v3 involve 9 unknown quantities. Since, we are given six equations involving 9 unknown quantities, it is not possible to have uniquely 3 vectors-satisfying these conditions. As v1 ◊ v2 = 4, let us consider v1 = 2k. Also, let v2 = ai + bj + ck and v3 = xi + yj + zk.

58. Let N1 = normal vector to plane P1 = a × b

Now,

v1 ◊ v2 = – 2 fi 2c = – 2 fi c = – 1

and N2 = normal vector to plane p2 = c × d Now,

Now,

v1 . v3 = 6 fi 2z = – 6 fi z = – 3

Now,

v2 ◊ v2 = 2, v2 ◊ v3 = 5, v3 ◊ v3 = 29

\

a2 + b2 + c2 = 2 fi a2 + b2 = 2 – 1 = 1



x2 + y2 + z2 = 29 fi x2 + y2 = 20

and

ax + by + cz = 5



ax + by = 5 – 3 = 2.

Put

b = 0, we get,



a2 = 1 fi a = ±1

and

ax = 2 fi x = ± 2

Now,

x2 + y2 = 20 fi y2 = 20 – 4 = 16



y = ± 4.



N1 × N2 = (a × b) × (c × d) = 0

Thus, N1 and N2 are parallel. Therefore, the angle between P1 and P2 is 0. 59. Given [a b c] = 0 Now,  [2a – b 2b – c 2c – a]

= (2a – b) ◊ {(2b – c) × (2c – a)}



= (2a – b) ◊ {4(b × c) – 2(b × a) + (c × a)}



= 8 (a ◊ (b × c)) – (b ◊ (c × a))



= 8 [a b c] – [a b c]



= 7 [a b c]

Thus, one possible set of vectors is v1 = 2k, v2 = i + 2k, v3 = – 2i + 4j + 3k. 63. A (t) is parallel to B (t) for some t in [0, 1]

= 0. 60. We have, |a – b|2 + |b – c|2 + |c – a|2 = 2(a2 + b2 + c2) – 2(a ◊ b + b ◊ c + c ◊ a) = 6 – 2(a ◊ b + b ◊ c + c ◊ a) Also,

...(i)

(a2 + b2 + c2) + 2 (a ◊ b + b ◊ c + c ◊ a)2 = (a + b + c)2 ≥ 0 fi

3 + 2 (a ◊ b + b ◊ c + c ◊ a) ≥ 0



2 (a ◊ b + b ◊ c + c ◊ a) ≥ – 3



– 2 (a ◊ b + b ◊ c + c ◊ a) ≥ 3

...(ii)

|a – b|2 + |b – c|2 + |c – a|2 £ 6 + 3 = 9 1 0 -1 61. [a b c] = x 1 (1 - x ) y x 1+ x - y



Let h(t) = f1(t) g2(t) – f2(t) g1(t)

h(1) = f1 (1) g2(1) – f2(1) g1(1)

= 6.6 – 2.2 = 32 > 0 since h is a continuous function and h(0) h(1) < 0 Then there is some t in [0, 1] for which h(1) = 0 Thus, A(t) is parallel to B (t) for this t. 64. We have, V = [a b c]

(C3 Æ C3 + C1)

h(0) = f1(0) g2(0) – f2(0) g1(0)

= 2.2 – 3.3 = – 5 < 0

From Eqs (i) and (ii), we get

1 0 0 = x 1 1 y x 1+ x

f1 (t) f2 (t) ​ _____   ​ = ​ _____ ​ for some t in [0, 1] g1 (t) g2 (t)

a1 = b1 c1

a2 b2 c2

a3 b3 c3

= a1(b2c3 – b3c2) + a2(b3c1 – b1c3) + a3 (b1c2 – b2c1)

5.74  Integral Calculus, 3D Geometry & Vector Booster = (a1b2c3 + a2b3c1 + a3b1c2) – (a1b3c2 + a2b1c3 + a3b2c1)

We assume that (a1b2c3 + a2b3c1 + a3b1c2) ≥ (a1b3c2 + a2b1c3 + a3b2c1)

i j k = 2 1 -1 = 3i – 7j – k 1 0 3 _________

As we know that, AM ≥ GM



1 fi ​ __ ​  (a1 + b2 + c3) ≥ (a1 b2 c3)1/3 3

Thus, the maximum value of ___

1 fi (a1 b2 c3) ≥ ___ ​    ​  (a1 + b2 + c3)3 27 1 Similarly, (a2 b3 c1) ≥ ___ ​    ​  (a2 + b3 + c1)3 27 1 and (a3 b1 c2) ≥ ___ ​    ​   (a3 + b1 + c2)3 27 Thus,



[u v w] = ÷ ​ 59 ​   . 

67. Given

1 a 1 V= 0 1 a a 0 1



= 1 + a (a2 – 1)

(a1 b2 c3) + (a2 b3 c1) + (a3 b1 c2)



= a3 – a + 1

1 £ ___ ​    ​  [(a1 + b2 + c3)3 + (a2 + b3 + c1)3 + (a3 + b1 + c2)3]

dV fi ​ ___ ​ = 3a2 – 1 da

27

1 £ ___ ​    ​  [(a1 + b2 + c3) + (a2 + b3 + c1) + (a3 + b1 + c2)]3 27 Since,

x3 + y3 + z3 £ (x + y + z)3 for x, y, z ≥ 0



3 1 3 = ___ ​    ​ ​​  S ​   ​ ​ ​ (ar + br + cr)  ​​ ​ 27 r =1



1 = ___ ​    ​(3L)   3 27



= L3

Thus, 65. Given,

V £ L3.



5a2 – 4 (a ◊ b) + 10 (a ◊ b) – 8b2 = 0



5 + 6(a ◊ b) – 8 = 0



6(a ◊ b) = 3



1 (a ◊ b) = __ ​    ​ 2

fi fi fi

( 

)

___

r = |r| = ÷ ​ 9  + 49    + 1 ​ = ÷ ​ 59 ​    

dV For maximum or minimum, ___ ​   ​ = 0 da fi

3a2 – 1 = 0



1 a2 = __ ​   ​  3 1__ a = ± ​ ___   ​  ​ 3 ​    ÷



1__ 1__ ___ ​ ___   ​ ​      ​  ​ 3 ​    ​÷3 ​    ÷

(a + 2b) ◊ (5a – 4b) = 0

1 Hence, the value of a = ___ ​  __  ​ . ​ 3 ​    ÷ 68. Given x = u + v, y = v + w, z = w + u u + v ˆ _______ v + w ˆ _______ w+u Thus, xˆ = ______ ​     ​  y = ​     ​  , z = ​     ​  . |u + v| |v + w| |w + u| We have,

1 a b cos q = __ ​   ​  2

(  )

p 1 cos q = __ ​   ​  = cos ​ __ ​   ​   ​ 2 3 p q = ​ __ ​ . 2

66. We have, [u v w] = u ◊ (v × w) = u ◊ r



(u + v)2 = u2 + v2 + 2u ◊ v



= 1 + 1 + 2 cos a



= 1 + 1 + 2 cos a



= 2(1 + cos a)



(  ) (  )

a = 2 ◊ 2 cos2 ​ __ ​   ​   ​ 2 a |(u + v)| = 2 cos​ __ ​   ​   ​ 2



= u r cos q

a Similarly, |(v + w)| = 2 cos ​ __ ​  2



= r cos q, where r = u × v

and

|(w + u)| = 2 cos __

Vectors 

Thus,

x = 1/2 (u + v) sec __,



y = 1/2(v + w) sec __

and

z = __(w + u) sec g/2

Now,

[x × y y × z z × x] = [x y z]2

Thus,

a × (b × c) 1 = ​ __________        ​ = ____ ​  ___    ​   (3j – k) |a × (b × c)| ÷ ​ 10 ​    

72. Note that a is directed along the internal bisector of the triangle formed by the vectors - v and w Thus,

k a = – v + w



k2a2 = v2 + w2 – 2 (v ◊ w)

fi fi

k2 = 1 + 1 – 2vw cos (p – 2q) k2 = 2 + 2 cos 2q



k2 = 2(1 + cos 2 q) = 2 . 2 cos2q

g 2 b a 1 = ​​ __ ​   ​  [u v w] sec ​ __ ​   ​   ​ sec ​ __ ​   ​   ​ sec ​ __ ​    ​  ​  ​​ ​ 4 2 2 2



k = 2 cos q



k = 2(a ◊ (– v))

g b a 1 = ___ ​    ​ × ​ sec2 ​ __ ​   ​   ​ sec2 ​ __ ​   ​   ​ sec2 ​ __ ​    ​  ​  ​[a b c]2 2 2 2 16

Thus, w = v + ka = v – 2(a ◊ (– v)). 73. Ans. (b)

[ 

(  )

(  ) (  ) ]

g  2 b a 1 = ​​ __ ​   ​   ​[u + v v + w w + u] sec​ __ ​   ​   ​ sec​ __ ​   ​   ​ sec​ __ ​    ​  ​​​  ​​ ​ 8​ 2 2 2

[  [ 

(  ) (  ) ] (  ) (  ) (  ) ] [  (  ) (  ) (  ) ] (  )

g b a 1 = ​​ __ ​   ​  ◊ 2[u v w] sec ​ __ ​   ​   ​ sec ​ __ ​   ​   ​ sec ​ __ ​    ​  ​  ​​ ​ 8 2 2 2

69. Given, fi fi fi fi \ fi fi

2

a × b = c × d and a × c = b × d a×b–a×c=c×d–b×d a × (b – c) = (c – b) × d = d × (b – c) a × (b – c) – d × (b – c) = 0 (a – d) × (b – c) = 0 (a – d) is parallel to (b – c) (a – d) ◊ (b – c) π 0 a ◊ d + c ◊ d π a ◊ c + b ◊ d.

Hence, the result. 70. We have, a × (a × b) = (a ◊ b)a – (a ◊ a)b a × (a × b) = a – a2b = a – 3b 3b = a – a × (a × b) 3b = (i + j + k) – (– 2i + j + k) 3b = 3i b=i a × (b × c) 71. To find = ​ ___________        ​ |a × (b × c)|

fi fi fi fi fi

We have, Now,

i j k b × c = 2 1 1 = 2i – j – 3k 1 −1 1 i j k a × (b × c) = 5 2 6 2 −1 −3



= 27j – 9k



= 9 (3j – k)

5.75

a ◊ b We have a ◊ b1 = a ◊ b – ____ ​  2 ​  (a ◊ a) = 0. |a|

b1 ◊ c a ◊ c a ◊ c2 = a ◊ c – ____ ​  2 ​  (a ◊ a) – ____ ​  2 ​   (b1 ◊ a) |a| |b1| = a ◊ c – a ◊ c = 0

and

b1 ◊ c c ◊ a b1 ◊ c2 = b1 ◊ c – ____ ​  2 ​  (b1 ◊ a) – ____ ​  2 ​   (b1 ◊ b1) |a| |b|



= b1 ◊ c2 – 0 – b1 ◊ c = 0

74.

Thus, the required triplet is (a b1 c2). Ans.(c) Let v be a vector. A vector v in the plane of a and b So, v, a, b are coplaner vectors. Thus, v = a + l b fi v = (1 + l) i + (2 – l) j + (1 + l) k fi v = (1 + l) i + (2 – l) j + (1 + l) k

1 the projection of v on c is ___ ​  __  ​  ​ 3 ​    ÷ v ◊ c 1 fi ​ ____ ​ = ___ ​  __  ​  |c| ​ 3 ​    ÷ Also,

(1 + l) + (2 – l) – (1 + l) ___ 1 __ ​ fi ​ ________________________        = ​  __  ​  ​ 3 ​    ​÷3 ​    ÷ fi

(2 – l) = 1

fi l=1 Therefore, v = 2i + j + 2k 75. Ans. (c)

Given

−l 2 1 1 1 −l 2 1 =0 1 1 −l 2

5.76  Integral Calculus, 3D Geometry & Vector Booster fi

– l2 (l4 – 1) – 1(l2 – 1) + 1(l2 + 1) = 0



= cos2t + sin2t + (a ◊ b) sin 2 t



– l2 (l4 – 1) + (l2 + 1) + (l2 + 1) = 0



= 1 + (a ◊ b) sin 2 t



6

2

– l + 3l + 2 = 0 6

2

Thus,

________ p |OM| = |OP|max = ÷ ​ 1  + (a ◊ b) ​   , t = __ ​   ​  4



1 1 1 OM = ___ ​  __  ​  a + ___ ​  __  ​  b = ___ ​  __  ​  (a + b) ​ 2 ​    ​ 2 ​    ​ 2 ​    ÷ ÷ ÷



l – 3l – 2 = 0



a3 – 3a – 2 = 0, a = l2



a2 (a – 2) + 2a(a – 2) + 1(a – 2) = 0



(a – 2) (a2 + 2a + 1) = 0

Therefore,



(a – 2) (a + 1)2 = 0

79. We have,



(a – 2) = 0, (a + 1)2 = 0



a = 2, a = – 1



2

l = ± ​÷2 ​   

__

Thus, the number of real values of l is 2. Ans. (b) Given a+b+c=0 fi a + b = – c fi a × (a + b) = – a × c fi (a × b) = c × a Also, a + c = – b fi b × (a + c) = – b × b fi b × c = – b × a = a × b From (i) and (ii), we get, a×b=b×c=c×a

77. We have RS + ST = RT

As PQ and TR are not parallel to each other.

PQ × (RS × ST) π 0

Thus, statement-I is true. Next, since PQ and RS are not parallel, so,

2

2





a⋅a a⋅b a⋅c 1 [a b c] = b ⋅ a b ⋅ b b ⋅ c = 2 c ⋅a b⋅c c ⋅c 1 2

l = 2, l = – 1 l =2

76.

1

2



PQ × RS π 0

Thus, statement-II is false. 78. Ans. (a) Given OP = a cos t + b sin t |OP|2 = |a cos t|2 = |b sin t|2 + 2 (a ◊ b) sin t cos t

OM a+b = _____ ​     ​ = ______ ​     ​  |OM| |a + b|



1 2 1 1 2

1 2 1 2 1

(  ) (  ) (  3 1 __ 1 2 1 = ​( __ ​   ​  – __ ​   ​  – ​   ​   ​ = __ ​   ​  = __ ​   ​  4 8 8) 4 2

)

1 1 1 __ 1 1 1 __ 1 = 1​ 1 – __ ​    ​  ​ – __ ​   ​  ​ __ ​    ​ – ​   ​   ​ + __ ​   ​ ​  __ ​   ​  – ​   ​   ​ 4 2 2 4 2 4 2

1 [a, b, c] = ___ ​  __  ​  ​ 2 ​    ÷

...(i)



...(ii)

80. Let q1 and q2 be the angles between a and b, and c and d and n1 and n2 are the unit vectors perpendicular to the plane of a and b, and c and d. Now,

a × b = (a b sinq1) n1

and

c × d = (c d sinq2) n2

Let j the angle between n1 and n2. Given

(a × b) ◊ (c × d) = 1



(sin q1) (sin q2) (n1 ◊ n2) = 1



(sin q1) (sin q2) (cos j) = 1

p It is possible only when q1 = ​ __ ​  = q2, j = 0 2 Since j = 0, so n1 and n2 are parallel. Thus, a, b, c and d are coplaner vectors. Also, fi fi

1 a ◊ c = __ ​   ​  2

(  )

p 1 cos q3 = __ ​   ​  = cos ​ __ ​   ​   ​ 2 3 p q3 = ​ __ ​   ​   ​. 3

(  )

p Since the angle between a and c is ​ __ ​  and b and d 3 p is also __ ​   ​ . So b and d are non-parallel. 3

Vectors 

81. We have,

1 1 0 V= 1 2 0 1 1 p



= p (2 – 1)



= p.

82. Given,

2

– 2 + 20 + _________ 22 ____________ = ​  _______________________         ​ ​ 4  + 100 +   121 ​ ​÷ 1 + 4 + 4 ​  ÷



40 = _____ ​    ​ = 15 . 3

( 

8 __ ​   ​  9

p Note that a = ​ __ ​   ​  – q  ​ 2 p Thus, cos a = cos ​ __ ​   ​  – q  ​ 2

__

a + b = – ​÷3 ​   c 



__



(a + b) = (– ​÷3 ​   c  )



a2 + b2 + 2a ◊ b = 3c2

) ( 

)

= sin q

÷  (  ) 81 – 64 71 17 = ​ _______  = ​ ___ ÷​   81 ​ ​  ÷​  81 ​ ​  = ÷​ ___​  9 ​ ​ .

8 2 = ​÷1  – cos q ​  = ​ 1 – ​​ __ ​   ​   ​​ ​ ​  9 2



_______







85. Given,

a = mb + 4c



a ◊ b = mb ◊ b + 4b ◊ c



mb2 + 4b ◊ c = 0

 ​ 83.

________

_________

2





1 + 1 + 2a ◊ b = 3 1 fi a ◊ b = ​ __  ​ 2 1 fi a b cos q = ​ __  2 p 1 fi cos q = ​ __ ​  = cos ​ __ ​   ​   ​ 2 3 p __ fi q = ​   ​  3 Let M be the mid-point of PR. Then the position vector of M is

(  )

___



___





...(i)

Also,

a ◊ a = m(a ◊ b) + 4(a ◊ c)



|a|2 = 4(a ◊ c)

...(ii)

1 1 ​ __ ​  (– 2i – j + 3i + 3j) = __ ​   ​  i + j 2 2

Given,

(b – a) ◊ (b + c) = 0

Let N be the mid-point of QS. Then the position vector of N is



(b ◊ b) + (b ◊ c) – (a ◊ b) – (a ◊ c) = 0



|b|2 + (b ◊ c) – (a ◊ c) = 0

1 1 = __ ​   ​  (4i – 3i + 2j) = __ ​    ​ i + j 2 2 Thus, PQRS is a parallelogram. ______

___

= ​÷36   + 1 ​   = ​÷37 ​    

And QR = |PR| = |3i + 3j – 4i| = |– i + 3j|

_____

...(iii)

Again,

Also, PQ = |PQ| = |4i – (– 2i – j)| = |6i + j|

5.77

___

= ​÷1  + 9 ​ = ​÷10 ​    



2|b + c| = |b – a|



4|b + c|2 = |b – a|2



4(b2 + c2 + 2b ◊ c) = (b2 + a2 – 2(a ◊ b))



4(b2 + c2 + 2b ◊ c) = (b2 + a2)



3b2 + c2 + 8(b ◊ c) = a2

...(iv)

2

Therefore, PQRS is not a rhombus.

Eliminating (b ◊ c) and a from Eqs (i), (ii), (iii) and (iv), we get

Also, PR = |PR| = |3i + 3j – (– 2i – j)|



(2m2 – 10m) |b|2 = 0



(2m2 – 10m) = 0



m(m – 5) = 0



m = 0, 5.



___

= |5i + 4j| = ÷ ​ 41 ​    

And QS = |QS| = |– 3i + 2j – (– 4i)|

_____

__

= |i + 2j| = ÷ ​ 1  + 4 ​  = ÷ ​ 5 ​   

So, PQRS is not a rectangle. Therefore, PQRS is a parallelogram, which is neither a rhombus nor a rectangle. 84. Let q be the angle between AB and AD. AB ◊ AD Thus, cos q = ________ ​     ​  |AB| |AD|

86. Given |a| = 1 = |b| and a . b = 0 Now, (2a + b) ◊ {(a × b) × (a – 2b)}

= (2a + b) ◊ {(2b – a) × (a × b)}



= (2a + b) ◊ {(2b × (a × b) – a × (a × b))}



= (2a + b) ◊ {(2(b ◊ b)a – 2(b ◊ a)b – (a ◊ b)a + (a ◊ a)b)}

5.78  Integral Calculus, 3D Geometry & Vector Booster

= (2a + b) ◊ (2b2a + a2b)

90. We have,



= (2a + b) ◊ (2a + b)

|a| = 2 = |b| and a ◊ b = –1 + 3 = 2



= (4a2 + b2 + 4a ◊ b)

Let q be the angle between them.



=4+1+0

=5 87. Given v, a, and b are coplaner, so, v = a + lb = (i + j + k) + l (i – j + k)



= (1 + l) i + (1 – l) j + (1 + l) k

1 Also, the projection of v on c is ___ ​  __  ​ . ​ 3 ​    ÷ v ◊ c 1 fi ​ ____ ​ = ___ ​  __  ​  |c| ​ 3 ​    ÷

| 

a2 + b2 – c2 cosq = ​ ___________       ​ 2ab

Then

Thus, 91. Given

4 + 4 – 12 1 = __________ ​   ​      = – ​ __ ​  8 2 2p q = ___ ​   ​ . 3 |a – b|2 + |b – c|2 + |c – a|2 = 9

fi  2 (a2 + b2 + c2) – 2 (a ◊ b + b ◊ c + c ◊ a) = 9 fi  6 – 2 (a ◊ b + b ◊ c + c ◊ a) = 9

|

(1 + l) – (1 – l) – (1 + l) 1 __ ​  fi ​ ​ _______________________        ​ = ___ ​  __  ​  ​ 3 ​    ​÷3 ​    ÷

fi  2 (a ◊ b + b ◊ c + c ◊ a) = – 3



fi  |a + b + c|2 = 0

(1 – l) = 1

fi  2 (a2 + b2 + c2) – 2 (a ◊ b + b ◊ c + c ◊ a) = 3 – 3 fi  (a + b + c) = 0

fi Thus,

l=2 v = 3i – i + 3k

88. Let

a = i + j + k,

Now,



b = i + j + 2k



= |2a + 5 (– a)|

and

c = i + 2 j + k



= |– 3 (a)|



= |– 3| |a|

Now,

i j k (b × c) = 1 1 2 1 2 1



=3

Also,

= – 3i + j + k i j k a × (b × c) = 1 1 1 –3 1 1

|2a + 5b + 5c| = |2a + 5 (b + c)|

92. Given, a × (2i + 3j + 4k) = (2i + 3j + 4k) × b fi  a × (2i + 3j + 4k) = – b × (2i + 3j + 4k) fi  (a + b) × (2i + 3j + 4k) = 0 fi  (a + b) = l (2i + 3j + 4k)

= – 4 j + 4k

fi  |(a + b)| = |l (2i + 3j + 4k)|

= 4(– j + k).

fi  ​÷29 ​     l2 = ​÷29 ​    

a × (b × c) Thus, ​ ___________        ​ = (– j + k). |a  ×  (b × c)| 89. We have, r×b=c×b

___

___

fi  |l| = 1 fi  l = ±1 Thus,

(a + b) = ± (2i + 3j + 4k)

Now,

(a + b) ◊ (– 7i + 2j + 3k)



= ± (– 14 + 6 + 12)



a × (r × b) = a × (c × b)



(a ◊ b) r – (a ◊ r) b = a × (c × b)



(a ◊ b) r = a × (c × b)



– r = a × (c × b) = 3i – 6j – 3k



r = – 3i + 6j + 3k

= ± 4 93. When diagonal are given, then area of a parallelogram 1 PQRS = __ ​   ​  |PQ × SQ| 2

Thus,

r . b = 3 + 6 + 0 = 9.

Volume of the parallelopiped

5.79

Vectors 



= ((PQ × PS)) ◊ PT)



1 = ​ 2 × __ ​   ​  × (PR × SQ) ◊ PT  ​ 2



= [(PR × SQ)] ◊ PT)



3 1 −2 = 1 −3 − 4 1 2 3

[ 



]

= 30.

98. It is given that a is in the direction of x × (y × z) fi

a = l1(x × (y × z)) = l2((x ◊ z)y –(x ◊ y)z)

( (  ) (  ) )

1 1 fi  a = l1 ​ ​ 2 × __ ​   ​   ​ y – ​ 2 × __ ​    ​  ​ z  ​ = l1 (y – z) 2 2 fi  a ◊ y = l1(y ◊ y – y ◊ z) a = a ◊ y(y – z)

Thus,



= |3 (– 9 + 8) – (3 + 4) – 2 (2 + 3)|

Similarly, b = (b ◊ z)(z – x)



= |– 3 – 7 – 10|

Now,



= 20



= (a ◊ y)(b ◊ z)(1 – 1 – 2 + 1)

94. Given

[a b c] = 2



= – (a ◊ y)(b ◊ z).

99. Given a × b + b × c = pa + qb + rc

Now,

[2(a × b) 3(b × c) (c × a)]





= 6[(a × b) (b × c) (c × a)]





= 6[a b c]2



= 24

95. Given

[a b c] = 5

Now,

[3 (a + b) (b + c) 2(c + a)]



= 6 [(a + b) (b + c) (c + a)]



= 6 × 2 [a b c]



= 60

1 96. Given ​ __ ​  |a × b| 2 fi

a ◊ b = (a ◊ y)(b ◊ z){(y – z) ◊ (z – x)}

|a × b| = 0

a ◊ [(a × b) + (b × c)] = p + q (a ◊ b) + r (a ◊ c)

a ◊ (b × c) = p + q (a ◊ b) + r(a ◊ c) q r fi a ◊ (b × c) = p + __ ​    ​ + __ ​    ​  2 2 q r fi p + ​ __ ​  + __ ​    ​  = a ◊ (b × c) = [a, b, c] 2 2 p r fi ​ __ ​  + q + __ ​    ​  = 0 2 2 p q ​ __ ​  + ​ __ ​  + r = [a, b, c]2 2 2 Also,

...(i) ...(ii) ...(iii)

a ⋅a a ⋅b a ⋅c [a, b, c] = b ⋅ a b ⋅ b b ⋅ c c⋅a c⋅b c⋅c 2

1 Now, ​ __ ​  |(2a + 3b) × (a – b)| 2

1



1 = __ ​   ​  |– 2a × b + 3b × a| 2



1 = __ ​   ​  |– 2a × b – 3a × b| 2



1 = __ ​   ​  |– 5a × b| 2





5 = __ ​   ​  |a × b| 2





= 100



97. Given

|a × b| = 30

Now,

|a × (a + b)|



= |a × a + a + b|



= |0 + a × b|



= |a × b|



=

1 2 1 2

1 2 1 1 2

1 2 1 2 1

(  ) (  ) (  3 1 __ 1 2 1 = ​( __ ​   ​  – __ ​   ​  – ​   ​   ​ = __ ​   ​  = __ ​   ​  4 8 8) 4 2

)

1 1 1 __ 1 1 1 __ 1 = 1​ 1 – __ ​   ​   ​ – __ ​   ​ ​  __ ​   ​  – ​   ​   ​ + __ ​   ​ ​  __ ​   ​  – ​   ​   ​ 4 2 2 4 2 4 2

1 [a, b, c] = ___ ​  __  ​  ​ 2 ​    ÷

From Eqs (i), (ii) and (iii), we get

q = r = – q

( 

)

2 p2 + 2q2 + q2 q____________ + 2q2 + q2 Now, ​ ​ ____________  ​       ​ = ​   ​      =4 q2 q2

5.80  Integral Calculus, 3D Geometry & Vector Booster 100. We have,



​_› _ _ ​› ​› |​b  ​  + ​c  ​|  = |​a  ​|  _ ​› ​_› ​_› |​b  ​  + ​c  ​| 2 = |​a  ​| 2 _ ​› ​_› _ _ _ ​› ​› ​› |​b  ​| 2 + |​c  ​| 2 + 2​b  ​  ◊ ​c  ​  = |​a  ​| 2



48 + |​c  ​| 2 + 48 = 144



|​c  ​| 2 = 144 – 96 = 48



4​÷3 ​   

=

​_›

​_› |​c  ​| 

​_›

​_›

​_› ​_›

​› ​_› _ (​a  ​  ◊ ​b  ​) 

= – 72



Again, ​_› ​_› ​_› ​_› ​a   ​ + ​b  ​  + ​c  ​  = ​0 ​  

​_›

​_›

_ ​›

​_›

​_›

_ ​›

|​a  ​  × ​b  ​  + ​c  ​  × ​a  ​|  = |​a  ​  × ​b  ​  + ​a  ​  × ​b  ​|  ​_›

​_›

​_›

​_›

​_›

9 7 x = 4, y = __ ​   ​ , z = – ​ __ ​  2 2

Hence, the value of 2x + y + z = 9 103. We have, ​_›  ◊ ( × ​v  ​)  _ ​› fi | | | × ​v  ​|  cos a = 1 fi cos a = 1 ​_› fi ^ and ^ ​v  ​ 

_ ​› ​_› ​_› ​_› fi ​a  ​  × ​b  ​  = ​c  ​  × ​a  ​ 

​_›



= 2|​a  ​  × ​b  ​| 



_ ​› › 2 = 2​ a2b2 – (​a  ​     ◊ ​b  ​)   ​



= 2​÷144   × 48 – (– 72)     ​

Hence, infinitely many such vectors ​v  ​  exist.



= 2​÷144   × 48 – 72   × 72 ​

If



=





=



=



=



=

____________ ​_

  ÷________________

2

_________________

Hence, the result. 101. It is given that

| 

__

______________ 2​÷72(2   × 48 –   72) ​ ___________ 2​÷72(96   –    72) ​ _______ 2​÷72   × 24 ​  __ 2 × 24 ​÷3 ​    __ 48 ​÷3 ​   

|

__ a ​÷3 ​    + b ​________ ​   ​     ​= ÷ ​ 3 ​    2

​_›

​_›

Solving, we get

​_›

​_›

   + (x + y + z)​r  ​ 

144 + 48 + 2(​a  ​  ◊ ​b  ​)  = 48

​_› ​_›

​_›

   + z (– ​p  ​  – ​q  ​  + ​r ​ )  _ _ ​› ​› = (– x + y – z)​p   ​ + (x – y – z)​q  ​ 

(x – y – z) = 3 (x + y + z) = 5

​_›

= |​c  ​| 2

​_›

= x (– ​p  ​  + ​q  ​  + ​r ​ )  + y (​p  ​  – ​q  ​  + ​r ​ ) 

fi fi

​_›

​_›

_ ​›

​_›

|​a  ​| 2 + |​b  ​| 2 + 2(​a  ​  ◊ ​b  ​)  = |​c  ​| 2



​_›

​_›

(– x + y – z) = 4



Thus,

...(ii)





_ ​› ​_› |​a  ​  + ​b  ​| 2



a=2+÷ ​ 3 ​  b  



_ ​› 48 Now, ​   ​   – |​a  ​|  = ___ ​   ​ – 12 = 24 – 12 = 12 2 2 Also,



Given

__

​s ​   = 4​p  ​  + 3​q  ​  + 5​r ​  

__

_ ​› ​_› |​a  ​  + ​b  ​| 

...(i)

102. We have,

_ ​›



__

a ​÷3 ​     + b = ± 2​÷3 ​   

From Eqs (i) and (ii), we get a = – 1 or 2 Thus, |a| = 1 or 2

​_›

​_› |​c  ​|  = ​_› |​c  ​| 2 ___

__



​_›

As it is given that there exists a vector ​v  ​.  fi

must be perpendicular to

​_›

= u1 + u2 _​_›

 ◊ ​w​   = 0

fi fi fi

(u1 + u2) = 0 u1 = – u2 |u1| = |– u2| = |u2|

If

u = u1 + u3 _ ​ › _​_›

fi ​u  ​  ◊ ​w​   = 0 fi

u1 + 2u3 = 0



|u1| = 2|u3|

Chapter

6

3D-Co-ordinate Geometry

Concept Booster 1.1  Introduction In earlier classes, we learnt about points, lines, cicles and conic sections in two-dimensional geometry. In 2D-geometry, a point represented by an ordered pair (x, y) for which both x and y are real numbers. In the space, each body has length, breadth and height, i.e. each body exits in three-dimensional space. Thus, three independent quantities are required to represent any point in a space and so three axes are required to represent these quantities.

1.2 Rectangular

1.3  Position

vector of a point in a space

Let O be a fixed point, known as the origin, and let OX, OY and OZ be three mutually perpendicular lines, taken as x-axis, y-axis and z-axis, respectively, in such a way that they form a right handed system.

co-ordinate system

The cartesian system of three lines which are mutually perpendicular to each other is called rectangular co-ordinate system. When three mutually perpendicular planes intersect at a point, the mutually perpendicular lines are obtained and these lines also pass through that point. If we assume the point of intersection as the origin, these three planes are known as co-ordinate planes and the three lines are known as co-ordinate axes.

The plane XOY, YOZ and ZOX are known as xy-plane, yz-plane and zx-plane, respectively. Let P be a point in a space such that its distances from yz-, zx- and xy-planes be a, b and c, respectively and i, j and k are the vectors along x, y and z axes, respectively, i.e.



= OA + AL + LP

Octants



= OA + OB + OC.

Every plane bisects the space. Hence three-co-ordinate plane divide the space into eight parts. Each part is called an octant.



= ai + bj + ck.



OA = a, OB = b and OC = c

Now,

OP = OL + LP

__________

and

|OP| = ÷ ​ a  2 + b2    + c2 ​.

Notes: 1. Equation 2. Equation 3. Equation 4. Equation 5. Equation 6. Equation

of of of of of of



x-axis: y = y-axis: x = z-axis: x = xy-plane: z yz-plane: x zx-plane: y

0, z = 0 0, z = 0 0, y = 0 =0 =0 =0

6.2  Integral Calculus, 3D Geometry & Vector Booster

1.4 Distance

r – r1 m fi ​ _____  ​ = __ ​ n ​  r2 – r 

between two points in space

From the figure, it is clear that

PQ = OQ – OP



= r2 – r1

P

Q r2

r1 O



n (r – r1) = m (r2 – r)



r (m + n) = mr2 + nr1



mr2 + nr1 r = ​ ________      ​ m+n



|PQ| = |r2 – r1|

Let

P = (x1, y1, z1) and Q = (x2, y2, z2)



(xi + yj + zk)

Then

PQ = OQ – OP



m (x2i + y2 j  +  z2k) + n (x1i + y1j + z1k) = ​  _________________________________           ​ m+n



= (x2 – x1) i + (y2 – y1) j + (z2 – z1) k

Thus, the distance between two points, ____________________________

PQ = ÷ ​ (x   2 – x1)2 +     (y2 – y1)2 + (z2 – z1)2 ​

1.4.1  Distance from Origin Let O be the origin and P (x, y, z) be any point, then

__________ x2 + y2 +   z2 ​.

OP = ÷ ​ 

1.4.2  Distance of a Point from Co-ordinate Axes _______

mx2 + nx1 my2 + ny1 mz2 + nz1 fi  x = ​ ________      ​, y = ​ ________      ​, z = ​ ________      ​ m+n m+n m+n

1.5.2  External Section If a point R(r) divides the line segment joining the points P(r1) and Q(r2) externally in the ratio m : n, then mr2 – nr1 r = ​ ________   .​ m – n    mx2 – nx1 x = ​ ________   ,​ m – n   

The distance from a point to x-axis = ÷ ​ b  2 + c2 ​  

my2 – ny1 y = ​ ________   ​, m – n   

The distance from a point to y-axis = ÷ ​ a  2 + c2 ​ 

mz2 – mz1 z = ​ _________   ​ m – n   

_______

_______

and the distance from a point to z-axis = ÷ ​ a  2 + b2 ​ 

1.5.3  Mid-Point Formula If a point R(r) divides the line segment joining the points P(r1) and Q(r2) internally in the ratio 1 : 1, then r2 + r1 r = ​ ______       ​. 2 Thus, the co-ordinates of R are

1.5 Section

( 

)

x1 + x2 y______ 1 + y2 z______ 1 + z2 ​ _______ ​   ​  , ​   ​    , ​   ​    ​ 2 2 2

formulae

1.5.1  Internal Section

1.5.4  Centroid

If a point R(r) divides the line segment joining the points P(r1) and Q(r2) internally in the ratio m : n, then

mr2 + nr1 r = ​ ________      .​ m+n

PR fi ​ ____     ​= RQ

m __ ​ n ​ 

OR – OP m fi ​ _________     ​ = __ ​ n ​  OQ – OR

The point of intersection of the medians of a triangle is called the centroid of the triangle. Let A (r1), B (r2) and C (r3) be m the vertices of a triangle ABC PR where ​ ___  ​ = __ ​ n​   and G (r) be its centroid. Then RQ the position vector of the centroid is

r1 + r2 + r3 r = ​ __________  ​    .  3

3D-Co-ordinate Geometry 

Let the position vectors of OA, OB and OC are r1, r2 and r3, respectively. Let the position vectors of G be r. Now, the position vector of D is r2 + r3 OD = ​ ______     ​  2



= OG = r r2 + r3 2 ◊ ​ ______  ​   + 1  r1 2 = ​  ______________  ​       . 1+2



1.6.3  Refult-1 Let OP = r = ai + bj + ck and i, j, k be the unit vectors along the x-axis, y-axis and z-axis, respectively Now,

r  i = a



|r| |i| cos a = a a cos a = __ ​    ​  |r| a l = __ ​    ​  |r|



Thus, the co-ordinates of the centroid G are

( 

A set of three numbers a, b, c, which are proportional to the direction cosines l, m, n respectively of a line, are called the direction ratios.



r1 + r2 + r3 = ​ __________      ​  3



1.6.2  Direction Ratios

l __ m __ n Thus, ​ __ a  ​ = ​ b ​  = ​ c .​

As we know that, the centroid divides the median in the ratio 2 : 1. Thus, the position vector of G,

)

x1 + x2 + x3 y1__________ + y2 + y3 z1_________ + z2 + z3 ​ ​ __________  ​    , ​   ​      , ​   ​       ​ 3 3 3

Similarly,

b c m = __ ​    ​   and  n = __ ​    ​  |r| |r|

i.e.

a l = ____________ ​  __________      ​, 2 c2 ​ ÷​ a  + b2  +  

and

c n = ____________ ​  ___________      ​. 2 c2 ​ ÷​ a  + b2 +  

Centroid of a Tetrahedron Let the co-ordinates of A, B, C and D are (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, y4, z4), respectively. Then the co-ordinates of its vertices are

( 

6.3

a = ____________ ​  ___________      ​ 2 c2 ​ ÷​ a  + b2 +  

1.6.4  Refult-2

If l, m, n be the direction cosines of a line, then x1 + x2 + x3 + x4 y1_____________ + y2 + y3 + y4 z1_____________ + z2 + z3 + z4 ​ ​  ______________  ​    ,  ​   ​      , ​   ​       ​ l 2 + m2 + n2 = 1 4 4 4

)

1.6.5  Refult-3 Any vector r can be expressed as Let

r = |r| (li + mj + nk) r = ai + bj + ck.

r fi ​ __  ​ = |r|

1.6 Direction line

cosines and direction ratios of a vector or a

1.6.1  Direction cosines If a line makes an angle a, b, g with the positive direction of the co-ordinate axes. Then cos a, cos b, cos g are known as the direction cosines of the given line and are, generally, denoted as l, m and n, respectively. Thus, l = cos a, m = cos b, n = cos g.

a b c __ ​    ​  i + __ ​    ​  j + __ ​    ​  k |r| |r| |r|

= li + mj + nk

fi r = |r| (li + mj + nk)

1.6.6  Refult-4 If a vector r having direction cosines l, m, n, the projection of r on the co-ordinate axes are given by

l|r|, m|r|, n|r|.

1.6.7  Refult-5 The projection of the segment joining the points P (x1, y1, z1) and Q (x2, y2, z2) on a line having direction cosines l, m, n is given by l (x2 – x1) + m (y2 – y1) + n (z2 – z1).

6.4  Integral Calculus, 3D Geometry & Vector Booster

1.6.8  Refult-6



= (​l2​1​​  + m ​ 2​1​​  + n​ 2​1​)​  (​l2​2​​  + m ​ 2​2​​  + n​ 2​2​)​ 

If the co-ordinates of P and Q are (x1, y1, z1) and (x2, y2, z2), the direction ratios of the line PQ are a = x2 – x1, b = y2 – y1, c = z2 – z1 and the direction cosines of the line PQ are



(l1m2 – l2m1)2 + (m1n2 – n2m1)2

x2 – x1 y2 – y1 z2 – z1 l = ​ ______ ​  , m = ​ ______ ​  , n = ​ ______ ​  |PQ| |PQ| |PQ|



1.6.9  Direction Cosines of the Axes



Since the positive x-axis makes angles 0°, 90°, 90° with the axes of x, y and z, respectively, then the direction cosines of x-axis are (1, 0, 0). Similarly, the direction cosines of y-axis and z-axis are (0, 1, 0) and (0, 0, 1) respectively.

l1 fi ​ __ ​  = l2

m = a1i + b1j + c1k

and

n = a2i +

Then

m ◊ n = m n cos q

2j



+ c2k

a1a2 + b1b2 + c1c2 __________ __________  ​ = ​  ________________________         2 ​÷​a  ​1​​  + b​ 2​1​​    + ​c2​1​ ​  ​ ​  ÷​a  2​2​​  + b​ 2​2​​    + ​c2​2​ ​​  a1a2 + b1b2 + c1c2 = ​  _______________  ​       l1l2



___________

l1 = ÷ ​ ​a  2​1​  + b​ 2​1​​  +   ​c2​1​ ​​ , l2 = ÷ ​ ​a  2​2​  + b​ 2​2​​  +   ​c2​2​ ​​ 

a1 a2 fi cos q = __ ​    ​ ​ __  ​ + l1 l2

b1 2 __ ​    ​ ​ __  ​ + l1 l2

m1 ___ ​ m  ​ = 2

n1 __ ​ n  ​ . 2

Straight Line A straight line in a space can be determined uniquely if (i) it passes through a fixed point and is parallel to a fixed line. (ii) it passes through two fixed points. (iii) it is the intersection of two given non-parallel planes.

___________

where

l1m2 = l2m1; m1n2 = n2m1; n1l2 = l2n1

2.1 Definition

m ◊ n _____ m ◊ n fi cos q = ____ ​  mn    ​ = ​     ​  |m| |n|

(l1m2 – l2m1) = 0, (m1n2 – n2m1) = 0, (n1l2 – l2n1) = 0

1.6.10  Angle between Two Vectors Let

+ (n1l2 – l2n1)2 = 0

c1 c2 __ ​    ​ ​  __  ​  l1 l2

= l1l2 + m1m2 + n1n2

(i) Condition of perpendicularity

2.2 Equation

of a line passing thorugh a point and

parallel to a vector

The equation of a line passing through a point A with position vector r1 and parallel to a vector m is r = r1 + lm Now, fi

OP = OA + AP = OA + lm

Let r = x i + y j + z k

r1 = x1 i + y1 j + z1 k

and

m = a i + b j + c k r – r1 = l m

Here,

q = 90°

Then



cos q = 0

fi (x – x1) i + (y – y1) j + (z – z1) k



l1l2 + m1m2 + n1n2 = 0



(ii) Condition of parallelism Here,

q = 0°



cos q = 1



lll2 + m1m2 + n1n2 = 1



(l1l2 + m1m2 + n1n2)2 = 1



(l1l2 + m1m2 + n1n2)2

= l (a i + b j + c k)

x  –  x1 y_____ – y1 z_____ – z1 Thus, ​ ______ ​ = ​      ​ = ​  c    ​.  a    b Notes: 1. In case of a line, the direction ratios and the direction cosines are the same. 2. Any point on the line can be considered as

(al + x1, bl + y1 + cl + z1)

3D-Co-ordinate Geometry 

2.3 Equation of a Line Passing Through Two Points A (r1) and B (r2) is r = r1 +  (r2 – r1) OP = OA + AP

Now,

fi OP + OA + l AB fi r = r1 + l (r2 – r1). r = x i + y j + z k

\

r1 = x1 i + y1 j + z1 k



r2 = x2 i + y2 j + z2 k

Then

(r – r1) = l(r2 – r1)

2.5 Skew lines Two lines are said to be skew lines if they are neither parallel nor intersecting. Clearly, the skew lines can never be coplnar.

2.5.1  Shortest Distance Between Two Skew Lines

fi OA + l (OB – OA)

Let

6.5

Let

L1 : r = r1 + l u

and

L1 : r = r2 + m v

Let

OA = r1 and OB = r2

Here,

L1 || u and L2 || v

fi (x – x1) i + (y – y1) j + (z – z1) k

= (x2 – x1) i + (y2 – y1) j + (z2 + z1) k

x – x1 fi ​ ______    ​ = x2 – x  1

y – y1 ​ ______    ​ = y2 – y  1

z – z1 ​ ______    ​ z2 – z  1

fi PQ ^ L1 and PQ ^ L2 fi PQ ^ u and PQ ^ v fi PQ || u × v Thus,

2.4 Angle

between

two straight lines

Let

L1 : r = r1 + l m

and

L2 : r = r2 + m n

Then

m ◊ n = m n cos q

The shortest distance = PQ



= Projection of AB on PQ



AB ◊ PQ = _______ ​   ​    |PQ|



(r2 – r1) ◊ (u × v) = ​  ______________        ​. |(u × v)|

Notes  1: If two straight lines intersect, the shortest distance between them is zero.

m ◊ n fi cos q = ____ ​  mn    ​

The Plane

Let

m = a1 i + b1 j + c1 k

and

n = a2 i + b2 j + c2 k

3.1 Definition

Thus,

a1a2 + b1b2 + c1c2 __________ __________  ​ cos q = ​  ________________________         2 2 + ​c21​ ​ ​ ​ ​  ÷​a  22​ ​​  + ​b22​ ​​     + ​c22​ ​ ​​  ÷​ ​a  1​ ​​  + b​ 1​ ​​   

A plane is a surface such that if any two points on it are taken, the line joining them lies completely on it.

1. Condition of perpendicularity When

\

p q = __ ​   ​  2 a1a2 + b1b2 + c1c2 = 0

2. Condition of parallelism When

q=0

a1 \ ​ __ a2 ​  =

b1 __ ​   ​  + b2

c1 __ ​ c  ​  2

3.2 General Form A first degree equation represents a plane. The general equation of a plane is given by a x + b y + c z + d = 0.

Notes: 1. Equation 2. Equation 3. Equation 4. Equation given by

of xy-plane is z = 0. of yz-plane is x = 0 of zx-plane is y = 0. of a plane passing through the origin is a x + b y + c z = 0.

6.6  Integral Calculus, 3D Geometry & Vector Booster

3.3. Equation

of a plane passing through a point (x, y, z,)

The equation of a plane passing through a point (x1, y1, z1) is a (x – x1) + b (y – y1) + c (z – z1) = 0 Let the equation of the plane be a x + b y + c z + d = 0 ...(i) which is passing through (x1, y1, z1). Thus, a x1 + v y1 + c z1 + d = 0 ...(ii) Subtracting Eqs. (ii) from Eq. we get a (x – x1) + b (y – y1) + c (z – z1) = 0

3.4 Equation of a plane passing non-collinear points

through three

The equation of any plane passing through (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) is given by x   – x1 y   – y1 z – z1    x – x y ​ ​       ​ ​      ​ ​ z     ​  ​ = 0 2 – z1  2 1  2 – y1  x3 – x1 y3 – y1 z3 – z1

| 

|

The equation of any plane passing through (x1, y1, z1) is given by a (x – x1) + b (y – y1) + c (z – z1) = 0 ...(i) When it is passing through (x2, y2 , z2) and (x3, y3, z3), then a (x2 – x1) + b (y2 – y1) + c (z2 – z1) = 0 ...(ii) a (x3 – x1) + b (y3 – y1) + c (z3 – z1) = 0 ...(iii)

| 

Eliminating a, b, c from Eqs (i), (ii) and (iii), we get x   – x1 y   – y1 z – z1    ​ ​ x     ​ ​ y     ​ ​ z     ​  ​ = 0 2 – z1  2 – x1  2 – y1  x3 – x1 y3 – y1 z3 – z1 which is the required equation of the plane.

3.5 Coplanarity

|

and

B ◊ b + D = 0



C ◊ c + D = 0

D fi  B = – ​ __ ​  b D fi  C = – ​ __ c ​ .

Putting the values of A, B and C in Eq. (i), we get D D D __ __ – ​ __ a ​  x – ​ b ​  y – ​ c ​  z + D = 0 y __z x __ fi ​ __ a ​ + ​ b ​ + ​ c ​ – 1 = 0 y __z x __ fi ​ __ a ​ + ​ b ​ + ​ c ​ = 1

which is the required equation of the plane.

3.7 Normal

to a plane

A line perpendicular to a plane is called the normal to the plane. Clearly every line in a plane is perpendicular to the normal to the plane.

3.8 Vector

form

The vector equation of a plane passing through a point having position vector a and normal to a vector n is given by r  n = d

of four points

The points P (x1, y1, z1), Q (x2, y2, z2), R (x3, y3, z3) and S (x4, y4, z4) are coplanar, then x   – z1 2 – x1 y   2 – y1 z2   ​ ​ x   ​ ​ y     ​  z   ​   ​= 0 3 – z1  3 – x1  3 – y1​  x4 – x1 y4 – y1 z4 – z1

3.6  Intercept

Let the equation of the plane be passing through A (a, 0, 0), B (0, b, 0), and C (0, 0, c). A x + B y + C z + D = 0 ...(i) D So, A ◊ a + D = 0 fi  A = – ​ __ a ​ 

| 

form of a plane

|

The equation of a plane in intercept form is given by y __z x __ ​ __ a ​, ​ b ​, ​ c ​ = 1, where a, b, c are the lengths of x, y and z axes, respectively.



Let OP = r and ON = n Now, ON ^ NP fi NP  ON = 0 fi (OP – ON)  ON = 0 fi (r – n)  n = 0 fi r  n – n  n = 0 fi r  n = n  n fi r ◊ n = d.

3.9 Equation

of a plane in normal form

The vector equation of a plane normal to a unit vector and at a distance from the origin is given by r ◊  = d Let O be the origin and ON be the perpendicular from O to the given plane such that ON = d  .

3D-Co-ordinate Geometry 

Let P be a point on the plane with position vector r so that OP = r. ON ^ NP

Now,

fi NP  ON = 0 fi (OP – ON)  ON = 0 fi (r ◊ d ) ◊ d = 0

(ii) Castesian form: a1b1 + a2b2 + a3b3 __________ __________  ​ cos q = ​  ________________________         ​÷​a  2​1​​  + a​ 2​2​​     + ​a2​3​ ​ ​ ​  ÷​b  2​1​​  + ​b2​2​​     + b​ 2​3​ ​​  where and

n1 = a1 i + a2 j + a3 k n2 = b1 i + b2 j + b3 k.

Condition of Perpendicularity

fi (r ◊d – d  ◊ d ) = 0 fi (r ◊  – d) = 0



fi r ◊  = d

Condition of Parallelism

which is the required equation of the plane.

a3 a1 a2 __ ​ __ ​  = __ ​    ​ = ​    ​. b1 b2 b3

3.10 Normal

form of a

Plane

If l, m, n be the direction cosines of the normal to a given plane and p be the length of the perpendicular from the origin to the plane, the equation of the plane is given by l x + m y + n z = p. As we know that the normal form of a plane is given by r   = d Let r = x i + y j + z k and = l i + m j + n k The equation of the plane becomes l x + m y + n z = p.

3.11 Theorem Equation of a plane passes through a point A with position vector a and is parallel to the given vectors b and c. b P c r

a O

Let r be the position vector of any point P in the plane, then AP = OP – OA =r–a Since, the vectors r – a, b, c are coplanar So,

[r – a b c] = 0

fi [r b c] – [a b c] = 0 fi [r b c] = [a b c] which is the required equation of the plane.

3.12 Angle

3.13 Angle

a1b1 + a2b2 + a3b3 = 0

between a line and a plane

The angle between a line and a plane is the angle between the line and the normal to the plane. Let the equation of the plane be

a1x + b1y + c1z + d = 0

between two planes

The angle between two planes is defined as the angle between their normals. Let r  n1 = d1 and r  n2 = d2 and q be the angle between them. Then n1  n2 (i) Vector form: cos q = ______ ​     ​.  |n1| |n2|

...(i)

and the equation of the line be – y1 z – z1 x – x1 y_____ ​ _____  = ​   ​   = ​ _____   a2 ​  c2 ​  b2 Thus,  cos (90° – q)

A

6.7



a1a2 + b1b2 + c1c2 __________ __________  ​ = ​ ________________________         2 ​÷​a  ​1​​  + ​b2​1​​    + ​c2​1​ ​ ​ ​  ÷​a  2​2​​  + ​b2​2​​    + c​ 2​2​ ​​ 

a1a2 + b1b2 + c1c2 __________ __________  ​ sin q = ​  _______________________         ​÷​a  2​1​​  + ​b2​1​​    + c​ 2​1​ ​  ​ ​  ÷​a  2​2​​  + ​b2​2​​     + c​ 2​2​ ​ 

Condition of Perpendicularity a1 __ b1 __ c1 ​ __ a2 ​  = ​ b2 ​  = ​ c2 ​  Condition of parallelism a1a2 + b1b2 + c1c2 = 0

3.14 Equation

of a plane parallel to a given plane

The equation of a plane parallel to another plane a x + b y + c z + d = 0 is a x + b y + c z + k = 0.

3.15 Equation

of a plane parallel to the axes

3.15.1  Equation of a plane parallel to x -axis Let the equation of any plane be a x + b y + c z + d = 0 and the equation of x-axis is x y __z ​ __  ​ = __ ​    ​ = ​    ​  1 0 0 Since the plane (i) is parallel to the line (ii), so, a ◊1 + b . 0 + c . 0 = 0 fi a=0

...(i) ...(ii)

6.8  Integral Calculus, 3D Geometry & Vector Booster

3.16  Equation of a (x2, y2, z2) and ratios a, b, c

Putting the value of a in Eq. (i), we get b y + c z + d = 0. which is the required equation of the plane.

3.15.2  Equation of a plane parallel to y -axis Let the equation of any plane be a x + b y + c z + d = 0 and the equation of y-axis is x y __z ​ __  ​ = __ ​    ​ = ​    ​   0 1 0 Since the plane (i) is parallel to the line (ii), so, a ◊ 0 + b ◊ 1 + c ◊ 0 = 0 fi b=0 Putting the value of b in Eq. (i), we get a x + c z + d = 0. which is the required equation of the plane.

...(ii)

fi c=0 Putting the value of a in (i), we get a x + b y + d = 0. which is the required equation of the plane.

3.15.4  Equation of a plane parallel to xy -plane The equation of xy-plane is given by z=0 So the equation of any plane parallel to xy-plane is z+k=0



A x + B y + C z + D = 0

\

A (x – x1) + B (y – y1) + C (z – z1) = 0

and

A (x – x2) + B (y – y2) + C (z – z2) = 0

Also,

A ◊ a + B ◊ b + C ◊ c = 0

...(i) ...(ii)

Hence, the result.

3.17 Equation of the plane passing through a point (x1, y1, z1) and parallel to two lines having direction ratios (a1, b1, c1) and (a2, b2, c2) is x – x1 a1 a2



y – y1 b1 b2

z – z1 c1 = 0 . c2

The equation of any plane passing through (x1, y1, z1) is A (x – x1) + B (y – y1) + C (z – z1) = 0 Since the plane (i) is parallel to two lines, so A a1 + B b1 + C c1 = 0 A a2 + B b2 + Cc2 = 0  

x



x1

y

y1

z

...(ii) ...(iii)

z1

a1

b1

c1

a2

b2

c2

=0

which is the required equation of the plane.



3.18 Equation

3.15.6  Equation of a plane parallel to zx -plane

...(i)

Eliminating A, B, C from Eqs (i), (ii) and (iii), we get

So the equation of any plane parallel to yz-plane is x+k=0

...(i)

which is passing through (x1, y1, z1) and (x2, y2, z2)

The equation of yz-plane is given by x=0

z – z1 z2 – z1 = 0 . c

Let the equation of the plane be

3.15.5  Equation of a plane parallel to yz -plane

y – y1 y2 – y1 b

Eliminating, A, B and C from above three equations, we get x – x1 y – y1 z – z1 x2 – x1 y2 – y1 z2 – z1 = 0 a b c

3.15.3  Equation of a plane parallel to z-axis Let the equation of any plane be a x + b y + c z + d = 0 and the equation of z-axis is x y z ​ __  ​ = ​ __  ​ = __ ​    ​  0 0 1 Since the plane (i) is parallel to the line (ii), so, a ◊ 0 + b ◊ 0 + c ◊ 1 = 0

x – x1 x2 – x1 a

...(i)

plane passing thorugh (x1, y1, z1), parallel to the line having direction

of a plane passing through the line of

intersection of planes

The equation of zx-plane is given by

The equation of a plane passing through the line of intersection of planes

y=0 So the equation of any plane parallel to zx-plane is

a1x + b1y + c1z + d1 = 0



is a1x + b1y + c1z + d1 + l (a2x + b2y + c2z + d2) = 0.

y + k = 0.

and a2x + b2y + c2z + d2 = 0

3D-Co-ordinate Geometry 

3.19 Distance

3.24 Condition

of a point from a plane

The length of the perpendicular from a point P (x1, y1, z1) to the plane a x + b y + c z + d = 0 is ax1 + b y1 +  c z1 + d __________ ​ ​ _________________        ​  ​ + c2 ​ ÷​ a  2 + b2   

3.20 Distance

| 

|

between two parallel planes

of coplanarity of two lines

Let

x  – x1 y_____ – y1 z_____ – z1 L1: ______ ​  a  ​   = ​   ​   = ​  c  ​    b1 1 1

and

x  – x1 y_____ – y2 z_____ – z2 L2: ______ ​  a  ​   = ​   ​   = ​  c  ​    b2 2 2

If two lines L1 and L2 are coplanar, then

The distance between two parallel planes a x + b y + c z + d1 = 0 and a x + b y + c z + d2 = 0 is given by d – d2 ​____________ ​  ___________      ​  ​. 2 c2 ​ ÷​ a    + b2 +  



3.21 Sides

and the equation of the plane containing them is

| 

|

of a plane

We know that a plane divides the three-dimensional space in two equal parts. Two points A (x1, y1, z1) and B (x2, y2, z2) are on the same side or opposite side of the plane a x + b y + c z + d = 0 if a x1 +  b y1 + c z1 + d ​ __________________        ​ > 0 or < 0. a x2 + b y2 + c z2 + d

3.22  Intersection

of a line and a plane

x – x1 y_____ – y1 z_____ – z1 Let L: ​ _____ ​ = ​        ​ = ​  c    ​  a    b and P: A x + B y + C z + D = 0 Any point on the line (i) can be considered as (x1 + al, y1 + bl, z1 + cl)

x2

...(iii)

A (x1 + al) + B (y1 + bl) + C (z1 + cl) + D = 0 fi (A x1 + B y1 + C z1 + D) + l (Aa + Bb + Cc) = 0

y2

y1

z2

z1

a1

b1

c1

a2

b2

c2

x1

y

y1

z

=0.

z1

a1

b1

c1

a2

b2

c2

=0

or x

...(i) ....(ii)

x1

x



If it lies on the plane (ii), then

3.25 Equation planes

x2

y

y2

z

z2

a1

b1

c1

a2

b2

c2

=0.

of the planes bisecting the angle between the

The equation of the planes bisecting the angle between the planes a1x + b1y + c2z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given by

 |

 | |

|

(A x1  + B y1 + C z1 + D) fi l = – ​  ____________________         ​ (Aa + Bb + C c)

a1x  + b1y  + c1y + d1 a2x  + b2y + c2z + d2 __________ __________ ​ __________________ ​          ​  ​ = ​ ​ __________________        ​  ​ ​÷​a  2​1​​  + ​b2​1​​    + c​ 2​1​ ​​  ​÷​a  2​2​​  + ​b2​2​​    + c​ 2​2​ ​​ 

Substituting the values of l in Eqs (iii), we get the required co-ordinates of the point of intersection.

3.26 Bisector planes

3.23 Condition

Let the equation of the two planes be

If the line

for a line to lie in a plane

x  – x1 ______ y  – y1 z_____ – z1 L: ______ ​      ​ = ​  m    ​ = ​  n    ​  l

lies in the plane P: a x + b y + c z + d = 0, then

(i) a x1 + b y1 + c z1 + d = 0

(ii) a l + b m + c n = 0 Since the line L = 0 lies in a plane P = 0, therefore the point (x1, y1, z1) on L = 0 will also lie in the plane P = 0. So,

a x1 + b y1 + c z1 + d = 0

Also, since the line L = 0 lies in the plane P = 0, therefore, the normal to the plane is also normal to the line. Thus,

a l + b m + c n = 0.

6.9

of the acute and obtuse angles between two



a1 x + b1y + c1z + d1 = 0

...(i)

and

a2 x + b2y + c2z + d2 = 0

...(ii)

First we make d1 > 0, d2 > 0 (i) If a1a2 + b1b2 + c1c2 > 0, the origin lies in the obtuse angle between two planes and the equation of the obtuse angle bisector is a1x  + b1y + c1z + d1 a2x +  b1y + c2z + d2 __________ __________ ​ __________________        ​ = __________________ ​         ​ 2 2 2 + c​ 1​ ​ ​​  ​÷​a  2​2​​  + b​ 2​2​​    + ​c2​2​ ​​  ÷​ ​a  1​ ​​  + ​b1​ ​​    and the acute angle bisector is a1x  + b1y + c1z + d1 a2x +  b2y + c2z + d2 __________ __________ ​ __________________        ​ = __________________ ​         ​ 2 2 2 ​÷​a  ​1​​  + b​ ​1​​    + ​c​1​ ​​  ​÷​a  2​2​​  + b​ 2​2​​    + ​c2​2​ ​​ 

6.10  Integral Calculus, 3D Geometry & Vector Booster (ii) If a1a2 + b1b2 + c1c2 < 0, the origin lies in the acute angle between the two planes and the equation of the bisector of the acute angle is

is

x – x1 l1 l2

y – y1 m1 m2

z – z1 n1 = 0 . n2

a1x +  b1y + c1z + d1 __________________ a2x +  b2y + c2z + d2 __________ __________ ​ __________________        ​ = ​         ​ 2 2 2 ​÷​a  ​1​​  + ​b​1​​    + c​ ​1​ ​​  ​÷​a  2​2​​  +​ b​22​​    + ​c2​2​ ​​ 

The equation of the plane containing L1 = 0 is a (x – x1) + b (y – y1) + c (z – z1) = 0

...(i)

and the obtuse angle is

where

...(ii)

a1x +  b1y + c1z + d1 a2x +  b2y + c2z + d2 __________ __________ ​ __________________        ​= __________________ ​         ​. ​÷​a  2​1​​  + ​b2​1​​  +   c​ 2​1​​   ​ ​÷​a  2​2​​  + ​b2​2​​    + c​ 2​2​ ​​ 

Since L2 = 0 is parallel to the plane (i), therefore the normal to the plane (i) is also normal to the line L2 = 0.

3.27 Foot

Eliminating a, b, c from Eqs (i), (ii) and (iii), we get

of perpendicular of a point w.r.t. a plane

The foot of the perpendicular M of a point P (x1, y1, z1) w.r.t. a plane a x + b y + c z + d = 0 is given by x2  – x1 y______ z2 – z1 (ax1 +  by1 + cz1 + d) 2 – y1 ​ ______ ​ = ​      ​ = ​ ______     ​ = – ​  __________________        ​ a    c b (a2 + b2 + c2)

3.28  Image

of a point w.r.t. a palne

Thus,



3.30 Equation

a l1 + b m2 + c n2 = 0 x – x1 l1 l2

y – y1 m1 m2

...(iii)

z – z1 n1 = 0 . n2

of the plane containing two given lines

The equation of the plane containing two lines

The image Q of a point P (x1, y1, z1) w.r.t. a plane a x + b y + c z + d = 0 is x2  –  x1 y______ z2  –  z1 2 (ax1  + by1 + cz1 + d) 2  –  y1 ​ ______ ​ = ​        ​ = ​ ______ ​ = – ____________________  ​          ​ a    c    b (a2 + b2 + c2) where  Q = (x2, y2, z2).



x – x1 y_____ – y1 z_____ – z1 L1: ​ _____  ​   = ​  m  ​   = ​  n  ​    l1 1 1

and

x – x2 y_____ – y2 z_____ – z2 L2: ​ _____  ​   = ​  m  ​   = ​  n  ​    l2 2 2

3.29 Equation of the plane containing a given line and parallel to a given line is The equation of the plane containing a x  –  x1 ______ y  –  y1 L1: ______ ​   ​   = ​  m  ​   = l1 1 and also parallel to another line x – x2 y_____ – y2 L2: ​ _____  ​   = ​  m  ​   = l2 2

a l2 + b m1 + c n1 = 0

given line z  –  z1 _____ ​  n  ​    1

x – x1 l1 l2

y – y1 m1 m2

z – z1 n1 = 0 n2

x – x2 l1 l2

y – y2 m1 m2

z – z2 n1 = 0 . n2

or

z – z2 ​ _____   n2 ​ 

Exercises



(Problems based on Fundamentals)

ABC of 3D-Geometry 1. Find the distance between the points P (3, 4, 5) and Q (– 1, 2, – 3). 2. Find the shortest distance of the point P (a, b, c) from x-axis. 3. If the line passing through the points (5, 1, a) and 17 13 (3, b, 1) crosses the yz-plane at ​ 0, ​ ___ ​ , – ​ ___ ​  ​, find 2 2 the value of a + b + 2. 4. Show that the points P (0, 7, 10), Q (– 1, 6, 6) and C (– 4, 9, 6) are the vertices of an isosceles rightangled triangle.

( 





)



5. Find the locus of a point, the sum of distances from (1, 0, 0) and (– 1, 0, 0) is 10. 6. Find the ratio in which the plane x – 2y + 3z = 17 divides the line joining the points (– 2, 4, 7) and (3, – 4, 8). 7. Find the co-ordinates of points which trisects the line joining the points P (– 3, 2, 4) and Q (0, 4, 7). 8. If the centre of a tetrahedron OABC are (1, 2, –1), where A = (a, 2, 3), B = (1, b, 2), C = (2, 1, c) respectively, find the distance of P (a, b, c) from the origin. 9. Find the ratio in which the line joining the points P (– 2, 3, 7) and Q (3, – 5, 8) is divided by the yz-plane.

3D-Co-ordinate Geometry 

10. The vertices of a triangle are A (5, 4, 6), B (1, – 1, 3) and C (4, 3, 2). The internal bisector of –BAC meets BC in D. Find AD. Direction cosines and direction ratios 11. If a line is equally inclined with the axes, find its direction cosines. 12. Find the angle at which the vector (4 i + 4 j + k) is inclined to the axes. 13. If a line makes an angle a, b, g with the co-ordinate axes, find the value of (i) S sin2 a (ii) S cos (2a). 14. A line OP makes with the x-axis and y-axis at an angle of 120°, 60°, respectively. Find the angle made by the line with the z-axis. 15. A vector r is inclined to x-axis and to y-axis at 60°. If |r| = 8, find the vector r. 16. Find the projection of the line joining (1, 2, 3) and (– 1, 4, 2) on the line having direction ratios (2, 3, – 6). 17. What is the angle between the lines whose direction

( 

__

) ( 

__

)

​÷3 ​    ​ 3 ​    ÷ 3 1 3 1 ___ cosines are ​ – ​ __ ​ , __ ​   ​ , – ___ ​   ​  ​ and ​ – ​ __ ​ , __ ​   ​ , ​   ​  ​? 4 4 2 4 4 2 18. Find the angle between any two diagonals of a cube. 19. Find the angle between one diagonal of a cube and a diagonal of one face. 20. A line makes angles a, b, g with the four diagonal of a cube, find the value of

S cos2 a (ii) S sin2 a (iii) S cos(2a) (i)

21. Find the angle between the lines whose direction cosines are satisfy the equations l + m + n = 0 and l 2 + m2 – n2 = 0. 22. Find the direction cosines of the two lines which are connected by the relation l – 5m + 3n = 0 and 7l 2 + 5m2 – 3n2 = 0. 23. Find the angle between the lines which are connected by the relation l + m + n = 0 and 2l m + 2l n + m n = 0. 24. Show that the straight lines whose direction cosines are given by the equations al + b m + cn = 0 and ul2  + v m2 + w n2 = 0 are perpendicular if a2 (u + v) + b2 (u + w) + c2 (u + v) =0 a2 b2 __ c2 and parallel if __ ​ u ​  + __ ​ v ​  + ​ w ​  = 0. 25. If a variable line in two adjacent positions has direction cosines (l, m, n) and (l + d l, m + d m, n + d n), show that the small angle dq between the two positions is given by (dq)2 = (d l)2 + (d m)2 + (d n)2.

6.11

Striaght Line 26. Find the equation of a line passing through (2, 3, 4) + 1 z____ –7 x – 3 y_____ and parallel to the line ​ _____  ​   = ​   ​   = ​   ​  .  3 4 5 27. Find the equation of a line passing through (– 3, 2, – 4) and parallel to the vector 2 i + 3 j + 7k. y  – 2 x  – 1 28. Find the point where the line ​ _____  ​   = ​ _____  ​   = 2 – 3 z_____ +3 ​   ​   meets the plane 2x – 2y – z = 7. 4 29. Find the equation of the line through 3x – 4y + 5z = 10, 2x + 2y – 3z = 4 and parallel to x = 2y = 3z.. 30. Prove that the lines 4x = 3y = – z and 3x = y = – 4z are perpendicular. 31. If the lines x = az + b, y = cz + d and x = a¢z + b¢, y = c¢z + d ¢ are perpendicular, prove that a ◊ a¢ + c ◊ c¢ = – 1. 32. Find the distance of the point (1, – 2, 3) from the plane x – y + z = 5 measured parallel to the y z x line __ ​     ​ = __ ​    ​ = ___ ​     ​.  2 3 – 6 33. Find the foot of the perpendicular from the point – 1 z____ –7 x – 6 y_____ (1, 2, 3) to the line ​ _____  ​   = ​   ​   = ​   ​   and also 3 2 3 find the length of the perpendicular. 34. Find the image of a point (1, 6. 3) in the line –7 x y – 1 z____ __ ​    ​ = ​ _____  ​   = ​   ​  .  1 2 3 35. Find the equation of the line which can be drawn from the point (1, – 1, 0) to intersect the – 1 z____ y z+1 –3 x – 2 y_____ x – 4 __ lines ​ _____  ​   = ​   ​   = ​   ​   and ​ _____  ​   = ​    ​ = ​ _____  ​  .  2 3 4 4 2 5 orthogonally. 36. Find the equation of the line through (2, – 3, 1) parallel to the plane 2x – y + z = 6 so as to meet y z–2 x – 2 ___ the line ​ _____  ​   = ​    ​ = ​ ____ ​   at right angle. 2 – 3 – 1 Shortest distance between two lines 37. Find the shortest distance between the lines r = 3i + 8 j + 3k + l (3i – j + k) and r = – 3i – 7 j + 6k + m (– 3i + 2 j + 4k). 38. Find the shortest distance between the lines

– 3 z____ –4 x – 2 y_____ L1: ​ _____  ​   = ​   ​   = ​   ​    3 4 5

and

+ 1 z_____ +2 x – 2 y_____ L2: ​ _____  ​   = ​   ​   = ​   ​  .  2 –1 3

39. Prove that the shortest distance between any two opposite edges of a tetrahedron formed by the planes __ y + z =__0, x + z = 0, x + y = 0 and x + y + z = ​÷3 ​    a is a ​÷2 ​   . 

6.12  Integral Calculus, 3D Geometry & Vector Booster 40. If 2d be the shortest distance between the y z x __z 1 lines ​ __ ​ + __ ​ c ​ = 1, x = 0 and ​ __  ​ – ​ c ​ = __ ​ y ​ = 0, prove a b 1 1 1 1 that __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  = ___ ​  2  ​.  a b c d Plane 41. Find the equation of the plane through the points P (1, 1, 1), Q (3, – 1, 2) and R (–3, 5, – 4). 42. Show that the four points (1, 2, 3), (2, 1, 4) (3, – 1, 3) and (2, 2, 6) are coplanar. 43. Find the intercepts of the plane 2x – 4y + 5z = 20 on the co-ordinate axes. 44. Find the equation of the plane passes through the points (3, 0, 0), (0, 4, 0) and (0, 0, 5). 45. Find the equations of the plane through the points (0, 4, – 3), (6, – 4, 3) other than the plane through the origin, which cut off from the axes intercepts, whose sum is zero, 46. A plane meets the co-ordinate axes in A, B, C such that the centroid of the triangle ABC is the point (p, q, r). Find the equation of the plane. 47. A variable plane cuts the co-ordinate axes in A, B, C and is of constant distance 3p from the origin. Find the locus of the centroid of the triangle ABC. x y __z 48. The plane __ ​ a ​ + __ ​   ​ + ​ c ​ = 1 meets the co-ordinate axes b at the points A, B, C respectively. Find the area of the D ABC. 49. A variable plane cuts the co-ordinate axes in A, B, C and is of constant distance p from the origin. Find the locus of the centroid of the tetrahedron OABC. 50. If a variable plane forms a tetrahedron of constant volume 64 k3 with the co-ordinate planes, find the locus of the centroid of the tetrahedron. 51. Find the angle between the planes x – 2y + 2z + 2014 = 0 and 2x + y + 2z + 2015 = 0. 52. Prove that the planes 3x – 2y + 3z + 10 = 0 and 2x – 3y – 4z + 7 = 0 are perpendicular. 53. Find the equation of the plane passing through (1, 2, 3) and the perpendicular to the planes 2x + 3y + 4z + 7 = 0, 3x + 4y + 5z + 10 = 0 x  –  2 54. Find the angle between the line ​ _____  ​     = 3 y  + 1 z – 3 _____ ​   ​   = ​ ____ ​   and the plane 3x + 4y + z + 5 = 0. – 1 – 2 – 4 z____ –5 x – 3 y_____ 55. Prove that the line ​ _____  ​   = ​   ​   = ​   ​   is parallel 2 3 4 to the plane 4x + 4y – 5z + 2 = 0. 56. Find the equation of a plane passing through (2, 3, – 1) and parallel to x – 2y + 3z + 10 = 0. 57. Find the equation of the plane passing through the points (2, 3, – 4), (1, – 1, 3) and parallel to x-axis. 58. Find the equation of the plane passing through the points (1, 2, 3), (4, 3, 1) and parallel to y-axis

59. Find the equation of the plane passing through the points (3, 4, 5), (– 2, 3, – 1) and parallel to z-axis. 60. Find the equation of the plane passing through (1, 2, 3) and parallel to xy-plane. 61. Find the equation of a plane parallel to yz-plane and passes through the point (2, 3, 4). 62. Find the equation of the plane passing through (3, 4, 5) and parallel to zx-plane. 63. Find the equation of the plane passing through the points (2, – 1, 0), (3, – 4, – 5) and parallel to the line 2x = 3y = 4z. 64. Find the equation of the plane passing through (2, 3, 4) and parallel to the lines x = 2y = 3z and 2x = 5y = z. 65. Find the equation of the plane passing through the intersection of the planes 2x + 5y – 5z = 6 and 2x + 7y – 8z = 7 and the point (– 1, 4, 3). 66. Find the equation of the plane passing through the point (2, – 1, 1) and the line 4x – 3y + 5 = 0 = y – 2z – 5. 67. Find the equation of the plane passing through the intersection of the planes 2x + 3y + 10z = 8 2x – 3y + 7z = 2 and the perpendicular to 3x – 2y + 4z = 5. 68. Find the equation of the plane passing through the line x + y + z + 3 = 0, 2x – y + 3z + 1 = 0 and x y __z parallel to __ ​    ​ = __ ​    ​ = ​    ​.  1 2 3 69. Find the length of the perpendicular from a point P (1, 2, 3) to the plane 5x + 4y – 3z – 1 = 0. 70. Find the equation of the line through (– 1, 3, 2), perpendicular to the plane x + 2y + 2z = 3 and also find the co-ordinates of its foot. 71. Find the distance of the point (1, 2, 3) from the plane x + y + z = 11 measured parallel + 2 z____ –7 x + 1 y_____ to ​ _____  ​   = ​   ​   = ​   ​  .  1 – 2 2 72. Find the locus of a point, the sum of the squares of whose distances from the planes x + y + z = 0, x – z = 0, x – 2y + z = 0 is 9. 73. Two system of the co-ordinate axes have the same origin. If a plane cuts them at distances a, b, c and p, q, r respectively from the origin. Prove that 1 1 1 1 1 1 ​ __2  ​ + __ ​  2  ​ + __ ​  2  ​  = __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​.  a b c p q r 74. Find the distance of the point (4, 1, 1) from the lines x + y + z – 4 = 0 = x – 2y – 2z – 4. 75. Find the distance between the planes x + 2y – 2z + 1 = 0 and 2x + 4y – 4z + 5 = 0 76. Find the co-ordinates of the point of intersection y – 2 z + 3 x – 1 of the line ​  _____  ​   = ​  _____ ​   = ​  _____  ​   with the plane 2 – 3 4 2x – 2y – z = 7.

3D-Co-ordinate Geometry 

77. Find the equation of the plane passing through (1, 2, 0) – 1 z____ –2 x + 3 y_____ which contains the line ​ _____  ​   = ​   ​   = ​   ​  .  3 4 – 2 y – 2 z – 3 x – 1 78. Prove that the lines ​  _____  ​   = ​  _____  ​   = ​  ____  ​   and 2 3 4 y – 3 –4 x – 2 _____ z____ ​ _____  ​   = ​   ​   = ​   ​   are coplanar and also find the 3 4 5 equation of the plane where they lie. 79. Find the equation of the plane passing through the line of intersection of the planes 4x – 5y – 4z = 4 and 2x + y + 2z = 8 at the point (1, 2, 3). 80. Find the eqution of the plane bisecting the acute angle between the planes x + 2y + 2z – 3 = 0 and 3x + 4y + 12z + 1 = 0. 81. Find the image of the point (2, – 3, 4) with respect to the palne 4x + 2y – 4z + 3 = 0. 82. Find the equation of the image of the y – 2 z + 3 x – 1 line ​  _____  ​   = ​  _____  ​   = ​  _____ ​   in the plane 3x – 3y 9 –1 – 3 + 10z – 26. 83. Find the equation of the plane containning the y + 6 z + 1 x – 1 line ​  _____  ​   = ​  _____  ​   = ​  _____  ​   and is parallel to the 3 4 2 – 1 z_____ +3 x – 4 y_____ line ​ _____  ​   = ​   ​   = ​   ​  .  2 – 3 5 84. Find the equation of the plane containing the lines – 1 z_____ – 4 z____ +3 –6 x + 1 y_____ x – 2 y_____ ​ _____  ​   = ​   ​   = ​   ​   and ​ _____  ​   = ​   ​   = ​   ​  .  7 3 1 3 5 5



1. The shortest distance of the point (a, b, c) from the x-axis is ______

______

(a) ​÷a  2 + b2   ​

(b) ​÷ a2 + c2   ​



(c) ​÷b  2 + c2   ​

(d) ​÷ a2 + b2    + c2 ​

______

__________

2. The equation of the x-axis is x y __z x (a) ​ __  ​ = __ ​    ​ = ​    ​   (b) ​ __  ​ = 1 0 0 0 x y __z x (c) ​ __  ​ = __ ​    ​ = ​    ​   (d) ​ __  ​ = 0 0 1 1





y __ ​    ​ = 1 y __ ​    ​ = 0



( 



z __ ​    ​  0

5. The foot of perpendicular from (a, b, c) on the z-axis is (a) (a, 0, 0) (b) (0, b, 0) (c) (0, 0, 0) (d) (0, 0, c). 6. The angle between any two diagonals of a cube is __

(b) tan– 1 (​÷2 ​   )  __ 2 (c) cot– 1(​÷2 ​   )  (d) cos– 1 ​ ​ __ ​   ​ 3 7. The angle between a diagonal of a unit cube and a diagonal of a face is __ 2 2 – 1 __ –1 __ (a) cos  ​ ​   ​   ​ (b) cos ​ ​ ​   ​ ​    ​ 3 3

(  ) 1  ​( ​ __ ÷​  3  ​ ​ )​

(c) cos– 1



​ 3 ​    ÷ (a) ​ ___ ​   2 __

)

1 1 __ 1 3. If the direction cosines of a line are ​ __ ​ c ​, __ ​ c ,​ ​ c ​  ​, then c is (a) 1 (b) ± 2__ (c) ± 3 (d) ± ​÷3 ​    4. The number of lines, through the origin makes equal angles with the axes, is (a) 1 (b) 2 (c) 4 (d) 0



(  )

( ÷  ) (  )

1 (d) cos– 1 ​ __ ​   ​   ​ 3

8. A line makes an angle a, b and g with the axes, the value of sin2a + sin2b + sin2g is (a) 1 (b) 2 (c) – 1 (d) 0. 9. A line makes an angle a, b and g with the axes, then the value of cos (2a) + cos (2b) + cos (2g) is (a) 1 (b) 2 (c) –1 (d) 0. 10. The shortest distance from the origin to the p l a n e 2x + 3y + 6z – 21 = 0 is (a) 2 (b) 1 (c) 3 (d) 4 11. A plane meets the co-ordinate axes at A, B and C, respectively. If the centroid of the triangle is (2, 2, 2), the equation of the plane is (a) x + y + z = 5 (b) x + y + z = 6 (c) x + y + z = 9 (d) x + y + z = 4 12. The locus of the first degree equation in x, y, z reprsents a (a) stline (b) plane (c) sphere (d) conicoid 13. If the plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1 (k) with x-axis, then k is __

z __ ​    ​  1

__

(a) tan– 1 (2​÷2 ​   ) 

__



(Mixed Problems)







6.13

2 (b) ​ __ ​  7

​ 2 ​    ÷ (c) ​ ___ ​   (d) 1 3 14. The distance between the parallel lines 2x – 3y + 6z + 5 = 0 and 6x – 9y + 18z + 21 = 0 is 3 1 (a) ​ __ ​   (b) ​ __ ​  7 7 2 4 (c) ​ __ ​   (d) ​ __ ​ . 7 7 15. The equation of the plane passing through (1, 2, 3) and parallel to 2x + y + 2z + 10 = 0 is

6.14  Integral Calculus, 3D Geometry & Vector Booster (a) 2x + y + 2z – 10 = 0 (b) 2x + y + 2z – 12 = 0 (c) 2x + y + 2z + 12 = 0 (d) 2x + y + 2z + 10 = 0 16. The angle between the planes 2x – y + z = 6 and x + y + 2z = 7 is p p (a) ​ __ ​   (b) ​ __ ​  4 3 p p __ __ (c) ​   ​   (d) ​   ​  2 6 17. The line x = 1, y = 2 is (a) parallel to x-axis (b) parallel to y-axis (c) parallel to z-axis (d) none of these 18. The line y = 2 and z = 3 is (a) parallel to x-axis (b) parallel to y-axis (c) parallel to z-axis (d) none of these 19. The equation of a line passing through (2, 3, 4) and perpendicular to the plane 2x + 3y – z = 5 is – 3 z____ –4 x – 2 y_____ (a) ​ _____  ​   = ​   ​   = ​   ​    2 1 3 + 3 z____ –4 x – 2 y_____ (b) ​ _____  ​   = ​   ​   = ​   ​    2 1 3 + 3 z____ –4 x – 2 y_____ (c) ​ _____  ​   = ​   ​   = ​   ​    2 1 3 – 3 z____ –4 x – 2 y_____ (d) ​ _____  ​   = ​   ​   = ​   ​    2 4 5 y – 3 z – 4 x – 2 20. The line ​  _____  ​   = ​  _____  ​   = ​  ____  ​   is parallel to the 3 4 5 plane (a) 3x + 4y + 5z = 7 (b) 2x + 3y + 5z = 10 (c) 2x + y – 2z = 0 (d) 2x + 3y + 2z = 5 21. The angle between the plane 3x + 6y – 2z + 5 = 0 + 1 z____ –3 x – 2 y_____ and the line ​ _____  ​   = ​   ​   = ​   ​   is 2 – 1 2 8 4 (a) cos– 1 ​ ___ ​    ​  ​ (b) cos– 1 ​ ___ ​    ​  ​ 21 21 8 4 (c) sin– 1 ​ ___ ​    ​  ​ (d) sin– 1 ​ ___ ​    ​  ​. 21 21 22. The co-ordinates of the point of intersection of the + 1 z_____ +3 x – 6 y_____ line ​ _____  ​   = ​   ​   = ​   ​   and the plane x + y – z = 3 –1 0 4 is (a) (2, 1, 0) (b) (1, 2, – 6) (c) (5, 1, 2) (d) (5, – 1, 1) x – 1 23. The shortest distance between the lines ​  _____  ​   = 2 y_____ – 2 z____ – 4 z____ –3 –5 x_____ – 2 y_____ ​   ​   = ​   ​   and ​   ​   = ​   ​   = ​   ​   is 3 4 3 4 5 1 1__ (a) ​ __ ​   (b) ​ ___   ​  6 ​÷6 ​    1__ 1 (c) ​ ___   ​   (d) ​ __ ​  3 ​ 3 ​    ÷

(  ) (  )

(  ) (  )

24. The plane passing through (3, 2, 0) and the line – 6 z____ –4 x – 3 y_____ ​ _____  ​   = ​   ​   = ​   ​   is 1 4 5 (a) x – y + z = 1 (b) x + y + z = 5 (c) x + 2y – z = 1 (d) 2x – y + z = 5. ​___›

25. If the projection of ​PQ​   on OX, OY and​___ OZ are › respectively 12, 3 and 4, the magnitude of PQ​ ​   is (a) 169 (b) 13 (c) 12 (d) 144 26. The distance of the plane passing through (1, 1, 1) and – 1 z____ –1 x – 1 y_____ perpendicular to the line ​ _____  ​   = ​   ​   = ​   ​   from 3 0 4 the origin is 3 4 (a) ​ __ ​   (b) ​ __ ​  4 3 7 (c) ​ __ ​   (d) 1 5 27. A variable plane at a distance of 1 unit from the origin cuts the co-ordinate axes at A, B and C. If the centroid D (x, y, z) of DABC satisfies the rela1 1 1 tion __ ​  2  ​  + __ ​  2  ​  + __ ​  2  ​  = k, then k is x y z 28.

29.

30.

31.

32.

(a) 1 (c) 9

(b) 3 (d) 4 y – 3 x – 2 x – 1 4 – z The lines ​  _____  ​   = ​  _____  ​   = ​  _____      ​ and ​  _____  ​   = 1 1 k k y – 4 z____ –5 ​ _____  ​   = ​   ​   are coplanar if k is 2 1 (a) 1 (b) 2 (c) 0 (d) 4 The equation of the obtuse angle bisector between the planes 3x – 2y + 6z + 8 = 0 and 2x – y + 2z + 3 = 0 is (a) 5x – y – 4z = 3 (b) 5x + y – 4z = 5 (c) 4x + y – 5z = 5 (d) 7x + 3y – 9z The plane x – y – z = 4 is rotated through an angle 90° about its line of intersection with the plane x + y + 2z = 4. Then the new position of the plane is (a) 5x + 3y + 2z = 4 (b) 5x + y + 4z = 20 (c) 4x + y + 5z = 20 (d) 4x + 5y + z = 20 The value of m for which the straight lines 3x – 2y + z + 3 = 0 = 4x – 3y + 4z + 1 are parallel to the plane 2x – y + m z = 2 is (a) 6 (b) 8 (c) – 2 (d) – 11 A straight line is given by r = (1 + t) iˆ + 3t  + (1 – t)  , where t in R. If this line lies in the plane x + y + c z = d, the value of (c + d – 5) is

3D-Co-ordinate Geometry 



(a) 8 (c) 4

(b) 9 (d) 2

– 1 z_____ +1 x – 2 y_____ 33. Let L1: ​ _____  ​   = ​   ​   = ​   ​    1 0 2 – 1 ___ z x – 3 y_____ and L2: ​ _____  ​   =​   ​   = ​     ​  1 1 – 1 and let p be the plane which contains the line L1 and is parallel to L2. The distance of the plane p from the origin is __ 2 1 (a) ​ __ ​   ​ ​    (b) ​ __ ​  7 7 __ (c) ​÷6 ​    (d) none of these 34. If the planes x = cy + bz, y = az + bx and z = bx + ay pass through the same line, the value of a2 + b2 + c2 + 2ab + 2 is (a) 2 (b) 1 (c) 3 (d) 4 35. The equation of the plane passing through (0, 2, 4) – 1 2____ –z x + 3 y_____ and containing the line ​ _____  ​   = ​   ​   = ​   ​   is 3 4 2 (a) x – 2y + 4z – 12 = 0 (b) 5x + y + 9z – 38 = 0 (c) 10x – 12y – 9z + 60 = 0 (d) 7x + 5y – 3z + 2 = 0 36. The two lines x = ay + b, z = cy + d and x = a¢y + b¢, z = c¢y + d¢ will be perpendicular if and only if (a) aa¢ + bb¢ + cc¢ + 1 = 0 (b) aa¢ + bb¢ + cc¢ = 0 (c) (a + a¢) + (b + b¢) + (c + c¢) = 0 (d) a a¢ + c c¢ + 1 = 0 1  – y _____ z  + 2 x  – 2 _____ 37. If the line _____ ​   ​   = ​   ​   = ​   ​   lies in the plane 3 2 6 x + 3y – a z + b = 0. Then the value of (a + b + 1) is (a) 2 (b) 1 (c) 3 (d) 4 y – y z z – 3 x x – 1 2_____ 38. If the lines __ ​    ​ = ​ __  ​ = ​ __  ​ ; ​  _____  ​    , ​   ​   = ​  ____  ​   and 1 2 3 3 1 4 – 1 z____ –2 x + k y_____ ​ _____  ​   = ​   ​   = ​      ​ are concurrent, then 3 2 h

÷ 

(a) h = – 2, k = – 6 (b) h = 6, k = 2 (c) h = 1/2, k = 2 (d) h = 2, k = 1/2 39. If the four points P (2 – x, 2, 2), Q(2, 2 – y, 2) R (2, 2, 2 – z) and S (1, 1, 1) are coplanar, then 1 __ 1 __ 1 (a) ​ __ x ​ + ​ y ​ + ​ z ​  = 1 (b) x + y + z = 1 1 1 1 (c) ​ _____     ​ + _____ ​       ​ + ____ ​       ​ = 1 1–x 1–y 1–z 1 1 1 (d) ​ _____     ​ + _____ ​       ​ + _____ ​       ​ = 2 1+x 1+y 1+z

6.15

40. The equation of the right bisector plane of the line segment joining the points (2, 3, 4) and (6, 7, 8) is (a) x + y + z = 15 (b) x + 2y + z = 15 (c) 3x + 2y + z = 15 (d) x + 2y + 5z = 15 41. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere x2 + y2 + z2 + 4x – 2y – 6z = 155 is (a) 39 (b) 26 (c) 11 (d) 13 42. The intersection of the spheres x2 + y2 + z2 + 7z – 2y – z = 13 and x2 + y2 + z2 – 3x + 3y + 4z = 8 is the same as the intersection of one of the sphere and the plane (a) 2x – y – z = 1 (b) x – 2y – z = 1 (c) x – y – 2z = 1 (d) x – y – z = 1 43. The plane x + 2y – z = 4 cuts the sphere x2 + y2 + z2 – x + z – 2 = 0 in a circle of radius (a) 3 (b) 1__ (c) 2 (d) ​÷ 2 ​  44. If the plane 2ax – 3ay + 4az + 6 = 0 passes through the mid-point of the line joining the centres of the spheres x2 + y2 + z2 + 6x – 8y – 2z = 13 and x2 + y2 + z2 – 3x + 3y + 4z = 8, then a is (a) – 1 (b) 1 (c) – 2 (d) 2 45. The intersection of the spheres x2 + y2 + z2 + 7x – 2y – z = 13 and x2 + y2 + z2 – 3x + 3y + 4z = 8 is the same as the intersection of one of the sphere and the plane. Then (a) 2x – y – z = 1 (b) x – 2y – z = 1 (c) x – y – 2z = 1 (d) x – y – z = 1.



(Problems for JEE-Advanced)

1. Show that the straight lines whose direction cosines are given by the equation al + bm + cn = 0 and ul2 + vm2 + wn2 = 0 are perpendicular if a2 (u + v) + b2 (u + w) + c2 (u + v) = 0 a2 b2 __2 and parallel if __ ​ u ​  + __ ​ v ​  + ​ w  ​ = 0. 2. If P be any point on the plane l x + m y + n z = p and Q be a point on the line OP such that OP ◊ OQ, find the locus of the point Q. y x __ __z 3. A point P moves on a plane ​ __ a ​ + ​ b ​ + ​ c ​ = 1. A plane through P and perpendicular to OP meets the co-ordinate axes at A, B and C. If the plane through A, B and C and parallel to the planes x = 0, y = 0, z = 0 intersect at Q, find the locus of Q. 4. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular to it from the origin is the sphere x2 + y2 + z2 – ax – by – cz = 0.

6.16  Integral Calculus, 3D Geometry & Vector Booster











5. The plane x – y – z = 4 is rotated through an angle of 90° about the line of intersection with the plane x + y + 2z = 4. Find its equation in the new position. 6. If the planes x – c y – b z = 0, c y – y + a z = 0 and b x + a y – z = 0 passing through a straight line, find the value of a2 + b2 + c2 + 2 abc. 7. Find the co-ordinates of those points on the + 2 z____ –3 x – 1 y_____ line ​  _____  ​   = ​   ​   = ​   ​   which are at a distance 2 3 6 of 3 units from the point (1, – 2, 3). 8. Find the distance of the point (1, 0, – 3) from the plane x – y – z = 9 measured parallel to the + 2 6____ –z x – 2 y_____ line ​ _____  ​   = ​   ​   = ​   ​  .  2 3 6 9. Find the equation of the plane passing through (1, 2, 0) – 1 2____ –z x + 3 y_____ which contains the line ​ _____  ​   = ​   ​   = ​   ​  .  3 4 2 10. Find the equation of the projection of the + 1 z____ –3 x – 1 y_____ line ​ _____  ​   = ​   ​   = ​   ​   on the plane x + 2y + z 2 – 1 4 = 9. 11. Find the shortest distance between the lines 2x + y + z – 1 = 0 = 3x + y + 2z – 2 and x = y = z. 12. Find the distance of the point of intersection of the + 3 z_____ + 1 + 1 x – 4 y_____ x – 1 y_____ lines ​  _____  ​   = ​   ​   = ​   ​   and ​  _____  ​   = ​   ​   = 7 1 – 4 2 – 3 z + 10 ​ ______  ​   from (1, – 4, 7). 8

19. If the equation of the plane through the straight y + 2 z x – 3 line ​  _____  ​    = ​  _____ ​    = ​ __  ​  and perpendicular to 2 – 3 6 x – y + z + 2 = 0 is ax + by + cz + 4 = 0, find the value of a + b + c + 2. 20. Find the equation of the plane through (2, 3, 4) and also which is at the maximum distance from the origin. 21. A sphere of radius r passes through the origin and meets the axes in A, B, C. Find the locus of the centroid of DABC lies on the sphere. 22. A plane passes through a fixed point (f, g, h) and cuts the axes in A, B, C. Show that the locus of the centre of the sphere OABC. 23. A sphere of constant radius r passes through the origin and cuts the axes in A, B, C. Find the locus of the foot of the perpendicular from O to the plane ABC. 24. Find the equation of a sphere circumscribing the tetrahedron whose faces are x = 0, y = 0, z = 0 y __z x __ and ​ __ a ​ + ​ b ​ + ​ c ​ = 1 25. Find the equation of a sphere for which the circle x2 + y2 + z2 + 7y – 2z + 2 = 0 and 2x + 3y + 4z = 8 is a great circle.



(Tougher Problems for Jee-Advanced)

13. If the lines x = a y + b, z = c y + d and x = a1y + b1, z = c1y + d1 are perpendicular such that a a1 + b b1 + k = 0, find the value of (k2 + 4). 14. Find the distance of the point(1, 2, 3) from the plane x + y + z = 11 measured parallel – 12 z____ –7 x + 1 y______ to ​ _____  ​   = ​   ​   = ​   ​  .  1 – 2 2 15. If a variable plane forms a tetrahedron of constant volume 64k2 with the co-ordinate planes, find the locus of the centroid of the tetrahedron. y z 16. If 2d be the shortest distance between the lines __ ​   ​ + __ ​   ​ b c x __z 1 1 __ __ = 1, x = 0 and ​ __ a ​ – ​ c ​ = 1, y = c, prove that ​ a2  ​ + ​ b2  ​  1 1 + __ ​  2  ​  = __ ​  2  ​.  c d





3.

17. If the foot of the perpendicular from the origin to a plane is P (a, b, c), find the equation of the plane. 18. Find the equation of a plane which passes through y – 2 x – 1 the point of intersection of lines ​  _____  ​   = ​  _____  ​   = 3 1 y – 1 z–3 z–2 x–3 ​ ____  ​   and ​ _____  ​   = ​ _____  ​   = ​ ____  ​   and at the greatest 2 1 2 3 distance from the point (0, 0, 0).



4.



5.



6.



1. Show that the straight lines whose direction cosines are given by al + b m + c n = 0 and f  m n + g n l + h l m = 0 are f g h (i) perpendicular if __ ​ a  ​ + __ ​   ​ + __ ​   ​ = 0 b c __

2.

___

___

(ii) parallel if ÷ ​ af    ​  + ÷​ bg    ​ + ÷​ ch     ​ = 0. If the edges of a rectangular parallelopiped are a, b and c, show that the angles between the four a2 b2 __ c2 diagonals are given by cos–1 ​ ​ __2 ​  + __ ​  2 ​  + ​  2 ​   ​. a b c A variable plane passes through the fixed point (a, b, c) and meets the axes of reference in P, Q, R. Show that the locus of the point of intersection of the plane through P, Q, R parallel to the co-ordinate a b __c planes is __ ​ x ​ + __ ​ y ​ + ​ z ​ = 1. A variable plane makes intercepts on the co-ordinate axes, the sum of whose squares is constant and equal to k2. Find the locus of the foot of the perpendicular from the origin to the plane. Find the incentre of the tetrahedron formed by the planes x = 0, y = 0, z = 0 and x + y + z = a. If the image of the point (3, 5, 7) in the plane 2x + y + z = 16 is (a, b, c), find the value of a2 + b2 + c2 + 18.

( 

)

3D-Co-ordinate Geometry 

x – 1 7. If q be the acute angle between the lines ​  _____ ​ = a    y_____ + 1 __z y – 3 –1 x + 1 _____ z____ ​      ​ = ​ c ​ and ​ _____ ​ = ​      ​ = ​  c    ​ ,where a > b > c a    b b and a, b and c are the zeroes of x3 + x2 – 4x – 4 = 0, find q. 8. If the planes x = cy + bz, y = az + cx and z = bx + ay meet in a line, show that the line of intersection y z x of these planes is _______ ​  __   2   ​ = _______ ​  __   2   ​ = ______ ​  __   2  ​ 1 ​    – a ​ 1 ​    – b ​ 1 ​    – c ÷ ÷ ÷  ​9. Let the plane x – y – z = 2 is rotated through 90° about its line, of intersection with the plane x + 2y + z = 2. Find the equation of the plane in the new position. y x __ __z 10. A point P moves on a plane ​ __ a ​ + ​ b ​ + ​ c ​ = 1. A plane through P and perpendicular to OP meets the co-ordinate axes at A, B and C. If the planes through A, B and C parallel to the planes x = 0, y = 0 and z = 0 intersect at Q, find the locus of Q.

Integer Type Questions

1. If the angle between the lines whose direction cosines are given by 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0 a –1 __ is cos ​ ​   ​  ​, find the value of (a + b). b 2. A line makes angles a, b, g, d with the four diagonals of a cube, find the value of 3(cos2a + cos2b + cos2g + cos2d).

(  )









3. If the image of the point P (1, 6, 3) in the –2 x y – 1 z____ line __ ​    ​ = ​ _____  ​   = ​   ​   is Q (a, b, g), find the vaue 1 2 3 of (a + b + g). 4. If P(a, b, c) be any point on the plane 3x + 2y + z = 7, find the least value of 2(a2 + b2 + c2). 5. Find the distance of the point (1, 0, – 3) from the plane x – y – z = 9 measured parallel to the + 2 6____ –z x – 2 y_____ line ​ _____  ​   = ​   ​   = ​   ​  .  2 3 6 6. Find the shortest distance between the lines x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4 and the z-axis. 7. Find the number of planes that are equidistant from four non-coplanar points. 8. If the distance between the plane x – 2y + z = d – 2 x – 1 y_____ and the plane containing the lines ​  _____  ​   = ​   ​   = 2 3 __ y – 3 z – 3 z – 4 x – 2 ​  ____  ​   and ​  _____  ​   = ​  _____  ​   = ​  ____  ​   is ​÷6 ​    , find the 4 3 4 5 value of |d|.   

6.17



9. If the angle between two faces of a regular tetrahedron be q, find the value of (3cosq + 2). 10. Find the number of lines, which are equally inclined to the axes. – 3 z____ –4 x – 2 y_____ 11. If the lines ​ _____  ​   = ​   ​   = ​     ​ and 1 1 – k – 4 z____ – 5 x – 1 y_____ ​  _____     ​ = ​   ​   = ​   ​   are coplanar, find the value 2 1 k of (k + 5). 9 ​ __  ​ – z y_____ – 3 x_____ – 2 2 12. If the straight lines ​   ​   = ​   ​   = ​  _____      ​ and 1 2 k y – 4 z x–1 ​ _____     ​ = ​ _____  ​   = __ ​    ​  intersect, find the value of k. 2 1 k 13. If the planes x = cy + bz, y = cx + az and z = bx + ay pass through a straight line, find the value of a2 + b2 + c + 2abc + 2. –2 z–k x – 4 y_____ 14. If the line ​  _____  ​   = ​   ​   = ​  ____  ​   lies in the plane 1 1 2 2x – 4y + z = 7, find the value of k. 15. If the plane ax – by + cz = 0 contains the – 2d z____ –c x – a y______ b line ​ _____ ​ = ​      ​ = ​  c    ​,  find the value of ​ __ ​   ​  ​. a    b d

(  )

Comprehensive Link Passages Passage I A line makes angles a, b, g with the co-ordinate axes, then cos2a + cos2b + cos2g = 1. 1. If a + b = 90°, then g is (a) 0 (b) 60° (c) 90° (d) 120° 2. If a – b = 90°, then g is (a) 30° (b) 60° (c) 120° (d) 90° 3. The direction cosines of a line equally inclined to the axes are 1 1 1 1 1 1 (a) ​ __ ​ , ​ __ ​ , ​ __  ​ (b) – ​ __ ​ , – ​ __ ​ , – ​ __  ​, 3 3 3 3 3 3 1__ ___ 1 1__ 1__ ___ 1 1__ (c) ​ ___   ​,  ​  __  ​,  ___ ​    ​   (d) – ​ ___   ​,  – ​  __  ​,  ___ ​    ​  ​ 3 ​    ÷ ​ 3 ​    ÷ ​ 3 ​    ​ 3 ​    ÷ ​ 3 ​    ÷ ​ 3 ​    ÷ ÷ Passage II A line makes angles a, b, g, d with the four diagonals of a unit cube. 1. cos2a + cos2b + cos2g + cos2d is (a) 2/3 (b) 4/3 (c) 8/3 (d) 10/3 2 2 2 2. sin a + sin b + sin g + cos2d is (a) 1/3 (b) 4/3 (c) 8/3 (d) 15/3

6.18  Integral Calculus, 3D Geometry & Vector Booster

3. cos (2a) + cos (2b) + cos (2g) + cos (2d) is (a) 1/3 (b) 4/3 (c) – 8/3 (d) – 4/3

Passage III

x1 1 x V = __ ​   ​   2 6 x3 x4









y1 y2 y3 y4

z1 z2 z3 z4



1__ (a) ​ ___   ​   ​ 3 ​    ÷

1__ (b) ​ ___   ​  ​ 2 ​    ÷

2 (c) ​ __ ​   ​ ​    3

1__ (d) ​ ___   ​  ​÷6 ​   

÷ 

1. The volume of a tetrahedron with vertices (0, 0, 0), (2, 0, 0), (0, 3, 0) and (0, 0, 4) is (a) 1 (b) 4 (c) 6 (d) 2 2. The volume of the terahedron with vertices (1, 2, 3), (2, 0, 0), (0, 4, 0) and (0, 0, 3) is (a) 2 (b) 6 (c) 4 (d) 8 3. The volume of tetrahedron formed by the planes x + y = 0, y + z = 0, z + x = 0 and x + y + z = 1 is (a) 2/3 (b) 4/3 (c) 8/3 (d) 10/3 4. The volume of the tetrahedron formed by the y y y x x __ __z __ __ __ __z planes ​ __ a ​ + ​ b ​ + ​ c ​ = 1, ​ a ​ + ​ b ​ = 0, ​ b ​ + ​ c ​ = 0 x z and __ ​ a ​ + __ ​ c ​ = 0 is 1 (a) ​ __ ​  abc 3 2 __ (c) ​   ​  abc 3

4 (b) ​ __ ​  abc 3 10 ___ (d) ​   ​ abc 3

(  )

__

(  )

are perpendicular or, if a1a2 + b1b2 + c1c2 = 0 and parallel if a1 __ b1 __ c1 ​ __ a2 ​  = ​ b2  ​ = ​ c2  ​



1. The number of lines that are equally inclined with the axes is (a) 8 (b) 6 (c) 4 (d) 3 2. If the lines L1 : x = ay + b, z = cy + d and L2 : x = x¢y + b¢, z = c¢y + d ¢ are perpendicular, then (a) aa¢ + cc¢ = 0 (b) aa¢ + cc¢ = –1 (c) aa¢ – cc¢ = 0 (d) aa¢ – cc¢ = 1 – 14 z____ –3 1 – x 7y 3. Let L1: ​ _____  ​   = ​ _______  ​   = ​   ​    3 2 25

If L1 meets L2 at right angles, the value of (11p – 64) is (a) 5 (b) 6 (c) 7 (d) 8. Passage VI x – x1 y_____ – y1 z_____ – z1 Two lines L1: ​ _____  = ​   ​   = ​  c  ​    a1 ​  b1 1 x – x2 y_____ – y2 z_____ – z2 and L2:  ​ _____  = ​   ​   = ​  c  ​   are coplanar if a2 ​  b2 2

(  ) __

   (c) tan (2​÷2 ​   )  (d) cos ​ ____ ​ 2​÷2 ​  ​    ​ 3 2. The angle between one diagonal of a unit cube and a diagonal of a face is __ (a) cot–1(​÷2 ​   )  (b) tan–1​ ___ ​  1__  ​  ​ ​ 3 ​    ÷

(c) cos–1​ __ ​ 1 ​   ​ 3

x – x2 y_____ – y2 z_____ – z2 and L2: ​ _____  = ​  y  ​   = ​  c  ​    a2 ​  2 2

– 5 6____ –z 7 – 7x y_____ and L2: ​ ______     ​ = ​   ​     = ​   ​  .  3p 1 5

1. The angle between two diagonals of a unit cube is 1 (a) tan–1(3) (b) tan–1​ __ ​   ​   ​ 3 –1



x – x1 y_____ – y1 z_____ – z1 Let L1: ​ _____  = ​   ​   = ​  c  ​    a1 ​  b1 1

a1a2 + b1b2 + c1c2 __________ __________  ​. Then cos(q) = ​  ______________________         2 ​÷​a  ​1​​  + ​b2​1​​    + c​ 2​1​ ​​  ​÷​a  2​2​​  + b​ 2​2​​    + ​c2​2​ ​​ 



Passage V

1 1 1 1

Passage IV ​_› Let ​r ​  1 = a1 + b1 + c1 ​_› and ​r ​ 2  = a2 + b2 + c2 .



3. If q be the angle between the vector a = 2i – j + k and the z-axis, then sinq is

__

The volume of the tetrahedron ABCD with vertices A(x1, y1, z1), B (x2, y2, z2), C (x3, y3, z3) and D (x4, y4, z4) is





–1

(  ) ( ÷  )



__

2 (d) sin–1​ ​ __ ​   ​ ​    ​ 3



x2 – x1 a1 a2

y2 – y1 b1 b2

z2 – z1 c1 = 0 c2

y – 2 ____ y–1 z–3 x – 1 _____ x – 4 _____ 1. If two lines _____ ​   ​   = ​   ​   = ​   ​   and _____ ​   ​   = ​   ​   = z 2 3 4 2 5 are coplanar, the point of intersection is (a) (1, 1, 1) (c) (–1, –1, –1)

(b) (1, –1, –1) (d) (1, 1, –1)

6.19

3D-Co-ordinate Geometry 





y + 1 ____ y – k __z z–1 x – 3 ____ x – 1 _____ 2. If the lines _____ ​   ​   = ​   ​   = ​   ​   and _____ ​   ​   = ​   ​   = ​    ​  2 3 4 1 2 1 are coplanar, the value of k is (a) 3/2 (b) 9/2 (c) – 2/9 (d) – 3/2 y – 3 4 – z x – 2 x – 1 3. The lines ​  _____  ​   = ​  _____  ​   = ​  ____      ​ and ​  _____      ​ = 1 1 k k y_____ –4 ​   ​   = z – 5 are coplanar, if 2 (a) k = 0 (b) k = 1 (c) k = 2 (d) k = – 3

Passage VII – 2 z____ –3 x – 1 y_____ Let L1: ​ _____  ​   = ​   ​   = ​   ​    2 3 4 – 4 z____ –5 x – 2 y_____ and L2: ​ _____  ​   = ​   ​   = ​   ​    3 4 5



Let A = (2, 3, 1), P : 2x + y + z = 6 – 2 z____ –3 x – 1 y_____ and L: ​ _____  ​   = ​   ​   = ​   ​    2 1 4 1. The foot of perpendicular from the point A to the line L is 37 43 11 43 ___ 11 37 ___ (a) ​ ___ ​   ​ , ___ ​   ​ , ​   ​   ​ (b) ​ ___ ​   ​ , ___ ​   ​ , ​   ​   ​ 21 21 21 21 21 21



(  ) 43 11 37 ___ (c) ​( – ​ ___ ​ , ___ ​   ​ , – ​   ​   ​ 21 21 21 )

(  ) 11 43 37 (d) ​( ___ ​   ​ , – ​ ___ ​ , ___ ​   ​   ​ 21 21 21 )

2. The image of the point A (2, 3, 1) w.r.t. the plane 2x + y + z is 2 7 __ 1 2 7 __ 1 (a) ​ __ ​   ​ , __ ​   ​ , ​   ​   ​ (b) ​ – ​ __ ​ , __ ​   ​ , – ​    ​  ​ 3 3 3 3 3 3 2 1 7 2 7 1 (c) ​ __ ​   ​ , – ​ __ ​ , – ​ __ ​   ​ (d) ​ – ​ __  ​, – ​ __ ​ , __ ​    ​  ​ 3 3 3 3 3 3

(  ( 



Matrix Match (For Jee-Advanced Examination Only)

Column I

)

)

(  ( 

) )

Column II

(A)

S cos a

(P)

(B)

S sin2a

(Q) –1

(C)

S cos(2a)

(R) 2

(D)

S (cos2a + sin2a)

(S)

2

3

1

2. Match the following Columns: A line makes angles a, b, g, d with the four diagonals of a cube. Column I

(  ) 7 4 (d) ​( __ ​   ​ , __ ​    ​, 11 )​ 5 5

Passage VIII





3. The image of the line L with respect to the plane P is – 5 3z –8 3x – 1 3y (a) ​ ______  ​   = ​ ______  ​   = ​ _____  ​    4 2 3 – 4 3z –5 3x – 1 3y (b) ​ ______  ​   = ​ ______  ​   = ​ _____  ​    4 2 3 – 5 8_____ – 3z 3x – 1 3y (c) ​ ______  ​   = ​ ______  ​   = ​   ​    4 2 1 – 3y 3z –8 3x – 1 5______ (d) ​ ______  ​   = ​   ​   = ​ _____  ​    4 3 5

1. Match the following Columns: A line makes angles a, b, g with the co-ordinate axes.

and A = (2, 3, 5). 1. The shortest distance between the lines L1 and L2 is 1__ 1__ (a) ​ ___   ​   (b) ​ ___   ​  ​ 3 ​    ​÷2 ​    ÷ 1__ 1 (c) ​ ___   ​   (d) ​ __ ​  2 ​÷6 ​    2. The equation of the plane passing through A and containing the line L1 is (a) 2x – z + 1 = 0 (b) 2x – y – z + 2 = 0 (c) 2x – y + 3z + 2 = 0 (d) 3x – y + 5z + 10 = 0 3. The point A = (2, 3, 5). is shifted to the line L2 by a distance 1. Then the co-ordinates of the new position of A is 7 11 __ 7 4 11 4 (a) ​ __ ​    ​, ___ ​   ​ , ​   ​   ​ (b) ​ __ ​   ​ , ​ __  ​, ___ ​   ​   ​ 5 5 5 5 5 5

(  ) 7 11 (c) ​( __ ​   ​ , ___ ​   ​ , 4 )​ 5 5





Column II

(A)

S cos a

(P) 4

(B)

S sin2a

(Q) 4/3

(C)

S cos (2a)

(R) 8/3

(D)

S (cos2a + sin2a)

(S) – 4/3

2

3. Match the following columns: Column I

Column II

(A) The angle between any two (P) diagonals of a cube is

( ÷  ) __

2 cos–1​ ​ __ ​   ​ ​    ​ 3

(  )

(B)

The angle between one (Q) sin–1​ __ ​ 1 ​   ​ diagonal of a unit cube and 3 a diagonal of a face is

(C)

The angle between a (R) diagonal of a cube and a diagonal of a face intersecting it

cot–1​ ___ ​  1__  ​  ​ ​ 3 ​    ÷

(D) The angle between the (S) diagonal of the faces of the cube through the same (T) vertex is

cot–1​( ​÷2 ​     )​ 1 –1 __ cos ​ ​   ​   ​ 3

(  ) __

(  )

6.20  Integral Calculus, 3D Geometry & Vector Booster

4. Match the following Columns: Column I (A) The direction cosines of two lines are connected with l + m + n = 0 and l2 + m2 + n2 = 0, the angle between them is (B) The angle between the planes 3x – 4y + 5z = 0 and 2x – y – 2z = 5 is (C) The angle between the planes 2x – y + z = 6 and x + y + 2z = 7 is (D) The angle between the –2 +3 x – 1 y_____ line ​ _____  ​   = ​   ​   = ​ _____ ​   and 2 1 – 2 the plane x + y + 4 = 0 is



Column II (P) 60°

point (2, 6, 3) to the line –2 x y – 1 z____ __ ​    ​ = ​ _____  ​   = ​   ​   is 2 2 3 (C) The point of intersection of (R) (1, 3, 5) the lines –1 z–6 x – 2 y_____ ​ _____  ​   = ​   ​ = ​ ____  ​    1 – 2 1 + 3 z_____ +3 x + 3 y_____ and​  _____  ​   = ​   ​ = ​   ​   is 7 1 – 6

(Q) 45°

(R) 90°

(S)

(D) If the lines (S) (– 9, – 14, – 19) y + 2 z+3 x+1 ​ _____  ​   = ​ _____  ​   = ​ _____  ​    2 3 4 – 2 z____ –1 x – 3 y_____ _____ and ​   ​   = ​   ​   = ​   ​    3 4 5 are

120°

5. Match the following Columns: Column I y – 2 (A) x – 4  ​    = ​  _____  ​   = If the line ​  _____ 1 1 z____ –k ​   ​    lies on the plane 2 2x – 4y + z = 7, then k is y – 3 x – 2 (B)  ​     = ​  _____  ​    = The lines ​  _____ 1 1 y – 4 4 – z x – 1 ​  ____     ​ and ​  _____     ​ = ​  _____  ​   = 2 k k z–5 ​ ____  ​   are coplanar, then k is 1 (C) If the lines + 1 z____ –1 x – 1 y_____ ​ _____  ​   = ​   ​   =​   ​    2 3 4 – k __z x – 3 y____ and ​  _____  ​   = ​   ​   = ​    ​  intersect, 1 2 1 then k is (D) The shortest distance between the lines – 3 z____ –6 x – 2 y_____ ​ _____  ​   = ​   ​   =​   ​    3 4 5 – 2 z____ –1 x – 5 y_____ and ​ _____  ​   = ​   ​   =​   ​   is 1 2 3



(B) The co-ordinates of the foot (Q) (5, 10, of the perpendicular from the – 6)

Column II (P) – 3

(Q) 7

Column I

(R) 0 (S) 9/2 (T) 5/2

6. Match the following Columns: Column I

7. Match the following Columns: Let P (0, 3, – 2), Q (3, 7, –1) and R (1, – 3, –1) be three given points. Let L1 be the line passing through P and Q and L be the line through R and parallel to ​_› 2 the vector ​v   ​ = + .

Column II

(A) The co-ordinates of the point (P) (2, 3, 5) of intersection of the line + 2 z____ –2 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​    1 3 2 and the plane 3x + 4y + 5z = 15 is

Column II __

(A)

The perpendicular distance (P) of P from L2 is

7​÷3 ​   

(B)

The shortest distance (Q) between L1 and L2 is

2

(C)

Area of the DPQR is

6

(D)

The distance from (0, 0, 0) (S) to the plane PQR is

(R)

19 _____ ​  ____   ​  ​ 147 ​     ÷

8. Match the following Columns: Column I

Column II

(A) The shortest distance from the (P) point (3, 4, 5) to the x-axis is

5

(B) The shortest distance from the (Q) point (3, 2, 4) to y-axis is

​÷41 ​    

(C) If the plane 2x – 3y + 6z = 11 (R) makes an angle sin–1(k) with the x-axis, then 7k is

9

(D) A straight line (S) _ ​› ​r ​   = (1 + t)  + 5t + (1 – t)  where t Œ R. If this line lies in (T) the plane x + y + cz = d, the value of (c + d) is

2

___

4

3D-Co-ordinate Geometry 



9. Match the following Columns: Column I

Column II

(A) The volume of the tetrahedron, (P) whose vertices are (0, 0, 0), (2, 0, 0), (0, 3, 0) and (0, 0, 4) is

6

(B) The volume of the tetrahedron (Q) whose vertices are (0, 1, 2), (3, 0, 1), (4, 3, 6) and (2, 3, 2) is

4

(C) The volume of the tetrahedron (R) formed by the planes whose equations are x + y = 0, y + z = 0, z + x = 0 and x + y + z = 1 is

20

(D) The volume of the tetrahedron (S) formed by the planes whose equations are y z x y __ (T) ​    ​ + __ ​    ​ = 0, __ ​    ​ + __ ​    ​  = 0, 2 3 3 4 y z z x x __ ​    ​  + __ ​    ​ = 0 and __ ​    ​ + __ ​    ​ + __ ​    ​  = 1 4 2 2 3 4 is

16



2/3





Column II 2

2

2

(A)

If 2x + 3y + 4z + 2kxy (P) + 4yz = 0 represents two planes, the value of k2 is

2

(B)

If x2 + 5y2 + 5z2 + 2kxy (Q) + 4xz = 0 represents two planes, the value of 5k 2 is

5

(C)

If x2 + y2 + 4z2 – 2kyz = 0 (R) represents two planes, the value of (k2 + 2) is

10

(D)

If 9x2 + y2 + z2 – 6kxy = (S) 0 represents two planes, the (T) value of (k2 + 7) is

8 1

Questions asked in Previous Years’ JEE-Advanced Examinations





10. Match the following Columns: Column I



–2 x – 4 y_____ 1. The value of k, for which the line ​ _____  ​   = ​   ​   = 1 1 z____ –k ​   ​   lies in the plane 2x – 4y + z = 7, is 2 (a) 7 (b) 6 (c) no real value (d) – 7 [IIT-JEE, 2003] 2. Find the equation of the plane passing through the points (2, 1, 0), (5, 0, 1) and (4, 1, 1). [IIT-JEE, 2003]



6.21

3. If P be the point (2, 1, 6), find a point Q such that PQ is perpendicular to the plane in x + y – 2z = 3 and the mid-point of PQ lies on it. [IIT-JEE, 2003] y + 1 ____ y – k __z z–1 x – 3 ____ x – 1 _____ 4. If the lines ​ _____  ​   = ​   ​   = ​   ​   and ​ _____  ​   = ​   ​   = ​    ​  2 3 4 1 2 1 intersect at a point, the value of k is (a) 3/2 (b) 9/2 (c) 2/9 (d) – 3/2 [IIT-JEE, 2004] 5. A parallelopiped T has one of its face as ABCD. The face opposite to ABCD is A¢B ¢C ¢D ¢. The parallelopiped T is compressed to another parallelopiped S with the face ABCD remaining the same but A¢B ¢C ¢D ¢ changes to A≤B≤C≤D≤. If the volume of S is 90% of T, show that the locus of A≤ is a plane. [IIT-JEE, 2004] 6. p1 and p2 are two planes passing through the origin. L1 and L2 are two lines passing through the origin such that L1 lies on p1 not on p2 and L2 lies on p2 not on p1. Show that there exist three points A, B, C whose permutation A¢, B¢, C ¢ can be choosen such that (a) A is on L1, B on p1 but not on L1 and C not on p1. (b) A¢ is on L2, B¢ on p2 but not on L2 and C ¢ not on p2. [IIT-JEE, 2004] 7. A plane p passes through the point (1, 1, 1) and is parallel to the vectors b = (1, 0, –1) and c = (–1, 1, 0). If p meets the axes in A, B and C, find the volume of the tetrahedron OABC. [IIT-JEE, 2004]



8. Find the equation of the planes passing through the lines 2x – y + z = 3, 3x + y + z = 5 and which at a 1 distance of ___ ​  __    ​ from the point (2, 1, –1). ​÷6 ​    [IIT-JEE, 2005]



9. A variable plane at a distance of 1 unit from the origin cuts the co-ordinate axes at A, B and C. If

the centroid G (x, y, z) of DABC satisfies the rela1 1 1 tion __ ​  2  ​  + __ ​  2  ​  + __ ​  2  ​  = k, the value of k is x y z (a) 9 (b) 3 (c) 1 (d) 1/3 [IIT-JEE, 2005] 10. A plane p is perpendicular to the two planes 2x – 2y + z = 0 and x – y + 2z = 4 and passes through the point (1, – 2, 1). The distance of p from the point (1, 2, 2) is (a) 0 __ (b) 1 __ (c) ​÷2 ​    (d) 2​÷2 ​    [IIT-JEE, 2006]

6.22  Integral Calculus, 3D Geometry & Vector Booster 11. A point (a, b, g) lies on the plane x + y + z = 2 Let a = a i + b j + g k and k × (k × a) = 0, then g equals .......... [IIT-JEE, 2006] 12. A line L is perpendicular to x + 2y + 2z = 0 and passes through (0, 1, 0). The perpendicular distance L from the origin equals .......... [IIT-JEE, 2006] 13. A plane passes through (1, 2, 3) and is perpendicular to two planes x = 0 and y = 0. The distance of the plane from the point (0, –1, 0) equals .......... [IIT-JEE, 2006] 14. Consider the planes 3x – 6y – 2z = 15 and 2x + y – 2z = 5. Statement I: The parametric equations of the line of intersection of given planes are x = 3 14t, y = 1 + 2t, and z = 15t. Statement II: The vector 14i + 2j + 15k is parallel to the given planes. [IIT-JEE, 2007] 15. Consider the following linear equations: ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0. Match the conditions/expressions in Column I with statements in Column II. Column I

Column II

(A) a + b + c π 0 (p) the equations represent planes meeting at a and a2 + b2 + c2 single point. = ab + bc + ca, (B) a + b + c = 0 (q) the equations represent the line x = y = z and a2 + b2 + c2 π ab + bc + ca, (C) a + b + c π 0 (r) the equations represent the identical planes and a2 + b2 + c2 π ab + bc + ca, (D) a + b + c = 0 (s) the equations represent the whole of the threeand a2 + b2 + c2 dimensional space. = ab + bc + ca, [IIT-JEE, 2007] 16.

Consider the planes P1 : x – y + z = 1, P2 : x + y – z = –1, P3 : x – 3y + 3z = 2. Let L1, L2 and L3 be the lines of intersection of the planes P2 and P3, P3 and P1 and P1 and P2, respectively. Statement I: At least two of the lines L1, L2 and L3 are non-parallel.

Statement II: The three planes do not have a common point. [IIT-JEE, 2008] 17. Consider the lines y + 2 z_____ +1 x + 1 _____ L1: ​ _____  ​   =​   ​   = ​   ​    3 1 2 + 2 _____ z–3 x – 2 y_____ L2: ​ _____  ​   = ​   ​   =​   ​    1 2 3 (i) The unit vector perpendicular to both L1 and L2 is  i + 7j + 7k – i + 7j + 5k ___ ​ __ ​ (a) ​ ___________      (b) ​  ___________      ​÷99 ​     5​÷3 ​    – i + 7j + 3k – 7i + 7j + k __ ​ ___ ​ (c) ​  ___________      (d) ​  ___________      5​÷3 ​    ​÷99 ​     (ii) The shortest distance between L1 and L2 is 17 __  ​  (a) 0 (b) ​ ___ ​ 3 ​    ÷ 17__ 41__ ____ ____ (c) ​    ​   (d) ​    ​  5​÷3 ​    5​÷3 ​   

(iii) The distance of the point (1, 1, 1) from the plane passing through the point (–1, – 2, –1) and whose normal is perpendicular to both the lines L1 and L2 is 7 2 ___ ___ (a) ​ ____    ​   (b) ​ ____    ​  ​÷75 ​     ​÷75 ​     13 23 ___  ​   ___  ​  (c) ​ ____ (d) ​ ____ ​÷75 ​     ​÷75 ​     [IIT-JEE, 2008] 18. A line with positive direction cosines passes through the point P (2, –1, 2) and makes equal angles with the co-ordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals __ (a) 1 __ (b) ​÷ 2 ​  (c) ​÷3 ​    (d) 2 [IIT-JEE, 2009] 19. Let P (3, 2, 6) be a point in space and Q be a point on the line r = (i – j + 2k) + l (– 3i + j + 5k). Then the value of l for which the vector PQ is parallel to the plane x – 4y + 3z = 1 is (a) 1/4 (b) –1/4 (c) 1/8 (d) –1/8 [IIT-JEE, 2009] 20. The equation of the plane containing the y z x straight line ​ __  ​  = ​ __  ​  = ​ __  ​  and perpendicular to 2 3 4 y z x the plane containing the straight lines ​ __  ​ = ​ __  ​ = ​ __  ​  3 4 2 x y __z and __ ​    ​ = __ ​    ​ = ​    ​  is 4 2 3 (a) x + 2y – 2z = 0 (b) 3x + 2y – 2z = 0 (c) x – 2y + z = 0 (d) 5x + 2y – 4z = 0 [IIT-JEE, 2010]

3D-Co-ordinate Geometry 

21. If the distance of the point P (1, – 2, 1) from the plane x + 2y – 2z = a, where a > 0, is 5, the foot of the perpendicular from P to the plane is

(  ) 10 1 2 ___ (c) ​( __ ​   ​ , __ ​   ​ , ​   ​   ​ 3 3 3)

(  ) 2 1 5 (d) ​( __ ​   ​ , –  ​ __ ​ , __ ​    ​  ​ 3 3 2)

8 4 __ 7 (a) ​ __ ​    ​, __ ​    ​, – ​   ​   ​ 3 3 3

4 4 1 (b) ​ __ ​   ​ , – ​ __  ​, __ ​    ​  ​ 3 3 3

[IIT-JEE, 2010] 22. If the distance between the plane x – 2y + z = d – 2 x – 1 y_____ and the plane containing the lines ​  _____  ​   = ​   ​   = 2 3 __ y – 3 z – 3 z – 4 x – 2 ​  ____  ​   and ​  _____  ​   = ​  _____  ​   = ​  ____  ​   is ÷ ​ 6 ​   ,  then |d| 4 3 4 1 is... [IIT-JEE, 2010] 24. Let a, b, c be three real numbers satisfying

[  ]

 1  9  7 [a b c] ​ ​8  ​  ​ 2​  ​ 7​   ​ = [0 0 0] ... (E). 737 If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, the value of 7a + b + c is (a) 0 (b) 12 (c) 7 (d) 6. [IIT-JEE, 2011] 25. The point P is the intersection of the straight line joining the points Q(2, 3, 5) and R(1, –1, 4) with the plane 5x – 4y – z = 1. If S is the foot of the perpendicular drawn from the point T (2, 1, 4) to QR, the length of the line segment PS is __ 1__ (a) ​ ___   ​   (b) ​÷ 2 ​  ​ 2 ​    ÷ __ (c) 2 (d) 2​÷2 ​    [IIT-JEE, 2012] 26. The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and 2__ x – y + z = 3 and at a distance ​ ___   ​ from the point ​ 3 ​    ÷ (3, 1, –1) is



(a) 5x – 11y + z = 17



(c) x + y + z = ​÷3 ​   

__

___ __ (b) ​÷ 2x ​ + y = 3​÷2 ​    – __ __ (d) x – ​÷y    ​  = 1 – ÷ ​ 2 ​   

1

[IIT-JEE, 2012] + 1 __z x – 1 y_____ x+1 27. If the straight lines ​ _____  ​   = ​      ​ = ​    ​  and ​ _____  ​   = 2 2 k 5 y  +  1 z _____ ​   ​   = ​ __ ​ are coplanar, the planes containing these 2 k two lines is (are) (a) y + 2z = –1 (b) y + z = –1 (c) y – z = –1 (d) y – 2z = –1 [IIT-JEE, 2012]

6.23

28. The perpendiculars are drawn from points on the + 1 __z x +  2 y_____ line ​ _____  ​   = ​   ​   = ​    ​  to the plane x + y + z = 3. 2 –1 3 The feet of the perpendiculars lie on the line –2 –2 x y – 1 z____ x y – 1 z____ (a) ​ __  ​ = ​ _____  ​   = ​   ​   (b) ​ __  ​ = ​ _____  ​   = ​   ​    8 –13 2 3 5 – 5 –2 –2 x y – 1 z____ x y – 1 z____ (c) ​ __  ​ = ​ _____  ​   = ​   ​     (d) ​ __  ​ = ​ _____ ​   = ​   ​    – 7 – 7 4 3 2 5 [IIT-JEE, 2013] 29. A line L passing through the origin is perpendicular to the lines L1 : (3 + t)i + (–1 + 2t) j + (4 + 2t) k and L2 : (3 + 2s) i + (3 + 2s) j + (2 + s) k, where – • < t, s 0 Hence, the obtuse angle bisector 3x –  2y + 6z + 8 2x –  y + 2z + 3 _________ ________ ​ _______________        ​ = ______________ ​         ​ ​ 4  + 1 + 4 ​   ÷ ​÷9  + 4 + 36 ​   3x –  2y + 6z + 8 ______________ 2x  – y + 2z + 3 fi ​ _______________  ​      = ​   ​      7 3 fi

5x – y – 4z = 3

30. The equation of any plane passing through the intersection of the given planes

(x – y – z – 4) + l (x + y + 2z – 4) = 0

and

(l + 1)x + (l – 1) y + (2l – 1) x = 4l + 4

and

4a – 3b + 4c = 0

Solving, we get a b __ c fi ​ __ ​  = __ ​   ​  = ​    ​ 5 8 1 Since the line is parallel to the plane, so

10 – 8 + m = 0

fi m = – 2 32. Given striaght line can written as – 0 z____ –1 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​    1 3 –1 Since the lies in the plane, so 1 + 3 – c = 0 and 1 + 0 + c = d fi  c = 4 and d = 5 Hence, the value of (c + d – 5) = 4 33. Let the equation of the plane be

a(x – 2) + b(y – 1) + c(z + 1) = 0

Since the plane contains the line L1 and parallel to L2, so a+b+c=0 and

a + 0 + 2c = 0

a b c fi ​ __ ​  = ___ ​    ​ = ___ ​    ​  2 –1 –1 Hence, the equation of the plane is

2(x – 2) – (y – 1) + (z + 1) = 0



2x – 4 – y + 1 + z + 1 = 0



2x – y + z = 2

Hence, the distance from the origin

÷ 

__



2 2 2 = _________ ​  ________      ​ = ___ ​  __  ​ = ​ __ ​   ​ ​   3 ​ 4  + 1 + 1 ​   ​÷6 ​ ÷   

34. Since the three planes pass through the same line, so 1  – c   – b   ​  ​c ​ ​        a  ​   ​ = 0 –1 ​ ​ b a –1 fi

| 

2

|

(1 – a ) + c(– c – ab) – b(ac + b) = 0

which is perpendicular with x – y – z = 4. So,



(1 – a2) – c2 – abc – abc – b2 = 0





a2 + b2 + c2 + 2abc = 1



a2 + b2 + c2 + 2abc + 2 = 1 + 2 = 3



(l + 1) – (l – 1) – (2l – 1) = 0 3 l = __ ​   ​  2

35. The equation of any plane through (0, 2, 4) is a(x – 0) + b(y – 2) + c(z – 4) = 0 which containing the line – 1 2____ –z x + 3 y_____ ​ _____  ​   = ​   ​   = ​   ​    3 4 2 So,

3a + 4b – 2c = 0

and

– 3a – b – 2c = 0

Solving, we get a b c ​ ____    ​ = ___ ​    ​ = __ ​    ​ –10 12 9 Hence, the equation of the plane is

–10x + 12(y – 2) + 9(z – 4) = 0



–10x + 12y – 24 + 9z – 36 = 0



10x – 12y – 9z + 60 = 0

36. Ans. (d) x–2 37. Since the line ​ _____  ​   = 3 x + 3y – az + b = 0,

1 – y z_____ +2 ​ _____  ​   = ​   ​   lies in the plane 1 2 so

 |

3D-Co-ordinate Geometry 

6.41

|

– y x    0    x     ​ ​     ​ ​ 0  ​ ​     – z     ​  ​ = 0 x – 1 –1 –1 fi

x(0 – z) + y(– x + xz – z) = 0



– xz – xy + xyz – yz = 0



xy + yz + zx = xyz

1 __ 1 __ 1 fi ​ __ x ​ + ​ y ​ + ​ z ​  = 1 40. The equation of the line joining the points (2, 3, 4) and (6, 7, 8) is y–3 z–4 x–2 ​ _____   ​ = ​ _____   ​ = ​ _____     ​ 7–3 8–4 6–2 –3 x – 2 y_____ fi ​ _____  ​   = ​   ​   = 4 4 –3 x – 2 y_____ fi ​ _____  ​   = ​   ​   = 1 1

z–4 ​ ____  ​    4 z–4 ​ ____  ​    1



3 – 3 – 2a = 0

and

2 + 3 + 2a + b = 0

The mid-point of the line segment joining the points (2, 3, 4) and (6, 7, 8) is (4, 5, 6). Hence, the equation of the right bisector of the plane 1(x – 4) + 1(y – 5) + 1(z – 6) = 0

So,

a = 0, b = – 5



Comprehensive Link Passages

Hence, the value of

(a + b + 7) = 2

x + y + z = 15

Clearly, l = 3m + 1, 2l = 2 – m

Passage I 1. Given,

cos2a + cos2b + cos2g = 1

Solving, we get



cos2a + cos2 (90° – a) + cos2g = 1



cos2a + sin2a + cos2g = 1

Hence, the point of intersection is (1, 2, 3).



1 + cos2g = 1

–2 1 + k 2_____ – 1 3_____ Therefore, ​ _____  ​   = ​   ​   = ​      ​  3 2 h 1 + k __ 1 1 fi ​ _____  ​   = ​   ​  = __ ​   ​ 3 2 h 3 1 fi h = 2, k = __ ​   ​  – 1 = __ ​   ​  2 2



cos2g = 0



g = 90°



cos2a + cos2(90° + a) + cos2g = 1

39. Given four points are



cos2a + sin2a + cos2g = 1



P(2 – x, 2, 2), Q(2, 2 – y, 2)



1 + cos2g = 1



R(2, 2, 2, – z) and S(1, 1, 1)



g = 90°

Now,

PQ = (x, – y, 0)





PR = (x, 0, – z)

cos2a + cos2a + cos2a = 1

and

PS = (x – 1, –1, –1)

fi fi

3 cos2a = 1



1 cos2a = __ ​    ​ 3

38. Let the point of intersection is (l, 2l, 3l).



l = 1, m = 0

It is given that, the vectors P, Q, R and S are coplanar, so the vectors PQ, PR, PS are coplanar.



2. cos2a + cos2b + cos2g = 1

3. cos2a + cos2b + cos2g = 1

6.42  Integral Calculus, 3D Geometry & Vector Booster 1 cos a = ___ ​  __  ​  ​ 3 ​    ÷





( 

)

1 1__ ___ 1 Hence, the direction cosines are ​ ___ ​  __  ​ , ___ ​    ​,  ​  __  ​  ​ ​ 3 ​     ​÷3 ​     ​÷3 ​    ÷ Passage II 2



0 0 0 1 1 1 –1 = __ ​   ​   6 1 –1 1 –1 1 1



1 1 –1 1 __ = – ​   ​   1 – 1 1 6 –1 1 1

= 2(cos2a + cos2b + cos2g + cos2d) – 4



4 = 2 ◊ ​ __ ​  3 8 __ = ​   ​  – 4 3 4 = – ​ __ ​  3

0 0 –1 1 2 0 1 __ = – ​    ​ 6 0 2 1



4 2 = __ ​   ​  = __ ​   ​  cu. units. 6 3

2

2

2



1. cos a + cos b + cos g + cos d = 4/3



2. sin2a + sin2b + sin2g + sin2d



= 4 – (cos2a + cos2b + cos2g + cos2d)

4 = 4 – __ ​   ​  3 8 __ = ​   ​  3 3. cos(2a) + cos(2b) + cos(2g) + cos(2d)

Passage III







0 12 = 60 0

0 0 3 0

0 0 0 4

1 1 1 1



2 0 0 1 0 3 0 – = 6 0 0 4

| 

|

1 = ​ – ​ __ ​  × 24  ​ = |– 4| = 4 cu units. 6

( 

) ( 

0 1 a 1 = __ ​   ​  1 6 a 1 – a

0 1 b 1 – b 1 b

2. The volume of a tetrahedron







1 1 2 = __ ​   ​  6 0 0

2 0 4 0

3 0 0 3

1 1 1 1

Ï0 0 1 2 1 Ô __ = ​   ​  Ì 4 0 1 – 2 4 6 Ô 0 Ó0 3 1 1 = __ ​   ​  [12 – 2{2(0 – 3) 6 1 = __ ​   ​  [12 + 12] 6 =4

1 1 1 1

Ê C1 Æ C1 + C3 ˆ ÁË C Æ C + C ˜¯ 2 2 3

4. On solving, we get the vertices of a tetrahedron as 1 1 __ 1 1 1 1 1 __ 1 __ 1 (0, 0, 0), ​ __ ​ a ​, __ ​   ​, – ​ c ​  ​, ​ __ ​ a ​, – ​ __ ​, __ ​   ​  ​ and ​ – ​ __ a ​, ​ b ​, ​ c ​  ​ b b c respectively. Volume of a tetrahedron

1. Volume of a tetrahedron



3. On solving, we get the vertices of a tetrahedron as (0, 0, 0, 0), (1, 1, –1), (1, –1, 1), (–1, 1, 1). Volume of a tetrahedron

3 1¸ Ô 0 1˝ 4 1 Ô˛ – 4(0 – 0)}]

1 a 1 a 1 – a

1 b 1 – b 1 b

)

0 1 – c 1 c 1 c

1 1 1 1

1 c 1 c 1 c





1 = – ​ __ ​  6



1 1 –1 1 __ = – ​   ​  abc 1 – 1 1 6 –1 1 1



4 = __ ​   ​  abc 6



2 = __ ​   ​  abc 3

( 

)

3D-Co-ordinate Geometry 

÷ 

_____

________

Passage IV

6.43

2 ___ 1 sin q = ÷ ​ 1  – cos2q   ​ = ​ 1 – ​ __   ​ ​  = ​  __  ​  3 ​÷3 ​    Passage V

1. Ans. (a)



x–b 2. L1: ​ _____ ​=   a   

x – b¢ L2: ​ _____       ​= a¢

y z–d __ ​    ​ = ​ ____ ​  c    1 y z – d¢ __ ​    ​ = ​ _____     ​  1 c¢

Since L1 and L2 are perpendicular, so sum of the product of their sirection ratios is zero.



Thus,

a ◊ a¢ + 1 ◊ 1 + c ◊ c¢ = 0



aa¢ + cc¢ = –1.



– 14 z____ –3 1 – x 7y L1: ​ _____  ​   = ​ _______  ​   = ​   ​    3 2 25

1. OP = i + j + k

BN = i + j – k OP ◊ OL = 1 + 1 __

3. Given

x–1 ​ _____ ​   = – 3

__

​÷ 3 ​  ◊ ​÷3 ​     cos q = 1 + 1

y–2 z–3 ​ _____ ​ = ​ ____  ​    2 25/7

– 5 6____ –z 7 – 7x y_____ L2: ​ ______       ​ = ​   ​   = ​   ​  .  3p 1 5

1 cos q = ​ __ ​  3

and

1 q = cos–1 ​ __ ​   ​   ​ 3

y – 5 z____ –6 x–1 ​ _____   ​  = ​ _____  ​   = ​   ​    – 3p/7 1 – 5

Hence, the angle between any two diagonals is __ 1 q = cos–1 ​ ​ __ ​   ​ = tan–1 (2​÷2 ​   )  3

Since L1 meets L2 at right angles, so

(  ) (  )



2. OP = i + j + k



(  )

3p 25 (– 3) ​ – ​ ___ ​   ​ + ___ ​   ​ – 10 = 0 7 7

9p 25 fi ​ ___ ​ = 10 – ___ ​   ​  7 7

OL = i + j OP ◊ OL = 1 + 1 ​÷ 3 ​  ◊ ​÷2 ​     cos q = 1 + 1

9p fi ​ ___ ​ = 7

​÷ 3 ​  ◊ ​÷2 ​     cos q = 2



​÷ 3 ​  cos q = ÷ ​ 2 ​   

Passage VI

2 cos q = ​ __ ​    ​ ​  3



__

__

__

__

__

__

÷ 

__

__

Hence, the angle between a diagonal and a diagonal of a face is

( ÷  ) __



__ 2 q = cos–1 ​ ​ __ ​   ​ ​    ​ = cot–1 (​÷2 ​   )  3

3. a ◊ k = 2

|a| |i| cos q = 2 __

​÷ 6 ​  cos q = 2

÷ 

– 2 z____ –3 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​   = l 2 3 4

Let two lines meet at P. So,

2l + 1 = 5m + 4, 3l + 2 = 2l + 1

and

4l + 3 = m



3l – 3m = –1, 4l – m = – 3



l = –1 = m

Hence, the point of intersection is (– 1, – 1, – 1). 2. Since both the lines are coplaner, so

__

2__ 2 cos q = ​ ___   ​ = ​ __ ​    ​ ​  3 ​÷6 ​   

p=5

–1 x – 4 y_____ and ​ _____  ​   = ​   ​   = z = m 2 5

( ÷  )

2 q = cos–1 ​ ​ __ ​   ​ ​    ​ 3



1. Let

45 ___ ​   ​  7



3–1 k +1 0 –1 2 3 4 =0 1 2 1

6.44  Integral Calculus, 3D Geometry & Vector Booster



2 k + 1 –1 2 3 4 =0 1 2 1



x–2 1 2

y–3 z–5 1 2 =0 3 4



2(3 – 8) – (k + 1)(2 – 4) – (4 – 3) = 0



– 2(x – 2) + (z – 5) = 0



–10 + 2(k + 1) – 1 = 0



– 2x + 4 + z – 5 = 0



2(k + 1) = 11



– 2x + z – 1 = 0



2x – z + 1 = 0

9 11 k = ___ ​   ​ – 1 = __ ​   ​  2 2 3. Since the lines are coplaner, so





3. Ans. (c)

Passage VIII Let

A = (2, 3, 1), P : 2x + y + z = 6



1– 2 4 – 3 5– 4 1 1 –k = 0 k 2 1

and

– 2 z____ –3 x  – 1 y_____ L : ​ _____  ​   = ​   ​   = ​   ​    2 1 4





–1 1 1 1 1 –k = 0 k 2 1

1. Any point on the line is



M(2l + 1, l + 2, 4l + 3)

The direction ratios of AM are (2l – 1, l – 1, 4l + 2)



(2 – k) – (1 + k2) – (1 + 2k) = 0





k2 + 3k = 0

Clearly, AM is perpendicular to the line L. So,



k(k + 3) = 0



2(2l – 1) + (l – 1) + 4(4l + 2) = 0



k = 0, – 3



21l + 5 = 0



5 l = – ​ ___  ​  21

Passage VII

1. The shortest distance between two lines



(r2 – r1) . (u × v) = ​  ______________        ​ |(u × v)|

Now,

(u × v)



i j k = 2 3 4 3 4 5



= – i + 2j – k

and

r2 – r1 = i + 2j + 2k

( 

Let



and

–1 – 3 g_____ a – 2 b_____ 8 fi ​ _____  ​   = ​   ​   = ​   ​   = – ​ __ ​  2 1 1 3 fi

16 8 8 a = 2 – ___ ​   ​ , b = 3 – __ ​   ​ , g = 1 – __ ​   ​  2 3 3



10 5 1 a = ___ ​   ​ , b = __ ​   ​ , g = – ​ __ ​  3 3 3

( 

)

z–3 ​ ____  ​    4

10 1 __ 5 Hence the required image is ​ ___ ​   ​ , __ ​   ​ , – ​    ​  ​. 3 3 3

z–5 ​ ____  ​    3



Also, let A = (2, 3, 5).

2. Hence, the image of the point (2, 3, 1) w.r.t. the plane 2x + y + z = 6 is

–1 – 3 g_____ 2(4 + 3 + 1) a – 2 b_____ ​ _____  ​   = ​   ​   = ​   ​   = – ​  __________        ​ 2 1 1 (4 + 1 + 1)

(– 1 + 4 – 2) 1 ________ = ​  __________        ​ = ___ ​  __  ​  ​ 1  + 4 + 1 ​   ​÷6 ​ ÷    –2 x – 1 y_____ L1 : ​ _____  ​   = ​   ​   = 2 3 –4 x – 2 y_____ L2 : ​ _____  ​   = ​   ​   = 3 4

)

43 11 37 ___ ​ – ​ ___ ​ , ___ ​   ​ , – ​   ​   ​ 21 21 21

Hence, the shortest distance

Hence, the foot of the perpendicular is the

2. Hence, the equation of the plane passing through A and containing the line L1 is

3. Given plane is P : 2x + y + z = 6

– 2 z____ –3 x – 1 y_____ and the line is L : ​ _____  ​   = ​   ​   = ​   ​    2 1 4 Let the image of the point A(2, 3, 1) w.r.t. to the given plane is Q(a, b, g ).

6.45

3D-Co-ordinate Geometry 

S cos(2a) = cos(2a) + cos(2b) + cos(2g)

So, the image of the given line w.r.t. to the given –g – b z____ x – a y_____ plane is ​ _____  ​   = ​   ​   = ​   ​    2 1 4



–1 – 3 g_____ a – 2 b_____ Let ​ _____  ​   = ​   ​   = ​   ​   = g 2 1 1



(D)

S (cos a + sin2a) = S 1 = 1 + 1 + 1 = 3

Let M is the mid-point of A and Q, i.e.



2. (A)

S cos2a = cos2a + cos2b + cos2g + cos2d

( 

)

+1 + 3 g_____ a + 2 b_____ M = ​ ​ _____  ​  ,  ​   ​  ,  ​   ​    ​ 2 2 2



( 

)

Clearly, the point M lies on the plane

( 

) ( 

)

2l + 4 l+6 l+2 2 ​ ​ ______  ​    ​ + ​ ​ _____  ​    ​ + ​ _____  ​   = 0 2 2 2



l l 2l + 4 + __ ​   ​  + 3 + __ ​   ​  + 1 = 0 2 2



3l = – 8



8 l = – ​ __ ​  3

So,

a = 2l + 2, b = l + 3, g = l + 1



16 8 8 a = 2 – ___ ​   ​ , b = 3 – __ ​   ​ , g = 1 – __ ​   ​  3 3 3



10 – 5 1 a = – ​ ___ ​ , b = __ ​   ​ , g = ___ ​   ​  3 3 3

– 7 3z –1 3x + 2 3y fi ​ ______  ​   = ​ ______  ​   = ​ _____  ​    2 1 4 10 5 7 x + ___ ​   ​  y – __ ​   ​  z + __ ​   ​  3 3 3 fi ​ ______  ​   = ​ _____  ​   = ​ _____  ​    2 1 4 – 7 3z +5 3x + 10 3y fi ​ _______  ​   = ​ ______  ​   = ​ ______  ​    2 1 4

Match Matrix 1. (A)



(B)

2

(B)

= 4/3

S sin2a = sin2a + sin2b + sin2g + sin2d 4 8 = 4 – __ ​   ​  = __ ​   ​  3 3



(C)

S cos(2a)

= cos(2a) + cos(2b) + cos(2g) + cos(2d) = 2(cos2a + cos2b + cos2g + cos2d) – 4

(  )

8 4 4 = 2 ​ __ ​   ​   ​ – 4 = __ ​   ​  – 4 = – ​ __  ​ 3 3 3 (D)

S (cos2a + sin2a) = S 1



=1+1+1+1



=4



3. (A) Let two diagonals of a cube are ai + aj + ak and – ai + aj + ak Let q be the angle between them a ◊ – a + __a ◊ a + a ◊ a __ cos q = ​  _______________     ​    = a​÷3 ​     ◊ a​÷3 ​   

a2 ___ ​  2  ​ = 3a

1 __ ​   ​  3

(  )

1 fi q = cos–1 ​ __ ​   ​   ​ 3 (B) Let the diagonal of the cube be i + j + k and the diagonal of the face be i + j. Let q be the angle between them,

÷ 

__



1 __+ 1__ _____ 2 2 cos(q) = ​ _____    ​  = ​  __  __ ​  = ​ __ ​   ​ ​   3 ​ 3 ​ ​    ÷ 2 ​  ​÷3 ​ ​    ÷ 2 ​  ÷

( ÷  ) __

__ 2 fi (q) = cos–1 ​ ​ __ ​   ​ ​    ​ = cot–1 (​÷2 ​   )  3

(C) Let the diagonal of the cube be i + j + k and the diagonal of the face intersecting it is j + k. Let q be the angle between them,

( ÷  ) __

S cos a = cos a + cos b + cos g = 1 2

= 2 – 3 = –1 2



10 5 7 x + ___ ​   ​  y – __ ​   ​  z + __ ​   ​  3 3 3 ______ _____ _____ ​   ​   = ​   ​   = ​   ​    2 1 4







Hence, the required image of the line w.r.t. to the plane is

2

= 2(cos2a + cos2b + cos2g) – 3





2l + 4 l________ + 3 + 3 l_____ +2 = ​ ​ ______  ​  , ​   ​  , ​   ​    ​ 2 2 2



(C)

2

S sin2a = sin2a + sin2b + sin2g



= 3 – (cos2a + cos2b + cos2g)



=3–1=2



__ 2 q = cos  ​ ​ __ ​   ​ ​    ​ = cot–1 (​÷2 ​   )  3 –1

(D) Let the diagonal of the faces of the same vertex are i + j, j + k. Let q be the angle between them. Then

6.46  Integral Calculus, 3D Geometry & Vector Booster

0 + __1 +__ 0 __ 1 cos q = ​  ________  ​    = ​   ​  2 ​ 2 ​ ​    ÷ 2 ​  ÷



1– 2 4 – 3 5– 4 1 1 –k = 0 k 2 1



–1 1 1 1 1 –k = 0 k 2 1



–1 0 0 1 2 1– k = 0 k k + 2 k +1

1 = ___ ​  __  ​  ​ 3 ​    ÷



1__ q = cot–1 ​ ___   ​  ​ 3 ​    ÷



l + m + n = 0, l2 = m2 + n2

4. (A) Given



– (m + n) = m2 + n2



– 2m n = 0



m=0=n

fi 2(k + 1) + (k – 1)(k + 2) = 0

When m = 0, then l = – n

fi 2k + 2 + k2 + k – 2 = 0

l m n 1 fi ​ __  ​  = __ ​   ​  = ___ ​    ​ = ___ ​  __  ​  1 0 –1 ÷ ​ 2 ​    When n = 0, then l = – m l fi ​ __  ​  = 1

m ___ ​    ​ = –1

n __ ​   ​  = 0

1 ___ ​  __  ​  ​ 2 ​    ÷

fi k2 + 3k = 0 fi k = 0, – 3. (C) Since the given lines are intersect, so they are coplanar. Thus,

Let q be the angle between them. Then

cos (q) = l1l2 + m1m2 + n1n2

p q = ​ __ ​  3



(B) Let q be the angle between them. Then



6 + 4 – _________ 10 __________    cos q = ​ _______________________     ​ = 0 ​÷9  +  16  +   25 ​ ​÷4  +  1 + 4 ​  



p q = __ ​   ​  2

(C) Let q be the angle between them. Then

3 1 2 – __1 +__ 2 __ cos (q) = ​  ________  ​    = ​    ​ = __ ​   ​  6 2 ​÷6 ​ ​    ÷ 6 ​  p fi q = __ ​   ​  3 (D) Let q be the angle between them. Then



2 + __1 +__ 0 ___ 1 sin q = ​  ________  ​    = ​  __  ​  ​÷9 ​ ​    ÷ 2 ​  ​÷2 ​    p __ q = ​   ​  4

5. (A) Since the line lies in the plane, so the point (4, 2, k) lies in the plane.

Thus,

8–8+k=7



k=7





2 k + 1 –1 2 3 4 =0 1 2 1

1 1__ 1 = ___ ​  __  ​  ◊ ​ ___   ​ + 0 + 0 = __ ​   ​  2 ​ 2 ​     ​÷2 ​    ÷







3 – 1 k + 1 –1 2 3 4 =0 1 2 1

(B) Since the given lines are coplanar so

fi 2(3 – 8) – (k + 1)(2 – 4) – (4 – 3) = 0 fi –10 + 2(k + 1) – 1 = 0 fi 2k – 9 = 0 9 fi k = __ ​   ​  2 (D) Given lines are – 3 z____ –6 x – 2 y_____ ​ _____  ​   = ​   ​   = ​   ​    3 4 5 – 2 z____ –1 x – 5 y_____ and ​ _____  ​   = ​   ​   = ​   ​    1 2 3 Hence, the shortest distance (r2 – r1) ◊ (u × v) = ​  ______________        ​ |(u × v)|

=0

where, (r2 – r1) =

(5 – 2, 2 – 3, 1 – 6) = (3, –1, – 5)



i j k (u × v) = 3 4 5 = 2i – 4j + 2k 1 2 3 _________

__

fi |u × v| = ÷ ​ 4  + 16 + 4 ​   = 2​÷6 ​   

3D-Co-ordinate Geometry 



6. (A) Let any point on the given line be

(l + 1, 3l – 2, 2 – 2l) Clearly, this point lies on the plane so, 3(l + 1) + 4(3l – 2) + 5(2 – 2l) = 15 fi 5l + 5 = 15 fi 5l = 10 fi l = 2 Hence, the point of intersection is (3, 4, – 2). y – 1 z____ – 2 x (B) Any point on the line __ ​    ​ = ​  _____  ​   = ​   ​   can 2 2 3 be considered as M(2l, 2l + 1, 3l + 2). Let the point P be P(2, 6, 3). The direction ratios of PM are (2l – 2, 2l – 5, 3l – 1). Clearly PM is perpendicular to the given line L. So, 2(2l – 2) + 2(2l – 5) + 3(3l – 1) = 0 fi 17l – 17 = 0 fi l – 1 = 0 fi l = 1 Hence, the foot of the perpendicular is (2, 3, 5). (C) Any point on the first line be (l + 2, 1 – 2l, l + 6). Any point on the second line be (7m – 3, – 6 – 3m, m – 3) Clearly, both the points are same. So, l + 2 = 7m – 3, l + 6 = m – 3 l – 7m = – 5, l – m = – 9 Solving we get 29 2 l = – ​ ___ ​ , m = – ​ __ ​  3 3 Hence, the point of intersection is

( 

)

23 61 ___ 11 ​ ___ ​   ​ , ___ ​   ​ , – ​   ​   ​ 3 3 3 (D) Clearly, 2l – 3m = 4, 3l – 4m = 4 Solving we get l = – 2, m = – 4 Hence, the point of intersection is (– 5, – 8, – 9) 7. Given P(0, 3, – 2), Q(3, 7, – 1) and R(1, – 3, – 1). +2 x y – 3 z_____ Clearly, L1 : __ ​    ​ = ​ _____  ​   = ​   ​    3 4 1 + 3 z_____ +1 x – 1 y_____ and L2 : ​ _____  ​   = ​   ​   = ​   ​    1 0 1 The equation of the plane PQR is

x 3 1



y–3 z+2 4 1 =0 –6 1



10x – 2(y – 3) – 22(z + 2) = 0



10x – 2y – 22z = 38



5x – y – 11z = 19

(A)

6.47

Let the foot of the perpendicular on L2 is M. Thus,  M = (l + 1, – 3, l – 1) The direction ratios of PM are (l + 1, – 6, l + 1) Since PM is perpendicular to L2, so



1(l + 1) + 0 + 1(l + 1) = 0

fi l = – 2 Hence, the foot of the perpendicular is (–1, – 3, – 3) Thus, the length of the perpendicular _________

___

=÷ ​ 1  + 36 + 1 ​   =÷ ​ 38 ​     (B) The shortest distance between L1 and L2

(r2 – r1) ◊ (u × v) = ​  ______________        ​ |(u × v)|

4 + 12 – 4 = ​  _________  ​    = 2, 6 where (r2 – r1) = (1, – 6, 1) = i – 6j + k i j k 3 4 1 = 4i – 2j – 4k fi u × v = 1 0 1 __________

fi |u × v| = ​÷16   + 4 +   16 ​ = 6

(C) Area of DPQR



1 = __ ​   ​  |PQ × PR| 2



i j k 1 __ = ​   ​   3 4 1 2 1 –6 1

1 = __ ​   ​  |10i – 2j – 22k| 2 ____ __ ​÷588 ​     1 ____________ __ _____ = ​   ​ ​ ÷ 100 + 4 +   484 ​ = ​   ​   = 7​÷3 ​    2 2 (D) Hence, the distance from the origin to the plane 5x – y – 11z = 19



19 = ____________ ​  ___________       ​ = ​÷25   + 1 +   121 ​

19 _____ ​  ____   ​  ​ 147 ​     ÷

8. (A) The shortest distance from the given point to the x-axis ______



___

=÷ ​ 4  2 + 52   ​ = ​÷41 ​    

6.48  Integral Calculus, 3D Geometry & Vector Booster

(B) The shortest distance from the given point to ______ the y-axis = ÷ ​ 3  2 + 42   ​ = 5



(C) Let q be the angle between them. Then 2 sin q = __ ​   ​  7 2 –1 __ fi q = sin  ​ ​   ​   ​ 7 2 __ Clearly, k = ​   ​  7

(  )







r = (1 + t)i + 5t j + (1 – t)k



= (i + k) + t(i + 5j – k)

g f =0 c

abc + 2fgh – af 2 – bg2 – ch2 = 0 2x2 + 3y2 + 4z2 + 2kxy + 4yz = 0

represents two planes if



h b f

(A) The given equation

7k = 2

(D) Given line is

a h g

2 k 0 k 3 2 =0 0 2 4

fi 2(12 – 4) – k(4k) = 0

Since the given line lies in the plane

fi 16 – 4k2 = 0

c = d   so, ​ 1 + 0 +    ​ ​1 + 5 – c = 0 ​

fi k2 – 4 = 0 fi k2 = 4

fi ​ 1 + c   =  d ​ ​ c=6 ​ Thus,



c = 6, d = 7

Hence, the value of c + d is 13 9. (A) Hence, the volume of the tetrahedron

1 1 = __ ​   ​  abc = __ ​   ​  × 2 × 3 × 4 = 4 6 6

(B) Let the points A, B, C and D are (0, 1, 2), (3, 0, 1), (4, 3, 6) and (2, 3, 2), respectively.

Now,

AB = (3, –1, –1)



AC = (4, 2, 4)



AD = (2, 2, 0)

fi 21 – k(5k) = 0 21 fi k2 = ___ ​   ​  5

3 –1 –1 1 __ = ​   ​  4 2 4 6 2 2 0

| 



1 k 0 k 5 2 =0 0 2 5

fi 5k2 = 21

Hence, the volume of the tetrahedron 1 = __ ​   ​  [AB, AC, AD] 6

(B) x2 + 5y2 + 2kxy + 4xz = 0 represents a pair of planes if

(C) x2 + y2 + 4z2 – 2k yz = 0 represents a pair of planes if



1 0 –K

0 –K 1 0 =0 0 4

fi 4 – k2 = 0

|

fi k2 = 4



1 = ​ __ ​   ​  (– 24 – 8 – 4)  ​ 6

fi k2 + 2 = 6



= 6 cu. units.





(C) Volume of a tetrahedron = 2/3 2 (D) Volume of a tetrahedron = __ ​    ​ abc 3 2 __ = ​   ​  × 2 × 3 × 4 3 = 16 10. As we know that the homogeneous equation of 2nd degree ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy = 0 represents two planes if

(D) 9x2 + y2 + z2 – 6k xz = 0 represents a pair of straight lines if



9 0 0 1 0 – 3k

0 – 3k = 0 1

fi 1 – 9k2 = 0 fi 9k2 = 1

6.49

3D-Co-ordinate Geometry 

1. We have, al + bm + cn = 0 (bm + cn) fi l = – ​ ________   ​ a    Now, ul2 + vm2 + wn2 = 0. bm + cn 2 fi u​​ ​ _______ ​  ​​ ​ + vm2 + wn2 = 0 a   

( 

)



u(bm + cn)2 + va2 m2 + wa2 n2 = 0



u(b2 m2 + c2 n2 + 2bcmn) + va2 m2 + wa2 n2 = 0

(ub2 + va2) m2 + 2ubcmn + (uc2 + wa2) n2 = 0 m 2 m fi (ub2 + va2) ​​ __ ​ n ​   ​​ ​+ 2ubc ​ __ ​ n ​   ​+ (uc2 + wa2) = 0 ...(i) m1 m2 ___ ___ Let its roots are ​ n  ​ and ​ n  ​ . 1 2 fi

(  )

(  )



(a) If two straight lines are parallel, so the Eq. (i) will provide us equal roots. Thus, D = 0 fi  (2ubc)2 – 4(b2u + a2v)(c2u + a2w) = 0 fi  (ubc)2 – (b2u + a2v)(c2u + a2w) = 0 fi  (b2u + a2v)(c2u + a2w) – (ubc)2 = 0 fi  a2b2 u w + a2c2uv + a4vw = 0 fi  b2uw + c2uv + a2vw = 0 2

2

2. Let P = (a, b, g) and Q = (x1, y1, z1) Thus, the direction ratios of OP are (a, b, g) and the direction ratios of OQ are (x1, y1, z1). Since O, Q, P are collinear, we have a ​ __ x1  ​  =

Similarly, eliminating n, we get l1l2 m1m2 ​ ________   2   ​ = ________ ​  2     ​ 2 wb + vc uc + wa2

g __ ​ z   ​   1

...(i)

As P(a, b, g) lies on the plane lx + my + nz = p so

la + mb + ng = p



k(lx1 + my1 + nz1) = p

Given

...(ii)

2

OP ◊ OQ = p

____________

___________

fi ​÷a   2 + b2   +   g 2 ​ ◊ ​÷​x  2​1​  + y​ 2​1​​  +   ​z2​1​ ​​  = p2 ______________

___________

fi ​÷k  2 (​x2​1​  + y​ 2​1​​  +    ​z2​1​)​   ​ ◊ ​÷​x  2​1​  + y​ 2​1​​  +   z​ 2​1​ ​​  = p2 _____________

fi ​÷k  2(​x2​1​​  + y​ 2​1​​  +    ​z2​1​)​  2 ​ = p2 fi

k(​x2​1​​  + y​ 2​1​​  + z​ 2​1​)​  = p2

...(iii)

On dividing Eq. (ii) and Eq. (iii), we get lx1  +  my1 + nz1 __ 1 ​ _____________       ​ = ​ p ​ (​x2​1​​  + ​y2​1​​  + ​z2​1​)​  fi

p(lx1 + my1 + nz1) = (​x2​1​​  + y​ 2​1​​  + z​ 2​1​)​ 

Hence, the locus of the point Q is p(lx + my + nz) = (x2 + y2 + z2) x y __z 3. Given plane is __ ​ a ​ + __ ​   ​ + ​ c ​ = 1 b



2

a b c __ __ fi ​ __ u ​  + ​ v ​  + ​ w ​  = 0 (b) When two straight lines are perpendicular. So, uc2 + wa2 the product of the roots = ​ ________    ​ ub2 + va2 2 m1 ___ m2 uc + wa2 ________ fi ​ ___  ​    ◊  ​   ​   = ​     ​ n1 n2 ub2 + va2 m1m2 n1n2 fi ​ ________  2   ​ = ________ ​  2  2   ​ 2 uc + wa ub + va

b __ ​ y   ​  = 1



Let

...(i)

P = (a, b, g)

b __g a __ Then ​ __ a ​  + ​ b ​ + ​ c ​ = 1

...(ii)

___________

So,

OP = ÷ ​a   2 + b 2    + g 2 ​

Therefore, the direction ratios of OP are g b a ___________ ___________ ​ ____________      ​, ​ ____________      ​, ____________ ​  ___________      ​ 2 2  2 2 2 2 2 ​÷a   + b    + g  ​ ​÷a   + b    + g  ​ ​÷a   + b 2    + g 2 ​

l1l2 m1m2 n1n2 Thus, ________ ​  2   2   ​ = ________ ​  2  2   ​ = ________ ​      ​ wb + vc uc + wa ub2 + va2

The equation of the normal through P and normal to OP is b a __________ ​ ___________      ​ x + ____________ ​  ___________      ​ y 2 2 2 2 ​÷a   + b    + g  ​ ​÷a   + b2    + g 2 ​

Two lines are perpendicular, if



___________ g + ____________ ​  ___________      ​ z = ​÷a   2 + b 2    + g 2 ​ 2 2 2 ​÷a   + b    + g  ​

fi (wb2 + vc2) + (uc2 + wa2) + (ub2 + va2) = 0



ax + by + g z = ÷ ​a   2 + b 2    + g 2 ​

fi a2 (u + v) + b2 (u + w) + c2 (u + v) = 0

a 2  +  b 2 + g 2 Clearly, A = ​ ​ ____________        ,​ 0, 0  ​ a



l1l2 + m1m2 + n1n2 = 0

Hence, the result.

___________

( 

)

...(iii)

6.50  Integral Calculus, 3D Geometry & Vector Booster

( 

) )

a 2 + b 2 + g 2 B = ​ 0, ​  ___________      ​, 0  ​ g

( 

2

2

2



a   + b + g  C = 0, 0, ​ ​ ____________         ​ ​ g

Let

Q = (p, q, r)

Then

a 2 + b 2 + g 2 a 2 + b 2 + g 2 p = ​  ___________      ​  , q = ​  ___________      ​  a b 2

and

2

2

a + b + g  r = ​  ___________      ​  g

...(iv)

a2 + b2 + g 2 1 1 1 Now, ​ __2  ​ + __ ​  2  ​ + __ ​  2  ​  = ​  ______________        ​ p q r (a 2  + b 2 + g 2)2 1 1 1 1 fi ​ __2  ​ + __ ​  2  ​ + __ ​  2  ​  = _____________ ​  2      ​ p q r (a   + b2 + g 2)

...(v)

From Since From From

2 2 + b2 + g 2 __ + b2 + g 2 q a__________ p a___________ ​ __   ​ = ​       ​   , ​    ​ = ​       ​  a aa b bb 2 2 2 r a + b + g  ​ __c ​ = ​  ___________        ​ cg

...(iv) ...(v) ...(vi)

ka 2 + kb2 + kg 2 – k(aa + bb + cg) = 0 fi a 2 + b 2 + g 2 – (aa + bb + cg ) = 0 Hence, the locus of the foot of the perpendicular P is x2 + y2 + z2 – (ax + by + cz) = 0. 5. Given planes are x – y – z = 4 ...(i) and

From Eq. (iv), we get

Eq. (ii) and (iii), we get ka a + kbb + kcg + D = 0 (a, b, g) lies in the plane (i), so Aa + Bb + Cg + D = 0 Eqs. (iii) and (v), we get ka 2 + kb 2 + kg 2 + D = 0 Eqs. (iv) and (vi), we get

x + y + 2z = 4

...(ii)

Since the required planes pass through the line of intersection of the planes (i) and (ii). Thus, its equation will be (x – y – z – 4) + l (x + y + 2z – 4) = 0 fi

(1 + l) x + (1 – l) y + (2 – l) z – 4 – 4l = 0 ...(iii) Therefore, Since Eq. (i) and (iii) are mutually perpendicular, 2 2 2 2 2 2 a +  b + g  a   + b + g  ​ ____________        ​ + ​ ____________        ​ so, aa bb (1 + l) – (1 – l) – (2 – l) = 0 2 2 2 a   + b + g  2 + ​ ___________        ​ fi l = __ ​   ​  cg 3 p q __r 2 = __ ​ a ​ + __ ​   ​ + ​ c ​ = 1 Substituting the values of l = __ ​   ​  in Eq. (iii), we get 3 b 5x + y + 4z = 20. 1 1 1 1 ___ __ ___________ fi ​ ___    2 ​ which is the required equation of the plane. ap  ​ + ​ bq  ​ + ​ cr  ​ = ​ a 2 + b  2 + g  6. Given planes are 1 1 1 fi = __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   (from Eq. v) x – cy – bz = 0 ...(i) p q r cx – y + az = 0 ...(ii) Hence, the locus of Q(p, q, r) is bx + ay – z = 0 ...(iii) 1 1 1 1 1 1 ___ ___ __ __ __ __ ​ ax  ​ + ​    ​ + ​ cz  ​ = ​  2  ​  + ​  2  ​  + ​  2  ​  The equation of any plane passing through the line by x y z of intersection of the planes (i) and (ii) may be taken 4. Let the equation of the plane be as    (x – cy – bz) + l(cx – y + az) = 0 Ax + By + Cz + D = 0 ...(i) fi  (1 + lc)x – (c + l)y + (al – b)z = 0

which is passing through (a, b, c). So,

Aa + Bb + Cc + D = 0

...(ii)

Let P(a, b, g) be the foot of the perpendicular from the origin to the plane (i). The direction ratios of OP are (a, b, g). Therefore, (a, b, g) be the direction ratios of the same line OP. So, g a b __ 1 ​ __ ​ = __ ​   ​ = ​    ​ = __ ​   ​ (say) ...(iii) A B C k

...(iv)

If planes (iii) and (iv) are the same, so the equations (iii) and (iv) are identical. (1 + lc) (c + l) (al – b) ​ _______       ​ = – ​ ______     ​ = ​ _______  ​    a –1 b (1 + lc) (c + l) Thus, ​ _______       ​ = – ​ ______ ​  a    b fi

(a + bc) l = – ​ _______   ​ (ac + b)

...(v)

3D-Co-ordinate Geometry 

(c + l) (al – b) – ​ ______ ​ = ​ _______  ​    a    –1 (ab + c) fi l = – ​ _______    ​ (1 – a2) From Eqs (v) and (vi), we get

So,

and

3a + 4b – 2c = 0



(ac + b) (ab + c) – ​ _______   ​ = – ​ _______    ​ (a + bc) (1 – a2)

and – 4a – b + 2c = 0 Solving, we get a b c ​ _____     ​ = _____ ​       ​ = _______ ​       ​ 8 – 1 8 – 6 – 3 + 16 a b c fi ​ __ ​  = ___ ​    ​ = ___ ​    ​  7 12 13 Hence, the equation of the plane is



a – a3 + bc – a2bc = a2bc + ac2 + ab2 + bc



fi fi

3

2

2

...(vi)

2

a + ab + ac + 2a bc – a = 0 2

2

2

a + b + c + 2abc = 1

7. Any point on the given line is



P : (2l + 1, 3l – 2, 6l + 3)

Let

Q : (1, – 2, 3)

Given

PQ = 3



PQ2 = 9



(4l2 + 9l2 + 36l2) = 9

49l2 = 9 9 3 2 fi l2 = ___ ​    ​ = ​​ __ ​   ​   ​​ ​ 7 49 3 fi l = ± ​ __ ​ . 7 Hence, the points are fi

(  )

(  ) (  ) ) (  (  ) 17 11 = ​( ___ ​   ​ , 5, 17 )​ and (​  – ​ ___ ​ , – 9, – 11 )​. 3 3

7 7 7 ​ ± 2​ __ ​    ​  ​ + 1, ± 3​ __ ​   ​   ​ – 2, ± 6​ __ ​    ​  ​ + 3  ​ 3 3 3

8. The equation of any line through (1, 0, – 3) and + 2 6____ –z x – 2 y_____ parallel to the line ​ _____  ​   = ​   ​   = ​   ​   is 2 3 6 y z+3 x – 1 __ ​ _____  ​   = ​    ​ = ​ _____ ​    . 2 3 – 6 Any point on the line (i) is (2l + 1, 3l, – 6 – 3l) which is lies in the plane x – y – z = 9. So,

(2l + 1) – (3l) – (– 6 – 3l) = 9



2l + 7 = 9



2l = 2 fi l = 1

Thus, the point is (3, 3, – 9). Hence, the required distance

________________________



=÷ ​ (3   – 1)2 + (3     – 0)2 + (– 9 + 3)2 ​



=÷ ​ 4  + 9 + 36 ​  



=÷ ​ 49 ​    = 7.



_________ ___

9. The equation of any plane passing through (1, 2, 0) is a(x – 1) + b(y – 2) + cz = 0 which contains the – 1 2____ –z x + 3 y_____ line ​ _____  ​   = ​   ​   = ​   ​  .  3 4 2

6.51

7(x – 1) + 2(y – 2) + 13z = 0

fi 7x + 2y + 13z = 11 10. Let the given line AB be + 1 z____ –2 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​     ...(i) 2 –1 4 and the given plane is x + 2y + z = 9 ...(ii) Let DC be the projection of AB on plane (ii). Clearly the plane ABCD is perpendicular to the plane (ii). Equation of any plane through AB is a(x – 1) + b(y + 1) + c(z – 3) = 0 ...(iii) where 2a – b + 4c = 0 ...(iv) since the plane (iii) is perpendicular to the plane (ii), so a + 2b + c = 0 ...(v) Solving Eqs (iv) and (v), we get a b c ​ ___  ​ = __ ​   ​  = __ ​    ​ – 9 2 3 Putting these values of a, b and c in Eq. (iii), we get 9(x – 1) – 2(y + 1) – 5(z – 3) = 0 fi 9x – 2y – 5z + 4 = 0 ...(vi) Since the projection DC of AB on the plane (ii) is the line of intersection of the plane ABCD and the plane (ii). Thus, the equation of DC will be 9x – 2y – 5z + 4 = 0 fi x + 2y + z – 9 = 0 ...(vii) Let l, m, n be the direction ratios of the line of intersection of the planes (i) and (ii). So, 9l – 2m – 5n = 0 and l + 2m + n = 0 Solving, we get l m n ​ __  ​  = ____ ​    ​ = ___ ​    ​  8 –14 20 l m n fi ​ __  ​  = ___ ​    ​ = ___ ​    ​  4 – 7 10 Let the line of intersection of the planes (i) and (ii) meet xy-plane at P(a, b, 0). So, P lies on the planes (i) and (ii) Therefore, 9a – 2b + 4 = 0 and a + 2b – 9 = 0

6.52  Integral Calculus, 3D Geometry & Vector Booster 17 1 a = __ ​   ​ , b = ___ ​   ​  2 4 Hence, the equation of DC is 17 1 x – __ ​   ​  y – ___ ​   ​  z 2 4 _____ ______ ​   ​   = ​   ​   = ​ ___  ​  – 7 4 10 – 17 ___ z 2x – 1 4y fi ​ ______  ​   = ​ _______  ​    = ​    ​  8 – 28 10 – 17 __z 2x – 1 4y fi ​ ______  ​   = ​ _______  ​    = ​    ​  4 –14 5 11. Any plane passing through the first line is (2x + y + z – 1) + l(3x + y + 2z – 2) = 0 ...(i) which is parallel to the 2nd line x = y = z. So, (2 + 3l) ◊ 1 + (1 + l) ◊ 1 + (1 + 2l) ◊ 1 = 0 fi

(2 + 3l) + (1 + l) + (1 + 2l) = 0



6l + 4 = 0 2 fi l = – ​ __ ​  3 2 __ Put l = – ​   ​  in Eq. (i), we get 3 2 (2x + y + z – 1) – __ ​    ​ (3x + y + 2z – 2) = 0 3 fi y – z + 1 = 0 ...(ii) 1__ Thus, distance from (0, 0, 0) to the plane (ii) = ​ ___   ​.  ​ 2 ​    ÷ 12. We have, 4 + l = 1 + 2m fi

l – 2m = – 3

Also,

– 3 – 4l = –1 – 3m



4l – 3m = – 2

fi aa1 + cc1 + 1 = 0 fi k=1 Now, k2 + 4 = 1 + 4 = 5 The equation of any line through (1, 2, 3) parallel to the given line is – 2 z____ –3 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​  .  1 – 2 2 Any point on the above line can be considered as (l + 1, 2 – 2l, 2l + 3) which is also a common point of the plane. Thus, l + 1 + 2 – 2l + 2l + 3 = 11 14.

So,

fi l=5 Therefore, the point is (6, – 8, 13). Hence, the required distance

_________________________



= ​÷(6   – 1)2 + (– 8    – 2)2 + (13 – 3)2 ​



= ​÷25   + 100 +   100 ​



=÷ ​ 225 ​    

_____________ ____

= 15 15. Let the equation of the plane be y __z x __ ​ __ a ​ + ​ b ​ + ​ c ​ = 1

...(i) ...(ii)

From Eq. (i) and (ii), we get l = 2, m = 1 Thus, the point of intersection

= (4 + 1, – 3 – 4, –1 + 7)



= (5, – 7, 6)

Hence, the required distance from (5, – 7, 6) to (1, – 4, 7) _________ = ​÷16   + 9 + 1 ​  

___

= ​÷26 ​   . 

13. Let

L1 : x = ay + b, z = cy + d y z–d x – b __ fi ​ _____ ​ = ​    ​ = ​ ____ ​  a    c    1 and L2 : x = a1y + b1, z = c1y + d1 x – b1 fi ​ _____  = a1 ​ 

y z – d1 __ ​    ​ = ​ _____   c1 ​  1 Since L1 and L 2 are perpendicular, so

aa1 + 1.1 + c ◊ c1 = 0

It is given that the = 64k3 0 0 1 a 0 fi ​ __ ​  6 0 b 0 0

volume of the tetrahedron OABC 0 0 0 c

1 1 = 64k3 1 1

1 fi ​ __ ​  (abc) = 64k3 6 fi (abc) = 384 k3 Let the centroid be G(a, b, g). a b c Clearly, ​ __ ​  = a, __ ​   ​  = b, __ ​    ​ = g 4 4 4 fi a = 4a, b = 4b, c = 4g Therefore, 64(a b g) = 384k3 fi

(a b g) = 6k3

Hence, the locus of G(a, b, g) is xyz = 6k3

3D-Co-ordinate Geometry 

y z x z 16. Given lines ​ __ ​ + ​ __c ​ = 1, x = 0 and __ ​ a ​ – ​ __c ​ = 1, y = 0 b can be written as z x y – b ___ L1 : __ ​    ​ = ​ _____     ​ = ​ – c   ​  0 b y z x – a __ and L2 : ​ _____ ​ = ​    ​ = ​ __c ​ a    0 Here, and Now,

r1 = bj r2 = ai u = bj – ck v = ai + ck (r2 – r1) = ai – bj i

and

k

u × v = 0 b –c a 0 c



j

= bci – acj – abk _________________ (bc)2 + (ac)2 +   (ab)2 ​

|(u × v)| = ​÷ 

Given shortest distance = 2d (r2 – r1) ◊ (u × v) fi ​  ______________        ​ = 2d |(u × v)| abc + abc _________________ fi ​ __________________       ​ = 2d ​÷(bc)   2 + (ac)2 +   (ab)2 ​ 2abc _________________ fi ​ __________________        ​ = 2d 2   + (ac)2 +   (ab)2 ​ ÷​ (bc) abc _________________ fi ​ __________________        ​ = d 2   + (ac)2 +   (ab)2 ​ ÷​ (bc) (abc)2 fi ​ __________________         ​ = d2 2 2 2 [(bc) + (ac) + (ab) ] ((bc)2   + (ac)2 + (ab)2) 1 fi ​ ___2  ​ = ​ ___________________      ​    d (abc)2 1 fi ​ ___2  ​ = d

1 __ ​  2  ​ + a

1 __ ​  2  ​ + b

1 __ ​  2  ​  c

17. Let O be the origin and the direction ratios of OP are (a, b, c) Hence, the equation of the plane is

6.53

3l – 2 l_____ + 1 2l +1 fi ​ ______  ​   = ​   ​   = ​ ______  ​    1 2 3 fi

l=1

Thus, the point of intersection of the two lines is P(4, 3, 5). Therefore, the equation of the plane perpendicular to OP, where O is (0, 0, 0) and passing through P is 4x + 3y + 5z = 50. 19. The equation of the plane through the line be A(x – 1) + B(y + 2) + C(z – 0) = 0, then

2A – 3B + 5C = 0

and

A–B+C=0

Solving, we get C A B __ ​ __ ​  = __ ​   ​  = ​   ​  2 3 1 Hence, the equation of the plane is

2(x – 1) + 3(y + 2) + z = 0



2x + 3y + z + 4 = 0

Thus, a = 2, b = – 3, c = 1 Hence, the value of a + b + c + 2.

=2–3+1+2



= 2.

20. The direction ratios of the normal to the plane is (2, 3, 4). The equation of any plane through (2, 3, 4) and the maximum distance from the origin is

2(x – 2) + 3(y – 3) + 4(z – 4) = 0



2x + 3y + 4z = 29.

21. Let O be the origin (0, 0, 0). Let the co-ordinates of the points A, B, C are (a, 0, 0), (0, b, 0) and (0, 0, c), respectively. Thus, the equation of the sphere passing through O, A, B, and C is

x2 + y2 + z2 – ax – by – cz = 0

But the radius of the sphere is given by r.

÷ 

___________

So,

a2 +  b2 + c2 r = ​ ​ ___________  ​ ​         4

fi (a2 + b2 + c2) = 4r 2 ...(i) Let (a, b, g ) be the centroid of the DABC fi ax + by + cz = a2 + b2 + c2 a + 0 + 0 __ a a = ​  ________  ​   = ​    ​ 18. Let a point (3l + 1, l + 2, 2l + 3) of the first line Then 3 3 lies on the 2nd line. Thus, b c Similarly, b = __ ​    ​ = g = __ ​    ​ 3 3 3l + 1 – 3 l________ + 2 – 1 2l +3–2 ​  _________  ​    = ​   ​   = ​  _________  ​    Putting the values of a, b and c in Eq. (i), we get 1 2 3 9(a 2 + b 2 + g 2) = 4r 2

a(x – a) + b(y – b) + c(z – c) = 0

6.54  Integral Calculus, 3D Geometry & Vector Booster Hence, the locus of (a, b, g ) is

2

2

2

9(x + y + z ) = 4r

2

22. Let the co-ordinates of A, B and C be (a, 0, 0), (0, b, 0) and (0, 0, c), respectively Hence, the equation of the plane is y __z x __ ​ __ a ​ + ​ b ​ + ​ c ​ = 1 Since the given plane passes through (f, g, h), we get f __ g __ h ​ __ ...(i) a  ​ + ​ b ​ + ​ c ​ = 1 The equation of the sphere passing through 0, A, B and C is x2 + y2 + z2 – ax – by – cz = 0 Let (a, b, g ) be its centre. a b c Thus, a = __ ​   ​ , b = __ ​   ​ , g = __ ​    ​ 2 2 2 fi a = 2a, b = 2b, c = 2g Putting the values of a, b and c in (i), we get f g h ​ ___   ​ + ___ ​    ​ + ___ ​    ​ = 1 2a 2b 2g f g h fi ​ __  ​ + __ ​   ​ + __ ​   ​ = 2 a b g Hence, the locus of the centre (a, b, g ) is f g __ h ​ __x ​  + __ ​ y ​ + ​ z ​  = 2 23. Let O be the origin (0, 0, 0). Let the co-ordinates of the points A, B, C are (a, 0, 0), (0, b, 0) and (0, 0, c), respectively. Then the equation of the plane ABC is y __z x __ ​ __ ...(i) a ​ + ​ b ​ + ​ c ​ = 1 Also, the equation of the sphere passing through O, A, B, and C is

x2 + y2 + z2 – ax – by – cz = 0

÷ 

2

2

2

So,

a +b +c r = ​ ​  __________  ​ ​         4



(a2 + b2 + c2) = 4r 2

...(ii)

Let (a, b, g ) be the foot of the perpendicular from the origin O to the plane (i) Now, the equation of the line through O and the perpendicular to the plane (i) is y z x ​ ___   ​ = ___ ​     ​ = ___ ​     ​ = r (say) 1/a 1/b 1/c Thus, the co-ordinates of any point on the line are r r __r ​ __ ​ a ​,  __ ​   ​,  ​ c ​  ​ ...(iii) b If it is the foot of the perpendicular from O to the plane (i), its co-ordinates will satisfy the equation of the plane.

( 

)

( 

)

Then from Eq. (iii), we get

and

and

1/a r a = __ ​ a ​  = ____________ ​        ​ 1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​ a b c

( 

)

1/b r b = __ ​    ​ = ____________ ​        ​ b 1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​ a b c

( 

)

1/c r g = __ ​ c ​ = ____________ ​        ​ 1 1 1 ​ __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​ a b c

( 

)

Now,

a 2 + b2 + g 2



1 1 1 ​ __ ​  2  ​ + ​ __2  ​  + ​ __2  ​   ​ a b c = _____________ ​     2 ​ = 1 1 1 ​​ __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​​ ​ a b c



= aa = bb = cg

Thus,

a2  + b2 + g 2 a2  + b 2 + g 2 a = ​ ___________        ,​ b = ​ ___________        ​ a b

and

a 2  + b 2 + g 2 c = ​ ____________        ​ g

(  ( 

) ) ( 

1 ​ ____________      ​ 1 1 1 __ __ ​ ​  2  ​ + ​  2  ​ + __ ​  2  ​   ​ a b c

)

Putting the values of a, b and c in (ii), we get

( 

)

1 1 1 (a 2 + b 2 + g 2) ​ ___ ​  2   ​ + ___ ​  2  ​ + ___ ​  2  ​  ​ = 4r 2 a b g

Hence, the locus of the foot of the perpendicular (a, b, g ) is 1 1 1 (x2 + y2 + z2) ​ __ ​  2  ​  + __ ​  2  ​  + __ ​  2  ​   ​ = 4r2 x y z 24. Given plane is y __z x __ ​ __ a ​ + ​ b ​ + ​ c ​ = 1 Let O be the origin. Clearly, the plane intersects the axes at (a, 0, 0), (0, b, 0) and (0, 0, c), respectively. Hence, the equation of the sphere passing through O, A, B and C is

( 

But the radius of the sphere is given by r. __________

1 __r __ 1 __r __ 1 __r Hence, ​ __ a ​ ◊ ​ a ​  + ​ b ​ ◊ ​ b ​  + ​ c ​ ◊ ​ c ​ = 1 1 fi r = ____________ ​       ​ 1 1 1 ​ __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​ a b c



)

x2 + y2 + z2 – ax – by – cz = 0

25. The equation of any sphere through the given circle is x2 + y2 + z2 + 7y – 2z + 2 + l (2x + 3y + 4z – 8) =0 fi  x2 + y2 + z2 + 2ll + (7 + 3l) y + (4l – 2) z + (2 – 8l) = 0

3D-Co-ordinate Geometry  __ ___

The centre of the sphere is

( 

)

7 + 3l 4l –2 ​ – l, – ​ ______  ​  , – ​ ______  ​    ​ 2 2 If the given circle is a great circle of the sphere, so the centre of the sphere lies on the plane

( 

6.55

)

Thus,

7 + 3l 2(– l) + 3 ​ – ​ ______  ​    ​ + 4(1 – 2l) = 8 2



– 4l – 21 – 9l + 8 – 16l = 16



– 29l = 29



l = –1

fi (af + bg ± 2 ​÷af    ​ ​ ÷bg    ​)  = ch __

___

__

___

__

___

___

fi (​÷af    ​  ± ÷​ bg    ​) 2 = (​÷ch    ​) 2 ___

fi (​÷af    ​  ± ÷​ bg    ​)  = ± (​÷ch     ​) ___

fi (​÷af    ​  ± ÷​ bg    ​ + ÷​ ch     ​) = 0 which is the required condition. 2. Let OA = a, OB = b and OC = c

Hence, the equation of the sphere is x2 + y2 + z2 + 7y – 2z + 2 – 2x – 3y – 4z + 8 = 0 fi  x2 + y2 + z2 – 2x + 4y – 6z + 10 = 0

1. Given al + bm + cn = 0 and fmn + gnl + hlm = 0 Eliminating n, we get

( 

)

( 

)

al + bm  al + bm ​  ​ = gl ​ –​ _______ ​  ​ + hlm = 0 f m ​ – ​ _______ c    c    – afm – bfm2 – agl2 – bglm + chlm = 0 l l 2 ​ m  ​   ​ + bf = 0 fi ag ​​ __ ​ m   ​  ​​ ​ + (af + bg – ch) ​ __ l1 l2 ​ m   ​.  Let its roots are ___ ​ m   ​ and ___ 1 2 Now, l1 ___ l2 bf ___ ​ ___ m1  ​  ◊ ​ m2  ​ = ​ ag   ​ fi

(  )

(  )

l2l2 m1m2 ​  ag    ​  fi ​ ___ ​ = _____ bf l2l2 m1m2 ____ n1n2 fi ​ ___ ​ = _____ ​  ag    ​ = ​        ​ bf ch

Similarly, we can find the angle between other pairs of diagonals and we have six such pairs out of these four digonals and all these angles are given by

± a2 ± b2 + c2 cos q = ​  ___________    (a2 + b2 + c2)

 ​ fi

a2 ± b2 ± c2 q = cos– 1 ​ ​  __________     ​  ​ a2 + b2 + c2

l1l2 = m1m2 + n1n2 = 0

f fi ​ __ a  ​ +

g h __ ​   ​ + __ ​   ​ = 0 b c (ii) If the lines are parallel, so l1 m1 __ n1 ​ __ ​  = ___ ​ m   ​ = ​ n  ​  l2 2 2 So, the roots of the Eq. (i) have equal roots, i.e. D = 0 fi (af + bg – ch)2 = 4abfg __

( 

___

fi (af + bg – ch) = ± 2​÷af    ​   ​÷bg    ​ 

)

3. The equation of any plane passing through P, Q, R is

x ​ __ ​  + a

(i) If the lines are perpendicular, so



– a2 + b2 + c2 = ​  ___________     ​ (a2 + b2 + c2)





l2l2 m1m2 ____ n1n2 fi ​ ____  ​ = _____ ​   ​ = ​     ​  (f/a) (g/b) (h/c)

Now, OP, CN, AM and BL are four diagonals. Let q be the angle between the diagonals OP and AM. The direction ratios of OP and AM are (a, b, c) and (– a, b, c) – a◊a + b ◊ b__________ + c ◊ c __________ Thus, cos q = ​  _______________________          ​ 2 2 2 2 + c  ​​÷ a + b2    + c2 ​ ÷​ a  + b   

where

y __ ​   ​ + b

z __ ​   ​ = 1 g

...(i)

P = (a, 0, 0), Q = (0, b, 0), R = (0, 0, g)

which is passing through (a, b, c) a b __c Thus, ​ __ ​  + __ ​   ​ + ​   ​ = 1 a b g The equation of any plane passing through Q (0, b, 0) and parallel to yz-plane is x = a The equation of any plane passing through R (0, 0, g) and parallel to -plane is y = b The Equation of any plane passing through P (a, 0, 0) and parallel to xy-plane is z = b Hence, the locus of the point (a, b, g) is x __ b __c ​ __ a ​ + ​ y ​ + ​ z ​ = 1

6.56  Integral Calculus, 3D Geometry & Vector Booster

4. Let the equation of the plane be y __z x __ ​ __ a ​ + ​ b ​ + ​ c ​ = 1 It is given that,

Putting the values of a, b and c in Eq. (ii), we get ...(i)

a2 + b2 + c2 = k2

...(ii)

Let P (a, b, g) be the foot of the perpendicular drawn from the origin O to the plane (i). Now the equation of the line through (0, 0, 0) and the perpendicular to the plane (i) is y z x ​ ___   ​ = ___ ​     ​ = ___ ​     ​  1/a 1/b 1/c So, the co-ordinates of any point on the line are r r __r ​ __ ​ a ​,  __ ​   ​,  ​ c ​  ​ ...(iii) b

( 

)

It is the foot of the perpendicular from O to the plane (i), its co-ordinates will satisfy the equation of the plane. 1 __r __ 1 __r __ 1 __r Hence, ​ __ a ​ ◊ ​ a ​  + ​ b ​ ◊ ​ b ​  + ​ c ​ ◊ ​ c ​ = 1 1 1 1 ​  2  ​ + __ ​  2  ​  ​ = 1 fi r ​ __ ​  2  ​ + __ a b c

( 





)

and

1/a r ​        ​ a = __ ​ a  ​ = ____________ 1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​ a b c

( 

)

1/b r ​        ​ b = __ ​    ​ = ____________ b 1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​ a b c

( 

)

1/c r g = __ ​ c ​ = ____________ ​        ​ 1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​ a b c

( 

)

Now,

a2 + b2 + g2



1 1 1 ​ __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​ a b c = ​  _____________       2 ​ 1 1 1 ​​ __ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​​ ​ a b c



(  (  ( 

)

Hence, the locus of P (a, b, g ) is

( 

)

1 1 1 (x2 + y2 + z2) ​ __ ​  2  ​  + __ ​  2  ​  + __ ​  2  ​   ​ = k2 x y z



5. Clearly, the planes x = 0, y = 0 and z = 0 meet in (0, 0, 0) Hence, the incentre lies on the perpendicular from (0, 0, 0) to the plane x + y + z = a and divides it in the ratio 3 : 1, i.e. 3 from the vertex (0, 0, 0) and 1 from the plane x + y + z = a. The equation of the perpendicular from (0, 0, 0) to the plane x + y + z x y __z = a is __ ​    ​ = __ ​    ​ = ​    ​  = l (say) 1 1 1 Any point on the perpendicular is (l, l, l) a If it lies on the plane x + y + z = a, so, l = __ ​   ​  3 Thus, the perpendicular from (0, 0, 0) meets the plane a a __ a x + y + z = a in (l + l + l), i.e. ​ __ ​    ​, __ ​   ​ , ​   ​   ​. 3 3 3 Also, the incentre divides the join of (0, 0, 0) and​ a a __ a __ ​   ​ , __ ​   ​ , ​   ​   ​ in the ratio 3 : 1. 3 3 3

( 

1      ​ r = ____________ ​  1 1 1 __ ​ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​  ​ a b c

Then from (iii)

)

( 

)

( 

( 

1 1 1 (a2 + b2 + g 2 ) ​ ___ ​  2  ​ + __ ​  2  ​ + __ ​  2  ​   ​ = k2 a b g



1 = ​ ____________      ​ = aa = bg = cg 1 1 1 __ __ ​ ​  2  ​ + ​  2  ​ + __ ​  2  ​  ​ a b c

)

)

Let (a, b, g ) be its incentre. Then a 3 ◊ ​ __ ​  + 1.0 3 a a = ​ ________  ​     = __ ​    ​ 3+1 4 a Similarly, b = ​ __  ​ = g 4 a a __ a Thus, the required incentre is ​ __ ​   ​ , __ ​   ​ , ​   ​   ​. 4 4 4 6. The equation of any line passing through (3, 5, 7) and parallel to the normal to the plane is

( 

)

– 5 z____ –7 x – 3 y_____ ​ _____  ​   = ​   ​   = ​   ​     ...(i) 2 1 1 and the equation of any point on the line (i) is

)

)

M (2l + 3, l + 5, l + 7)

which lies on the plane 2x + y + z = 16. So, fi fi Thus,

(2l + 3) + (l + 5) + (l + 7) = 16 4l + 15 = 16 1 l = __ ​    ​ 4 1 1 1 M = ​ ​ __ ​  + 3, __ ​   ​  + 5, __ ​   ​  + 7  ​ 2 2 2

(  15 7 11 ___ = ​( __ ​   ​ , ___ ​   ​ , ​   ​   ​ 2 2 2)

)

Thus,

a2 + b 2 + g 2 a2 + b2 + g2 a = ​  __________      ​, b = ​  __________        ​ a b



and

a2 + b 2 + g2 c = ​  __________        ​ g

Let Q (a, b, c) is the image of P (3, 5, 7). Clearly, M is the mid-point of P and Q.

3D-Co-ordinate Geometry 

a + 3 __ 15 7 b + 5 ___ 11 c + 7 ___ Thus, ​ _____  ​   = ​   ​ , ​ _____  ​   = ​   ​ , ​ _____  ​   = ​   ​  2 2 2 2 2 2 fi a = 4, b = 6, c = 8 Hence, the value of a2 + b2 + c2 + 18 = 16 + 36 + 64 + 18 = 134. 7. Given lines are + 1 __z – 3 z____ –1 x – 2 y_____ x + 1 y_____ ​ _____ ​ = ​      ​ = ​ c ​ and ​ _____     ​ = ​  c    ​ = ​  a    ​  a    b b ab  + bc + ca Therefore, cos q = ____________ ​  2       ​ ...(i) a + b2 + c2 Since a, b and c are the roots of x3 + x2 – 4x – 4 = 0, so a + b + c = – 1 ab + bc + ca = 4 and

abc = 4

Now,

a2 + b2 + c2



= (a + b + c)2 – 2 (ab + bc + ca)



=1+8=9

From Eq. (i), we get 4 cos q = – ​ __ ​  9 Hence, the acute angle between the lines is

(  )

Thus,

6.57

_____________

(ac + b) = ÷ ​ (1   – a2) (1    – c2) ​ _____________

Similarly, (bc + a) = ÷ ​ (1   – b2) (1    – c2) ​ l m n Hence, _______ ​  _____      ​ = _______ ​  _____      ​ = ______ ​  _____      ​ 2 2  ​ ​÷1  – b    ​ ÷ ​ 1  – c2   ​ ÷​ 1  – a   Since the three given planes pass through the origin, so the line of intersection of the planes also pass through the origin. Thefore, the equation of the line is y z x ​ __ ​  = __ ​ m   ​ = __ ​ n ​  l y z x _____ fi ​ _______      ​ = _______ ​  _____      ​ = ______ ​  _____      ​ 2 2  ​ ÷ ​ 1  – b    ​ ÷ ​ 1  – c2   ​ ÷​ 1  – a   9. Given planes are x – y – z = 2 ...(i) and x + 2y + z = 2 ...(ii) The equation of any plane passing through the line of intersection of planes (i) and (ii) can be written as (x – y – z – 2) + l (x + 2y + z – 2) = 0 ...(iii) The direction of the cosines of the normal to the plane (iii) are 1+l 2l – 1 l–1 ___________ ___________ ___________ ​ _____________       ​, ​ ____________       ​, ​ _____________       ​ 2 2 2     –  4l    + 3 ​ ​÷6l     – 4l    + 3 ​ ÷ ​ 6l   – 4l    +  3 ​ ÷​ 6l



(1 – a2) + (– c2 – abc) + (– abc – b2) = 0

The direction cosines of the normal to the plane (i) are 1__ ___ 1 1 ​ ___   ​ – ​  __  ​,  – ___ ​  __  ​  ​ 3 ​     ​÷3 ​     ​÷3 ​    ÷ Since the angle between the planes (i) and (ii) is 90°, so, (1 + l) (2l + 1) (l – 1) __ ​  __ ​  __ ​  cos (90°) = ​ ______   – ​ _______   – ​ ______   p​÷3 ​    p​÷3 ​    p​÷3 ​    1 where  p = ____________ ​  ___________      ​ 2   – 4l   + 3 ​ ÷​ 6l



1 – a2 – b2 – c2 – 2abc = 0



q = cos–1​ __ ​ 4 ​   ​ 9 8. Since the planes x = cy + bz, y = az + cx and z = bx + ay meet in a line, so – c – b 1      ​ ​ c ​  ​   – 1 ​ ​ a ​   ​ b a – 1





|  |

1(1 – a2) + c (– c – ab) – b (ca + b) = 0

2

2

2

a + b + c + 2abc = 1

Let l, m, n be the direction cosines of the line of intersection. Therefore, l – c m – b n = 0 and cl – m + an = 0 l m n Thus, ​ ______      ​ = ______ ​       ​ = _____ ​       ​ ac + b bc + a 1 – c2 Now, (ac + b)2 = a2c2 + b2 + 2ab

= a2c2 + b2 + 1 – a2 – b2 – c2 = 1 – a2 – c2 + a2c2 = (1 – a2) (1 – c2)

(1 + l) – (2l + 1) – (l – 1) = 0

3 l = __ ​   ​  2 Hence, the required equation of the plane is 3 (x – y – z – 2) + __ ​   ​  (x + 2y + z – 2) = 0 2 fi 2 (x – y – z – 2) + 3 (x + 2y + z – 2) = 0 fi



5x + 4y + z = 10

10. Given plane is y __z x __ ​ __ a ​ + ​ b ​ + ​ c ​ = 1 Let P (m, n, p) be a point on (i), so p m __ n __ ​ __ a ​  + ​ b ​ + ​ c ​ = 1

...(i)

...(ii)

6.58  Integral Calculus, 3D Geometry & Vector Booster __________

i.e

OP = ÷ ​m   2 + n2    + p2 ​

1 1 1 1 fi ​ ___  ​ + ___ ​     ​ + __ ​     ​ = __________ ​       ​ aa bb cg m2 + n2 + p2

The direction cosines of OP are

( 

1 = ___ ​  2  ​ + a

1 ___ ​  2  ​ + b

1 ___ ​  2  ​  g

p m n ​ ____________ ​  __________      ​, ___________ ​  __________      ​, ____________ ​  __________      ​  ​   2 + n2    + p2 ​ ​÷m   2 + n2   + p ​ ÷ ​m   2 + n2    + p2 ​ ÷​ m



The equation of the plane through P and normal to OP is n y m x __________ ​ ____________       ​ + ____________ ​  __________       ​   2 + n2    + p2 ​ ​÷m   2 + n2    + p2 ​ ÷​ m

1 1 1 1 1 1 ___ ___ __ __ __ ​ ___ a x  ​ + ​ b y  ​ + ​ c z  ​ = ​ x2  ​  + ​ y2  ​  + ​ z2  ​ 

)

Hence, the required locus of Q is

Integer Type Questions

__________ 1. Let q be angle between the lines. p z 2 __________ + ​ ____________       ​ = ÷ ​m   + n2    + p2 ​ 1 \ cos q = __ ​   ​  ​÷m   2 + n2    + p2 ​ 3



m x + n y + p z = (m2 + n2 + p2)

Thus,

(m2 + n2 + p2) A = ​ ​  ____________ 0, 0  ​ m     ​, 



(m2 + n2 + p2) B = ​ 0, ​  ____________ ​ 0  ​ n     , 

and

(m2 + n2 + p2) C = ​ 0, 0, ​  ____________ ​ p     ​  

(  ( 

) )

( 

)

(  )

1 q = cos– 1 ​ __ ​   ​   ​ 3 Hence, (a + b) = 1 + 3 = 4 2. Four diagonals of a cube are OP, AM, CL, BN fi

Let the point Q be (a, b, g) Thus,

2 m2 + n2 + p2 m__________ + n2 + p2 a = ​  __________      ​   , b = ​  ​ m n      

and

m2  + n2 + p2 g = ​ ___________ ​ p      

...(iii)

Now, 1 1 1 ​ ___2  ​ + ___ ​  2  ​ + ___ ​  2  ​ = a b g

(m2 + n2 + p2) ​  _____________        ​ (m2  + n2 + p2)2

1 1__ ___ 1 Direction cosines of BN are ___ ​  __  ​,  – ​ ___   ​,  ​  __  ​  ​ 3 ​     ​÷3 ​     ​÷3 ​    ÷

1 = ____________ ​  2      ​ (m + n2 + p2) 2

2

2

(m   + n + p ) From Eqs. (iii), m = ​ _____________        ​ a 2   + n2 + p2) m (m _____________ fi ​ __  ​   = ​      ​  a aa 2 2 2 n (m   + n + p ) Similarly, __ ​   ​ = ​ _____________        ​ b bb 2 p (m + n2 + p2) ____________ and ​ __   ​ = ​       c cg 2 (m2  + n2 + p2) (m   + n2 + p2)  ​ Now, ​ ____________        ​ + ​ _____________        ​ aa bb



1 1__ ___ 1 Direction cosines of OP are ___ ​  __  ​,  ___ ​    ​,  ​  __  ​  ​ 3 ​    ÷ ​ 3 ​     ​÷3 ​    ÷ 1 1 1__ __  ​,  ​ ___ __  ​,  ​ ___ Direction cosines of AM are – ​ ___   ​  ​ 3 ​    ÷ ​ 3 ​    ÷ ​ 3 ​    ÷ 1 1__ ___ 1 Direction cosines of CL are ___ ​  __  ​,  ___ ​    ​,  – ​  __  ​  ​ 3 ​    ÷ ​ 3 ​    ÷ ​ 3 ​    ÷

(m2  + n2 + p2) __ p m n __ + ​ _____________        ​ = ​ a ​  + __ ​   ​ + ​ c ​ = 1 cg b

Let l, m, n be the direction cosines of a line which is inclined at angles a, b, g, d. l + m__+ n cos a = ​  ________  ​    ​ 3 ​    ÷ – l + m__ + n l + m __– n Similarly, cos b = ​  _________  ​    , cos g = ​  ________  ​    ​ 3 ​    ​÷3 ​    ÷ l – m__+ n and cos d = ​  ________  ​    ​ 3 ​    ÷ Thus,

Thus,

cos2a + cos2b + cos2g + cos2d 1 = __ ​   ​  [(l + m + n)2 + (– 1 + m + n)2 3 + (l + m + n)2 + (l – m + n)2˚ 1 = __ ​   ​  [4 (l2 + m2 + n2)] 3 4 = __ ​   ​  3

3D-Co-ordinate Geometry 

Thus, 3(cos2a + cos2b + cos2g + cos2d) = 4 3. The image of P (1, 6, 3) w.r.t. the line –2 x y – 1 z____ ​ __  ​ = ​ _____  ​   = ​   ​   is Q (1, 0, 7) 1 2 3 It is given that Q (a, b, g) = Q (1, 0, 7) Thus,

a+b+g=8

4. Clearly, 3a + 2b + c = 7 Thus, the minimum value of (a2 + b2 + c2) is fi fi

| 

|

3.0 +__________ 2.0 + 0 – 7 2 = ​​ ​  ______________       ​  ​​ ​ 2 + 12 ​ ÷​ 3  + 22    49 7 = ​ ___ ​ = __ ​   ​  14 2 7 (a2 + b2 + c2) ≥ ​__    ​  2 2 2 2 2 (a + b + c ) ≥ 7

Hence, the least value of (a2 + b2 + c2) is 7.

5. The equation of any line passing through (1, 0, – 3) + 2 6____ –z x – 2 y_____ and parallel to ​ _____  ​   = ​   ​   = ​   ​    2 3 6 y z+3 x – 1 __ is ​ _____  ​   = ​    ​ = ​ _____ ​     ...(i) 2 3 – 6 Any point on (i) can be considered as P (2l + 1, 3l, – 34 – 6l) which is also a point of the plane 2l + 1 – 3l + 3 + 6l = 9 fi

5l + 4 = 9



l=1



= ​÷4  + 9 + 36 ​  



= ​÷49 ​    

Shortest Distance = =

Distance of any point on z-axis 2 ____ ​  __   ​ = 2 ÷​ 1  2 ​  7. Let the points be A, B, C and D. The number of planes which have three points on one side and the fourth point on the othe side is 4. The number of planes which have two points on each side of the plane is 3. Thus, the number of planes is 7. 8. Let the equation of the any plane be ax + by + cz + d = 0 Since the plane (i) containing the lines, so 2a + 3b + 4c = 0 and 3a + 4b + 4c = 0. a b c Therefore, _______ ​       ​ = _______ ​       ​ = _____ ​       ​ 15 – 16 12 – 10 8 – 9 a b fi ​ ___  ​ = __ ​   ​  = – 1 2 a b fi ​ __ ​  = ___ ​    ​ = 1 – 2  ​ Also,

a (x – 1) + b (y – 2) + c (z – 3) = 0



(x – 1) – 2 (y – 2) + (z – 3) = 0

fi |d| = 6. 9. We shall find the angle between the faces OAB and OAC. The angle between the faces OAB and OAC is the angle between the normal ​_› to the faces. The ​_› normal to the​_ face​_ OAB is ​a  ​  × ​b  ​  and the normal to › › face OAC is ​a   ​ × ​c   ​.

_________ ___

=7 6. The equation of any plane containing the given line is (x + y + 2z – 3) + l (2x + 3y + 4z – 4) = 0 fi  (1 + l) x + (1 + 3l) y + (2 + 4l) z – (3 + 4l) = 0 ...(i) y z x If the plane is parallel to z-axis, i.e ​ __  ​ = ​ __  ​ = ​ __  ​ , 0 0 1 the normal to the plane (i) is perpendicular to z-axis (1 + l (0) + (1 + 3l) (0) + (2 + 4l) (1) = 0 fi

1 l = – ​ __ ​   2

...(i)

c ___ ​    ​  – 1 c __ ​    1

|  |

________________________

= ​÷(3   – 1)2 + (3     – 0)2 + (– 9 + 3)2 ​

From Eqs. (i) and (ii), we get 1 (x + y + 2z – 3) – __ ​   ​  (2x + 3y + 4z – 4) = 0 2 fi  y + 2 = 0 ...(iii)

fi x – 2y + z = 0 __ Again distance between the plane is ÷ ​ 6 ​   .  __ d –__0 fi ​ ​ _____  ​    ​ = ​÷6 ​    ​÷6 ​   

Thus, the point P is (3, 3, – 9). Hence, the required distance

6.59

...(ii)

​_›

Thus,



​_›

​_›

​_›

(​a  ​  × ​b  ​)   ◊ |(​a  ​  × ​c  ​)  cos q =​  _______________     ​ ​_› ​_› ​_› ​_› |(​a   ​ × ​b   ​)| |(​a   ​ × ​c   ​)| ​› ​_› _ ​a  ​  ◊ (​b  ​  ×

​_›

​_›

(​a   ​ × ​c   ​)) = ​  ______________    ​ {1 ◊ 1 ◊ sin(60°)}2

6.60  Integral Calculus, 3D Geometry & Vector Booster ​_› ​_ ​_ ​_› › › ​a  ​  ◊ {(​b  ​  ◊ ​c  ​)   ​a  ​  –

​ › ​_ ​_› _ ›



(​a  ​  ◊ ​b  ​)   ​c  ​}  = ​ ____________________      ​    3/4



(​a  ​  ◊ ​a  ​)   (​b  ​  ◊ ​c  ​)  – (​a  ​  ◊ ​b  ​)   (​a  ​  ◊ ​c  ​)  = ​ _______________________      ​    3/4

​› _ _ ​› _ ​› _ ​›



​› _ _ ​› _ ​› _ ​›

1(1 ◊ 1 ◊ cos (60°)) – (1 ◊ 1 ◊ cos (60°))2 = ​ _____________________________       ​    3/4 1 1 ​ __ ​  – ​ __ ​  2 4 __ 1 = ​ _____ ​   = ​    ​ 3/4 3

Hence, the value of (3 cos q + 2) = 1 + 2 = 3. 10. Clearly, l + ± m = ± n l 2 + m2 + n2 = 1 1__ fi l = m = n = ± ​ ___   ​  ​ 3 ​    ÷ Hence, 8 possible direction cosines and 4 lines are possible. – 3 z____ –4 x – 2 y_____ Since the lines ​ _____  ​   = ​   ​   = ​      1 1 – k – 4 z____ –5 x – 1 y_____ and ​ _____     ​ = ​   ​   = ​   ​   are coplanar, so 2 1 k

fi 11.  ​

 |

|

y2 – y1 z2 – z1 x   2 – x1       a c1 ​  b1 ​ ​ ​        ​        ​        ​ 1 ​ a2 c2 b2

 | | |  | |  |

–4 – 3 5   1   – 2 4   fi ​ ​                       ​= 0 – k ​  1   ​ ​ 1 ​ ​ 2 k 1 – 1   1   1 fi ​ ​ 1 ​    1​  ​  – k ​    ​     ​ = 0 k 2 1

0 0    –1      fi ​ ​ 1 ​   ​     ​ ​ 1     ​  ​ = 0 – k  2    k 2+k 1+k fi fi fi

– {2 (1 + k) + (k – 1) (k + 2)} = 0 2

– {2 + 2k + k + k – 2} = 0 k2 + 3k = 0

fi k = 0, – 3 Hence, the value of (k + 5) is 5 or 2. 9 __  ​  – z – 3 ​ 2_____ x_____ – 2 y_____ 12. Let ​   ​   = ​   ​   = ​      ​ = l 1 2 k –4 x – 1 y_____ and ​ _____     ​ = ​   ​   = 2 k Thus, and

z __ ​    ​  = m 1

9 x + l + 2, y = 2l + 3, z = __ ​    ​ – k l 2 x = m + 1, y = 2m + 4, z = m

Solving, we get 1 l = 1, m = ​ __  ​ and k = 4 2 Hence, the value of k is 4. 13. Given planes are x = cy + bz y = cx + az z = bx + ay fi x – cy – bz = 0 cx – y + az = 0 bx + ay – z = 0

|  |

Since these three planes pass through a line, so – c – b    1   ​ ​ c ​  – 1 ​    ​ ​ a ​   ​ = 0 b a – 1 fi fi fi fi

1 (1 – a2) + c (– c – ab) – b (ca + b) = 0 (1 – a2) – (c2 + abc) – (abc + b2) = 0 1 – a2 – b2 – c2 – 2abc = 0 a2 + b2 + c2 + 2abc = 1

a2 + b2 + c2 + 2abc + 2 = 1 + 2 = 3 – 2 z____ –k x – 4 y_____ 14. Since the line ​ _____  ​   = ​   ​   = ​   ​   lies in the plane 1 1 2 2x – 4y + z = 7 So, the point (4, 2, k) lies in the plane Thus, 2(4) – 4(2) + = 7 fi 8–8+k=7 fi k=7 15. Given plane is a x – b y + c z = 0 ....(i) and the line is – 2d z____ –c x – a y______ ​ _____ ​ = ​      ​ = ​  c    ​  ...(ii) a    b fi

Since the plane (i), contains the line (ii), so,

a (a) – b (b) + c (c) = 0



a (a) – b (2d) + c (c) = 0



a2 + c2 = b2



a2 + c2 = 2bd

Clearly, b2 = 2bd

b = __ ​   ​ = 2 d

Questions asked in Past Iit-JEE Examinations

1. Since the line lies on the plane, so, the point (4, 2, k) lies on the plane.

Thus,

8–8+k=7



k = 7.

3D-Co-ordinate Geometry 



2. The equation of the plane passing through (2, 1, 0), and (4, 1, 1) is

| 

|

– 1  z x   – 2 y   ​ ​       ​        1​    ​  ​ = 0 3 ​ – 1 ​ 0 1 2 fi fi

(x – 2) (– 1 – 0) – (y – 1) (3 – 2) + z (0 + 2) = 0 x + y – 2z = 3

3. The equation of the line PQ is

– 1 z____ –6 x – 2 y_____ ​ _____  ​   = ​   ​   = ​   ​    1 2 – 2 Any point on the above line is

Q (l + 2, l + 1, 6 – 2l)

6.61

Let V1, the volume of the new box = r ◊ (b × c) 90 9 It is given that V1 = ____ ​    ​  V2 = ___ ​    ​  V2. 100 10 Thus, V1 = (r – 0 ◊ 9a) ◊ (b × c) fi r lies on a plane passing through 0 ◊ 9 a, and perpendicular to (b × c). 6. We take A = A¢ as the origin and B = B¢ = any point other than A on the line intersection of p1 and p2. Now, consider C = C¢ = any point niether on p1 nor p2. Thus, in this case, both the conditions of (a) and (b) are fullfilled.

The mid-point of PQ is

( 

)

l l ​ __ ​   ​  + 2, __ ​   ​  + 1, 6 – l  ​ 2 2 Since the mid-point of PQ lies on the plane, so,

( 

) (​ __​ l2 ​  + 1 )​ – 2 (6 – l) = 3

l ​ __ ​   ​  + 2  ​ + 2



3l = 12



l = 4.

Thus, the co-ordinates of Q are (6, 5, – 2). 4. Since the given lines intersect, so they are coplanar.

| 

|

+ 1 – 1 2  k     ​ 2​  ​  ​         ​ 4 ​     ​ = 0 3 ​ 1 2 1 fi

– 10 – (k + 1) (2 – 4) – (4 – 3) = 0



– 10 + 2 (k + 1) – 1 = 0



2k = 9



9 k = __ ​   ​ . 2

Similarly if we take, A = non-origin point on L1 B = non-origin point on the line of intersection of p1 and p2 and C = non-origin point on L2. If we take A = C≤, B = B¢, C = A¢, both the conditions of (a) and (b) are fulfilled.

5. Let AA¢ = a, AB = b, AD = d Volume of the parallelopiped T,

V = a ◊ (b × c)

Let

AA≤ = r



7. As the plane p parallel to b = (1, 0, – 1) and c = (– 1, 1, 0) normal to the plane is given by



 | |

 i  j  k b × c ​  ​ 1  ​ ​  0 ​ ​      ​ = i + j + k – 1 ​  –1 1 1

\  The equation of the plane ABC is

1 ◊ (x – 1) + 1 ◊ (y – 1) + 1 ◊ (z – 1) = 0



x+y+z–3=0

6.62  Integral Calculus, 3D Geometry & Vector Booster fi

x+y+z=3 x y __z fi ​ __  ​ + __ ​    ​ + ​    ​  = 1. 3 3 3 This planes meets the axes in A (3, 0, 0), B (0, 3, 0), C (0, 0, 3). Thus, volume of the tetrahedron OABC 1 = __ ​   ​ [OA OB OC] 6 1 = __ ​   ​  [3i 3j 2k] 6 27 = ___ ​   ​  [i j k] 6 9 = ​ __ ​  2 8. The equation of the plane passing through the line of intersection 2x – y + z = 3, 3x + y + z = 5 is (2x – y + z – 3) + l (3x + y + z – 5) = 0 ...(i) fi  (2 + 3l) x + (l – 1) y + (l + 1) z = (5l + 3) = 0 Also, it is given that, the distance from (2, 1, – 1) to 1 the above plane is ___ ​  __  ​.  ​÷6 ​   

 |

|

2 (2 +  3l)  + (l – 1) – (l + 1) – (5l + 3) _________________________ ​____________________________________ ​              ​  ​ ​÷(2   + 3l)2  + (l    – 1)2 + (l + 1)2 ​ 1__ = ​ ___   ​  ​÷6 ​    l–1 1 _____________ fi ​ ​ _______________        ​  ​ = ___ ​  __  ​  2 ​÷6 ​      + 12l   + 6 ​ ÷​ 11l

| 

|

fi  6 (l – 1)2 = 11l2 + 12l + 6 fi  5l2 + 24l = 0 24 fi  l = 0, – ​ ___ ​ . 5 24 Putting the values of l = 0, – ​ ___ ​ in Eq. (i), we get 5 the required equations of the planes are 2x – y + z = 3 or 9.

62x + 29y + 19z – 105 = 0

Equation of any plane passing through A, B, C X is ​ __ a ​  + Thus, centroid

Y Z ​ __ ​ + __ ​   ​  = 1 b c = G (x, y, z)



a b __ c = ​ __ ​   ​ , __ ​    ​, ​    ​  ​. 3 3 3

 | ÷ 

( 

)

Also, it is given that OM = 1

|

0 +  0 + 0 – 1 fi ​ ____________ ​  __________        ​  ​ = 1 1 1 1 ​ __ ​  2  ​ + __ ​  2  ​    + __ ​  2  ​ ​  a b c 1 1 1 fi ​ __2  ​ + __ ​  2  ​ + __ ​  2  ​  = 1 a b c 1 1 1 fi ​ ____    ​ + ____ ​     ​ + ___ ​     ​ = 1 9 x2 9 y2 9 z2 1 1 1 fi ​ __2  ​  + __ ​  2  ​  + __ ​  2  ​  = 9 x y z 10. The equation of any plane passing through (1, – 2, 1) is

a (x – 1) + b (y + 2) + c (z – 1) = 0 ...(i)

The plane (i) is perpendicular to the planes So, and

2x – 2y + z = 0 and x – y + 2z = 4 2a – 2b + c = 0 a – a + 2c = 0

a b c Thus, ​ ______      ​ = _____ ​       ​ = ______ ​       ​ – 4 + 1 1 + 2 – 2 + 2 a b c fi ​ ___  ​ = __ ​   ​  = __ ​    ​ – 3 3 0 a b c fi ​ __ ​  = ___ ​    ​ = __ ​    ​ 1 – 1 0 Therefore, the equation of the plane is (x – 1) – (y + 2) = 0 fi x – y – 3 = 0. Thus, the distance of p from the point (1, 2, 2)

| 

|

__ 1 – _____ 2–3 4 is ​ ​  ________  ​      ​ = ___ ​  __  ​ = 2​÷2 ​   .  ​ 1  + 1 ​  ​÷2 ​    ÷

11. Given

k × (k × a) = 0



(k ◊ a) k – (k ◊ k) a = 0



g k – a = 0



g k – (a i + b j + g k) = 0



– (a i + b j) = 0



– (a i + b j) = 0 ◊ i + 0 ◊ j



a = 0, b = 0

Since the point (a, b, g) lies on the plane x + y + z = 2, so a+b+g=2

3D-Co-ordinate Geometry 



0+0+g=2



g=2

12. The equation of any line passing through (0, 1, 0) and perpendicular to x + 2y + 2z = 0 is x y–1 ​ __  ​ = ​ _____  ​   = 1 2

z __ ​    ​ . 2

6.63

So 3 x – 6 y = 15 and 2 x + y = 5. On solving, we get x = 3 and y = – 1 Hence, the equation of the line is + 1 ___ z x – 3 y_____ ​ _____  ​   = ​   ​   = ​    ​ = t (say) 14 2 15 The parametric equations of the line are x = 14t + 3, y = 2t – 1, z = 15t. 15. The given system of equations ax + by + cz = 0, bx + cy + az = 0, and cx + ay + bz = 0 can be written as

(  ) (  ) (  )

a  b   c x  ​ b​   ​ ​ c ​  a  ​    ​  ​ ​ y​   ​  ​ = c ab z Clearly

OA = 1,



2 2 ________ AM = ​ _________      ​ = __ ​   ​  ​ 1  + 4 + 4 ​   3 ÷

Thus,

4 5 OM 2 = OA2 – AM2 = 1 – __ ​   ​  = __ ​   ​  9 9



|  |



__

​÷5 ​    OM = ___ ​   ​ . 3

0  ​ 0​  ​   ​ 0

AX = O a  b   c Now,  |A| = ​ b​   ​  ​c ​  a   ​   ​  ​ c ab

= – (a3 + b3 + c3 – 3abc)



= – (a + b + c) (a2 + b2 + c2 – ab – bc – ca)



(a) Let a + b + c = 0

13. The equation of any plane passing through (1, 2, 3) is

Then (a2 + b2 + c2 – ab – bc – ca) = 0



1 fi ​ __ ​  ((a – b)2 + (a – b)2 + (a – b)2) = 0 2 fi (a – b) = 0 = (b – c) = (c – a)

a (x – 1) + b (y – 2) + c (z – 3) = 0

which is perpendicular to x = 0 and y = 0 So,

a = 0, b = 0.

Thus, the equation of the plane is

c (z – 3) = 0



(z – 3) = 0

Thus, the required distance from (0, – 1, 0) to the plane (z – 3) = 0 is

|  |

0 –__3 ​ ​ _____  ​    ​ = 3. ​ 1 ​    ÷ 14. Let a, b, c be the direction ratios of the line of intersection of 3x – 6y – 2z = 15 and 2x + y – 2z = 5. Then

3a – 6b – 2c = 0

and

2a + b – 2c = 0

a b c Thus, ​ ______      ​ = ______ ​       ​ = ______ ​       ​ 12 + 2 – 4 + 6 3 + 12 a b c fi ​ ___  ​ = __ ​   ​  = ___ ​    ​  14 2 15 Clearly, the vector 14i + 2 j + 15k is parrallel to the line of intersections of the plane. Now, we shall find the equation of the line put z = 0 in the given planes.

fi a = b = c Thus, the three system of equations are identical planes. i.e x + y + z = 0. (b) Suppose a + b + c = 0 and a2 + b2 + c2 π ab + bc + ca In this case, at least one of the following is true. a2 π bc, b2 π ca, c2 = ab Consider b2 π ac We can write the first two equations are

a x + b y = (a + b) z

and b x + c y = (b + c) z Eliminating y, we get (ac – b2) x = (ac – b2) z fi x = z Putting this in the first two equations, we get ax + b y + c x = 0 fi by = – (a + c) x

6.64  Integral Calculus, 3D Geometry & Vector Booster by = b x fi x = y Thus, x = y = z (c) In this case |A| π 0. So, the system of equations provide us a trivial solution. Thus, x = 0 = y = z. (d) Given a + b + c = 0, a2 + b2 + c2 = ab + bc + ca 1 fi a + b + c = 0, __ ​   ​  [(a – b)2 + (b – c)2] 2 + (c – a)2) = 0 fi a + b + c = 0, a = b = c fi a = 0 = b = 0. Thus, the system of equations represent the whole three-dimensional space. 16. Let l, m, n be the direction ratios of the line L1. Then l+m–n=0 and

l – 3m + 3n = 0 l m n Thus, ​ _____      ​ = ______ ​       ​ = ______ ​       ​ 3 – 3 –1 – 3 – 3 – 1 l m n fi ​ __  ​  = __ ​   ​  = __ ​   ​  0 1 1 Thus, the direction ratios of L1 are (0, 1, 1) Similarly, the direction ratios of L2 and L3 are (0, 1, 1) and (0, 1, 1), respectively. Therefore, the lines L1, L2 and L3 are parallel. So, Statement I is false. Put z = 0 in P2: x + y – z = – 1, P3: x – 3y + 3z = 2 3 1 we get, x = – ​ __ ​ , y = – ​ __ ​  4 4

( 

)

1 3 Thus, any point on L1 is ​ – ​ __ ​ , – ​ __ ​ , 0  ​. 4 4 So, the equation of the line L1 is + 3/4 __z x + 1/4 y______ ​ ______  ​   = ​   ​   = ​    ​  0 1 1 which is parallel to the plane P1. 1 3 Since ​ – ​ __ ​ , – ​ __ ​ , 0  ​ does not lie on P1 , so no point 4 4 of L1 lies on P1.

( 

)

Therefore, the three planes do not have a common point. Thus, the statement II is true. 17. (i) The unit vector perpendicular to both L1 and L2 u×v is ​ ______     ​ |u × v|

|  |

Now,

 i  j k   u × v = ​ 1​     ​ ​ 1   ​ ​ 2 ​   ​ = – i – 7j + 5k 1 2 3

Thus,

– i – 7j + 5k u×v __ ​  ​______     ​ = ​  __________    .  |u × v| 5​÷3 ​   

(ii) The shortest distance between L1 and L2

(r2 ◊ r1) ◊ (u × v) = ​ _____________        ​ |(u × v)|

Here, and fi

r2 = – i – 2j – k r1 = 2i – 2j + 3k r2 – r1 = 3i + 4k

| 

|

– 3 +__20 17 Shortest distance = ​ ​ _______  ​     ​ = ____ ​  __  ​  . 5​÷3 ​    5​÷3 ​    (iii) The equation of any plane passing through (– 1, – 2, – 1) is Thus,

a (x + 1) + b (y + 2) + c (z + 1) = 0

...(i)

which is perpendiculat to the lines + 2 z_____ +1 x + 1 y_____ L1: ​ _____  ​   = ​   ​   = ​   ​    3 1 2 + 2 z____ –3 x – 2 y_____ and L2: ​ _____  ​   = ​   ​   = ​   ​    1 2 3 So,

3a + b + 2c = 0



a + 2b + 3c = 0

a b c Therefore, _____ ​       ​ = _____ ​       ​ = _____ ​       ​ 3–4 2–9 6–1 a b ___ c __ fi ​   ​  = __ ​   ​  = ​    ​ . 1 7 – 5 Hence, the equation of the plane is

(x + 1) + 7 (y + 2) – 5 (z + 1) = 0



x + 7y – 5z + 10 = 0.

Therefore, the required distance

| 

|

1 +__________ 7 – 5 + 10 13 = ​ ​  ____________        ​  ​ = ____ ​  __  ​  . 5​÷3 ​    ​÷1  + 49 +   25 ​

18. Let the equation of the line passing through P (2, – 1, 2) and makes equal angles with the co-ordinate axes is + 1 z____ –2 x – 2 y_____ ​ _____ ​   = ​   ​   = ​   ​  1 1 1 ___ ___ ___ ​  __  ​  ​  __  ​  ​  __  ​  ​ 3 ​    ​ 3 ​    ​ 3 ​    ÷ ÷ ÷ + 1 z____ –2 x – 2 y_____ fi ​ _____  ​   = ​   ​   = ​   ​  .  1 1 1 Any point on the above line is

Q (l + 2, + l – 1, l + 2)

Since the point Q lies on the plane, so fi

2 (l + 2) + (l – 1) + (l + 2) = 9

3D-Co-ordinate Geometry 



4l = 9 – 5 = 4

21. Given



l = 1.

1 – ________ 4–2–a fi ​ ​  ___________        ​  ​ = 5 ​ 1  + 4 + 4 ​   ÷

Thus, the point Q is (3, 0, 3). Therefore, the length of PQ

______________________ __ (3 – 2)2 (0 +     1)2 + (3 – 2)2 ​ = ​÷3 ​   

= ​÷ 

19. The cartesian form of the given line is

Let

PQ = 5

| 

|

|  |

a+5 fi ​ ​ _____  ​    ​ = 5 3 fi fi

+ 1 x_____ x – 1 y_____ –2 ​ _____ ​   = ​   ​   = ​   ​    – 3 1 5

6.65

a + 5 = ± 15 a = – 5 ± 15 = 10, – 15

Since a is positive, so a = 10. The equation of the line PQ is

Q = (1 – 3l, l – 1, 5l + 2)

The direction ratios of PQ is ( –2 – 3l, –  l – 3, 5l – 4) Since PQ is parallel to the given plane. So,

(– 2 – 3l) – 4 (l – 3) + 3 (5l – 4) = 0.



1 l = __ ​   ​  4

+ 2 z____ –1 x – 1 y_____ ​ _____  ​   = ​   ​   = ​   ​  .  1 2 – 2

1 Hence, the value of l is __ ​   ​ . 4 20. Let plane 1: ax + by + cz = 0 contains the line x y __z ​ __  ​ = __ ​    ​ = ​    ​  2 3 4 Thus, 2a + 3b + 4c = 0 ...(i) Let plane 2: a; x + b¢y + c¢z = 0 is perpendicular to the plane containing the lines x ​ __  ​ = 3

y __ ​    ​ = 4

z x __ ​    ​  and __ ​    ​ = 2 4

y __ ​    ​ = 2

Let

Q = (l + 1, 2l – 2, 1 – 2l)

Also,

PQ = 5



l + 1 + 2 (2l – 2) – 2 (1 – 2l) = a = 10



9l = 10 + 5 15 5 fi l = ___ ​   ​ = __ ​    ​ 9 3 8 4 __ 7 Thus the point Q is ​ __ ​   ​ , __ ​   ​ , – ​    ​  ​ 3 3 3

( 

z __ ​    ​  3

)

Thus,

3a¢ + 4b¢ + 2c¢ = 0



22. Let the equation of the any plane be

4a¢ + 2b¢ + 2c¢ = 0

ax + by + cz + d = 0 Since Eqs. (i) containing the lines, so

a¢ b¢ c¢ Hence, ​ ______     ​ = _____ ​       ​ = ______ ​       ​ 12 – 4 8 – 9 6 – 16



a¢ b¢ c¢ fi ​ __ ​  = ___ ​    ​ = ____ ​    ​  8 – 1 – 10 Also, Plane 1 is perpendicular to Plane 2 So,

a ◊ a¢ + bb¢ c ◊ c¢ = 0



8a – b – 10c = 0

From Eqs. (i) and (ii), we get a b c ​ _______      ​ = _______ ​       ​ = _______ ​       ​ – 30 + 4 32 + 20 –2 – 24 a b c fi ​ ____    ​ = ___ ​    ​ = ____ ​     ​  – 26 52 – 26 a b c fi ​ __ ​  = ___ ​    ​ = __ ​    1 – 2 1  ​ Hence, the euation of the required plane is x – 2y + z = 0

...(i)

2a + 3b + 4c = 0

and ...(ii)



3a + 4b + 5c = 0. a b c Therefore, _______ ​       ​ = _______ ​       ​ = _____ ​       ​ 15 – 16 12 – 10 8 – 9 a b c fi ​ ___  ​ = ​ __ ​  = ___ ​    ​  – 1 2 – 1 a b c fi ​ __ ​  = ___ ​    ​ = __ ​    ​ 1 – 2 1 Also, a (x – 1) + b (y – 2) + c (z – 3) = 0



(x – 1) – 2 (y – 2) + (z – 3) = 0



x – 2y + z = 0

__

Again distance between the plane is ÷ ​ 6 ​   . 

|  |

__ d –__0 fi ​ ​ _____  ​    ​ = ÷ ​ 6 ​    ​÷6 ​   



|d| = 6.

6.66  Integral Calculus, 3D Geometry & Vector Booster 23. Let

and

– 1 z_____ +1 x – 2 y_____ L1: ​ _____  ​   = ​   ​   = ​   ​    1 – 2 1 8 x – __ ​   ​  y + 3 –1 3 _____ z____ _____ L2: ​   ​   = ​   ​   = ​   ​    2 – 1 1

Let the line be y z __ ​   ​ = __ ​   ​ ...(i) b c intersects the lines L1 and L2. So, the shortest distances between Eq. (i) and L1, and Eq. (i) and L2 are zero. For PQ and L1, x ​ __ a ​ =

 | |

24. Given

 1 9   7 [a b c] ​ ​8  ​  ​ 2​  ​ 7​   ​ = [0 0 0] 737

fi and

a + 8b + 7c = 0 9a + 2b + 3c = 0 a+b+c=0

Solving, we get b = 6 a, c = – 7 a Since the point P lies on the plane, so 2a + b + c = 1 fi 2a + 6a – 7a = 1 fi a=1 Thus, b = 6 and c = – 7 Now the value of 7a + b + c =7+6–7 = 6. 25.

|  |

j  i    k ​ a  ​    ​  ​  b  ​  ​ c  ​   ​ = (b + 2c) i + (c – a) j – (2a + b) k 1 – 2 1 Since PQ is perpendicular to L1 So,

2 (b + 2c) + (c – a) + (2a + b) = 0



a + 3b + 5c = 2

|  |

For PQ and L2

j  i    k ​ a  ​    ​    ​  b  ​   ​c  ​   ​ = (b + c) i – (a – 2c) j – (a + 2b) k 2 – 1 1 Since PQ is perpendicular to L2, 8 __ So, ​   ​  (b + c) + 3 (a – 2c) – (a + 2b) k 3 fi 3a + b – 5c = 0 ...(ii) Solving Eq. (i) and (ii), we get a b c ​ _______      ​ = ______ ​       ​ = _____ ​       ​ – 15 – 5 15 + 5 1 – 9

Hence, the required equation of the line be y z x ​ __  ​ = ___ ​    ​ = __ ​    ​  5 – 5 2 Thus the point of intersections P and Q are

( 

( 

is (1, 4, 1). 1 13 ​ __  ​, ___ ​   ​  ​ 3 3

)

The direction ratios of PT is (2, 2, – 1) The angle between OR and PT is 9 2 +___ 8 –__1 ____ 1 cos q = ​  ________  ​    = ​  __    ​ = ___ ​  __  ​  ​ 18 ​ ​    ÷ 9 ​  9​÷2 ​     ​÷2 ​    ÷ p fi q = __ ​   ​  4 and the length of PT

÷(   ) (  ) (  ) _______________

a b c fi ​ __ ​  = ___ ​    ​ = __ ​    ​ 5 – 5 2



22 22 12 = ​ ​​ __ ​   ​   ​​ ​ + ​​ __ ​   ​   ​​ ​ +    ​​ __ ​   ​   ​​ ​ ​ = 1 3 3 3

\

p cos ​ __ ​   ​   ​ = 4



)

10 10 8 P = (5, – 5, 2), Q = ​ ___ ​   ​ , – ___ ​   ​ , __ ​   ​   ​ 3 3 3 Therefore, d 2 = PQ2 = 6.

The direction ratios of QR 4 The co-rdinates of P = ​ __ ​   ​ , 3

PS 1 ​   ​ fi PS fi ___ ​    ​  (  ) ___ 1 ​÷2 ​   p TS 1 sin ​( __ ​   ​  )​ = ___ ​   ​ fi TS = ___ ​    ​  4 1 ​÷2 ​   __



__



1 PS = TS = ___ ​  __  ​ . ​ 2 ​    ÷ 26. The equation of the required plane is P: (x + 2y + 3z – 2) + l (x – y + z – 3) = 0 Thus,

3D-Co-ordinate Geometry 

fi  (1+ l) x + (2 – l) y + (3 + l) z – (2 + 3l) = 0

Thus,

(2l – 2) + (– l – 1) + 3l = 3

2 Its distance from (3, 1, – 1) is ___ ​  __  ​ . ​ 3 ​    ÷



4l = 6 3 l = __ ​   ​  2

| 

|

3(1 + l) +  (2 – l) – (3 + l) – (2 + 3l) ________________________ fi ​ ​  _________________________________            ​  ​   + 1)2 + (2    – l)2 + (3 + l)2 ​ ÷​ (l



( 

)

5 9 So, the point P is ​ 1, – ​ __ ​ , ​ __  ​  ​. 2 2 The foot of the perpendicular from the point (– 2, – 1, 2 __  ​  = ​ ___ 0) on the plane is the point Q (0, 1, 2). ​ 3 ​    ÷ 7 5 The direction ratio of PQ = ​ 1, – ​ __ ​ , ​ __ ​   ​ = (2, – 7, 5) 2 2



( 

(– 2l)2 4 fi ​ ____________       ​ = __ ​   ​  3l2 + 4l + 14 3

)

Hence, the equation of the line is

fi 4l + 14 = 0

–2 x y – 1 z____ ​ __  ​ = ​ _____ ​   = ​   ​  .  – 7 2 5

7 fi l = – ​ __ ​ . 2 Hence, the required equation of the plane is

|  |

29. The common perpendicular is along



z 17 5 11 – ​ __ ​  x + ___ ​   ​  y – __ ​    ​  + ___ ​   ​ = 0 2 2 2 2

 i  j k   ​ 1​    ​  2​    ​ ​ 2 ​   ​ = 2i + 3j – 2k 22 1



– 5x + 11y – z + 17 = 0

Let



5x – 11y + z = 17

2l – 3 – 3l + 1 2l –4 So, ​ ______  ​   = ​ _______  ​   = ​ ______  ​    1 2 2

|  |

27. Since given lines are coplanar, so we get 2   k 2  ​ 5​  ​ ​    2   ​ ​ k ​  ​ = 0 2 0 0 fi fi

6.67

M = (2l, – 3l, 2l)



l=1

Thus,

M = (2, – 3, 2)

Let the required point be P.

k2 – 4 = 0

Given,

k = ± 2

___

PM = ​÷17 ​    

The equation of the plane containing these two lines is

fi  (3 + 2s – 2)2 + (3 + 2s + 3)2 + (2 + s – 2)2 = 17

+ 1  z x   – 1 y   ​ ​             2   ​  ​ = 0   k  ​ ​  2 ​ ​ k 2 5

fi  (s + 2) (9s + 10) = 0 10 fi  s = –2, – ​ ___ ​  9 8 7 7 __ Thus, P = (–1, –1, 0) or ​ __ ​   ​ , __ ​    ​, ​   ​   ​ 9 9 9 30. Given lines are – y z x – 5 _____ L1: ​ _____  ​   = ​      ​ = ___ ​     ​  0 a – 3 – 2

| 

|

fi  (x – 1) (k2 – 4) – (y + 1) (2k – 10) + z (4 – 5k) = 0 fi  – (y + 1) (2k – 10) + z (4 – 5k) = 0 fi  – (y + 1) (± 4 – 10) + (4 – ± 10) = 0 Taking positive sign, we get

( + 1) – z = 0

fi y – z = – 1 Taking negative sign, we get

– (y + 1) (– 14) + 14z = 0



(y + 1) + z = 0





y + z = – 1

28. Any point P on the given line is (2l – 2, – l – 1, 3l) The point P lies on the given plane for some l

fi  9s2 + 28s + 20 = 0

( 

and

x–a L2: ​ _____  ​   = 0

| 

)

y z ​ ___  ​ = _____ ​       ​ – 1 2 – a

Since L1 and L2 are coplanar, so

|

5   – a    0 0    ​ ​        3    ​ ​            ​  ​ = 0 – a 0 ​ ​  – 2    2–a 0 –1 fi

(5 – a) (3 – a) (2 – a) – 2) = 0



(a – 5) (a 2 – 5a + 4) = 0



(a – 5) (a – 1) (a – 4) = 0



a = 1, 4, 5.

6.68  Integral Calculus, 3D Geometry & Vector Booster 31. Ans. (A) y z+ 3 ___ ​    ​ = ​ _____  ​    – 1 1



x– 1 L1: ​ _____  ​   = 2



y + 3 z_____ +3 x – 4 _____ L2: _____ ​   ​   = ​   ​   = ​   ​    1 1 2

|  |

 i  j  k Normal of plane P : n = ​ 7​    ​  1​    ​ ​  2 ​   ​ 3 5 – 6

= – 16i + 48j + 32k



n = i – 3 j – 2 k

The point of intersection of L1 and L2 are

2l + 1 = m + 4, – l = m – 3



1 = 3m – 2

m=1 Thus, the point of intersection is (5, – 2, – 1). The equation of the plane passing through (5, – 2, – 1) is a (x – 5) + b (y + 2) + c (z + 1) = 0 ...(i) Also, ax + by + cz = d is perpendicular with P1: 7x + y + 2z = 3, P2: 3x + 5y – 6z = 4 Thus,

7a + b + 2c = 0

and

3a + 5b – 6c = 0 a b c Therefore, _______ ​       ​ = ______ ​       ​ = ​ ______      ​ – 6 – 10 6 + 42 35 – 3 a b c fi ​ ____    ​ = ___ ​    ​ = ___ ​    ​  – 16 48 32 a b c fi ​ __ ​  = ___ ​    ​ = ___ ​    ​  1 – 3 – 2 Now, from Eq. (i), we get

(x – 5) – 3 (y + 2) – 2 (z + 1) = 0.



x – 3y – 2z = 13

Thus, a = 1, b = – 3, c = – 2, d = 13 32.

x L1: __ ​    ​ = 1 x L2: __ ​    ​ = 1

y z–1 __ ​    ​ = ​ ____  ​   = r, Q (r, r, 1) 1 0 y z+1 ___ ​    ​ = ​ _____  ​   = s, Q (s, – s, – 1,) – 1 0



(l – 1) (l + 1) = 0 ( l = r)



l = – 1, 1

For l = 1, the point P and Q are concides Hence, the value of l = – 1. 33. Let the required plane be x + z + ly – 1 = 0

|  |

l______ –1 Now, ​ ​ _______     ​  ​ = 1 2 ÷​ l  + 2 ​  fi

(l – 1)2 = l2 + 2



– 2l + 1 = 2 1 l = – ​ __ ​  2

fi Thus,

P3: 2x – y + 2z – 2 = 0

Distance of P3 from (a, b, g ) is 2.

| 

|

2a – b + 2g – 2 ________ fi ​ ​ ____________       ​  ​ = 2 ​ 4  + 1 + 4 ​   ÷ fi

2a – b + 2g – 2 = ± 6



2a – b + 2g + 4 = 0 and 2a – b + 2g – 8 = 0

34. Line L will be parallel to the line of intersection of P1 and P2. Let a, b and c be the direction ratios of line L. Thus,

a + 2b – c = 0 and 2a – b + c = 0

fi a : b : c :: 1 : – 3, : – 5 The equation of the line L is – 0 z____ –0 x – 0 y_____ fi ​ _____  ​   = ​   ​   = ​   ​    1 – 3 – 5 Again foot of the perpendicular from origin to plane 1 1 1 P1 is ​ – ​ __ ​ , – ​ __ ​ , __ ​   ​   ​ 6 3 6

( 

)

The equation of the projection of line L on plane P1 is

1 1 1 x + __ ​   ​  y + __ ​   ​  ​   ​  z – __ 6 3 6 ​ _____  ​   = ​ _____  ​   = ​ _____ ​   = k 1 – 3 – 5

( 

) ( 

)

5 2 1 1 1 Clearly points ​ 0, __ ​   ​ , – ​ __ ​   ​ and ​ – ​ __ ​ , – ​ __ ​ , __ ​   ​   ​ 6 3 6 3 6



PQ = (l + r) i + (l – r) j + (l – 1) k

satisfy the line of projection, i.e. M.

and

l – r + l – r = 0, as PQ is ^ t0 L1



2l = 2r



l=r



PR = (l – s) i + (l + s) j + (l + 1) k

35. Points O, P, Q, R, S are (0, 0, 0), (3, 0, 0), (3, 3, 0), 3 3 (0, 3, 0), ​ __ ​   ​ , __ ​   ​ , 0  ​ respectively. 2 2 1 The angle between OQ nad OS is cos– 1 ​ ___ ​  __  ​  ​. ​ 3 ​    ÷

and l–s–l–s=0fis=0 Since PQ ^ PR, so (l – r) (l – s) + (l – r) (l + s) + (l – 1) (l + 1) = 0

( 

)

(  )

The equation of the plane containing the points O, Q and S is x–y=0

3D-Co-ordinate Geometry 

The perpendicular distance from P (3, 0, 0) to the plane x – y = 0 is

|  |

3 –__0 fi ​ ​ _____  ​    ​ = ​ 2 ​    ÷

3 ___ ​  __  ​  ​ 2 ​    ÷

line RS x y–3 ​ __  ​ = ​ _____ ​   = 1 – 1

x – y + z = 3 is obtained by – 1 z____ – 1 + 7 – 3) – 7 – 2 (3 x – 3 y_____ ​ _____  ​   = ​   ​   = ​   ​   = ​  _______________  ​      1 – 1 1 3 i.e.

and the perpendicular distance from O (0, 0, 0) to the

÷ 

___

z 15 ​ __  ​  is ​ ___ ​   ​ ​ .  2 2

36. The mirrior image of (3, 1, 7) w.r.t. the plane

6.69

P = (– 1, 5, 3)

The equation of the plane passing through line and

|  |

P = (– 1, 5, 3) is  x  y  z ​_› ​n   ​ = ​ – 1 ​     ​  ​ 5   ​ 3​    ​  ​ = 0] 1 21 fi

x – 4y + 7z = 0
Integral Calculus 3D Geometry and Vector Booster with Problems and Solution

Related documents

578 Pages • 268,404 Words • PDF • 27.7 MB

397 Pages • 193,279 Words • PDF • 5.5 MB

32 Pages • 7,304 Words • PDF • 8.5 MB

261 Pages • 36,946 Words • PDF • 40.7 MB

439 Pages • 71,009 Words • PDF • 34.6 MB

656 Pages • 83,639 Words • PDF • 79.9 MB