Servo Motors and Industrial Control Theory

238 Pages • 76,178 Words • PDF • 10.1 MB
Uploaded at 2021-09-24 07:14

This document was submitted by our user and they confirm that they have the consent to share it. Assuming that you are writer or own the copyright of this document, report to us by using this DMCA report button.


Mechanical Engineering Series

The Mechanical Engineering Series presents the latest research results on the cutting edge of mechanical engineering in accessible book form. Designed for the use of students, researchers and engineers, the series presents the modern developments in mechanical engineering and its innovative applications in applied mechanics; biomechanics; computational mechanics; dynamic systems and control; energetics; mechanics of materials; processing; production systems; thermal science; and tribology. The series features graduate-level texts and research monographs in key engineering science concentrations. An advisory board of distinguished scholars, internationally renowned for their research and expertise, ensures quality, timeliness, and relevance of books in the series. More information about this series at http://www.springer.com/series/1161

Riazollah Firoozian

Servo Motors and Industrial Control Theory

Second Edition

1  3

Riazollah Firoozian Tehran Iran

ISSN 0941-5122   ISSN 2192-063X (electronic) ISBN 978-3-319-07274-6    ISBN 978-3-319-07275-3 (eBook) DOI 10.1007/978-3-319-07275-3 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014942869 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1  Feedback Control Theory�������������������������������������������������������������������������    1 1.1  Linear System��������������������������������������������������������������������������������������    1 1.2  Nonlinear Systems������������������������������������������������������������������������������    2 1.3  Linearization Technique����������������������������������������������������������������������    3 1.4  Laplace Transform������������������������������������������������������������������������������    4 1.5  Transfer Function��������������������������������������������������������������������������������    7 1.6  First Order Transfer Function��������������������������������������������������������������    7 1.7  Frequency Response����������������������������������������������������������������������������  10 1.8  Second Order Transfer Function���������������������������������������������������������  11 1.9  Block Diagram Representation�����������������������������������������������������������  13 1.10  Frequency Response����������������������������������������������������������������������������  14 1.11 Conclusion�������������������������������������������������������������������������������������������  16 2  Feedback Control Theory Continued������������������������������������������������������  17 2.1 Introduction�����������������������������������������������������������������������������������������  17 2.2 Routh–Hurwitz Stability Criteria��������������������������������������������������������  17 2.3 Root Locus Method�����������������������������������������������������������������������������  19 2.4 Important Features of Root Locus�������������������������������������������������������  23 2.5 Proof of Nyquist Stability Criterion����������������������������������������������������  29 2.6 Nyquist Plot�����������������������������������������������������������������������������������������  31 2.7 Bode Diagram�������������������������������������������������������������������������������������  36 2.8 Steady State Error�������������������������������������������������������������������������������  46 3  State Variable Feedback Control Theory������������������������������������������������  49 3.1 Introduction�����������������������������������������������������������������������������������������  49 3.2 State Variables�������������������������������������������������������������������������������������  50 3.3 Eigenvalues, Eigenvectors, and Characteristic Equation��������������������  53 3.4 State Variable Feedback Control Theory��������������������������������������������  56 3.5 Dynamic Observer������������������������������������������������������������������������������  60 3.6 Controllability and Observability��������������������������������������������������������  61 3.7 Conclusion������������������������������������������������������������������������������������������  63 v

vi

Contents

4  Electrical DC Servo Motors��������������������������������������������������������������������    4.1 Types of DC Servo Motors����������������������������������������������������������������    4.2 Types of Power Unit��������������������������������������������������������������������������    4.3 Speed Torque Characteristic of DC Servo Motors����������������������������    4.4 DC Servo Motors in Open and Closed Loop Velocity Control���������    4.5 DC Servo Motors in Closed Loop Position Control�������������������������    4.6 DC Servo Motors for Very High Performance Requirements����������    4.7 Properties of Power Unit�������������������������������������������������������������������    4.8 Effect of Form Factor on Speed Fluctuation�������������������������������������    4.9 Conclusion����������������������������������������������������������������������������������������   

65 65 66 68 68 72 74 83 85 89

5  Stepping Servo Motors����������������������������������������������������������������������������    5.1 Principal Operation���������������������������������������������������������������������������    5.2 Stepping Motors with Small Step Angle�������������������������������������������    5.3 Torque–Displacement Characteristic of a Stepping Motor���������������    5.4 Dynamic Response Characteristic over One Step Movement����������    5.5 Speed–Torque Characteristic Behavior of Stepping Motors�������������    5.6 Stepping Motors for Position Control Applications��������������������������   

91 91 92 94 96 97 97

6  AC Servo Motors��������������������������������������������������������������������������������������  101 6.1 Principle of Operation�����������������������������������������������������������������������  101 6.2 Variable Speed AC Motors����������������������������������������������������������������  101 6.3 Mathematical Model�������������������������������������������������������������������������  102 6.4 Frequency Converter�������������������������������������������������������������������������  108 6.5 Conclusion����������������������������������������������������������������������������������������  113 7  Electrohydraulic Servo Motors��������������������������������������������������������������  115 7.1 Introduction���������������������������������������������������������������������������������������  115 7.2 A Simple Mechanically Controlled Servo System����������������������������  116 7.3 Electrohydraulic Servo Valves����������������������������������������������������������  119 7.4 Hydraulic Servo Motors��������������������������������������������������������������������  121 7.5 A Numerical Investigation of the Transient Behavior of an Electrohydraulic Servo Motor Under Different Conditions��������������  124 7.6 Conclusion����������������������������������������������������������������������������������������  129 8  Actuators Based on Electro-Rheological Fluid��������������������������������������  131 8.1 Introduction���������������������������������������������������������������������������������������  131 8.2 Some Possible Applications of ER Fluid������������������������������������������  132 8.2.1 Valves������������������������������������������������������������������������������������  132 8.2.2 ER Clutch and Catch Type Actuators������������������������������������  132 8.2.3 Variable Dampers Based on ER Fluid�����������������������������������  133 8.3 Properties of ER Fluid in Flow Mode�����������������������������������������������  134 8.4 Properties of ER Fluid in Shear Mode����������������������������������������������  139 8.5 Conclusion����������������������������������������������������������������������������������������  141

Contents

vii

9  The Choice and Comparison of Servo Motors��������������������������������������  143 9.1 Introduction���������������������������������������������������������������������������������������  143 9.2 Theory and Performance Criteria������������������������������������������������������  144 9.3 Comparison of Results and Design Procedure����������������������������������  147 9.4 An Example on Choosing a Servo Motor�����������������������������������������  156 9.5 Conclusion����������������������������������������������������������������������������������������  158 Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)��������������������������������������������������������������������������������  161 Appendix B: Exercise Problems on State Variable Feedback Control Theory (Chap. 3)������������������������������������������������������������������������������  185 Appendix C: Exercise Problems on Servo Motors (Chaps. 4–9)���������������  207 Author Biography������������������������������������������������������������������������������������������  233 Index����������������������������������������������������������������������������������������������������������������  235

Chapter 1

Feedback Control Theory

1.1  Linear System In any system, if there exists a linear relationship between two variables, then it is said that it is a linear system. For example, the equation 

y = Kx

(1.1)

represents a linear system. It means that if K is constant then the relationship (1.1) represents a linear relationship between two variables y and x. In general, any governing differential equations between two variables x and y in the form of  an

dn d n −1 dm + + y a y  ay = b x +  bx m n 1 − dt n dt n −1 dt m

(1.2)

is linear, where n and m represent the order of differential equations, and an, bm are constants. For real system n > m, any other form of equations that is not similar to Eq. (1.2) is called nonlinear system. There are extensive theories that deal with linear systems, but the theories on nonlinear systems are very complex and little. Example 1  The circuit diagram of equivalent DC servo motors is shown in Fig. 1.1. The governing differential equation may be written as  Vi = RI + L

dI + Cm ω m dt

(1.3)

where Vi, I, ωm are the input voltage, current, and angular speed. R and L are the resistance and inductance, respectively. This represents a linear system, where ωm is the output variable and Vi represents the input voltage. For DC servo motor, we can write T = Kt I (1.4) R. Firoozian, Servo Motors and Industrial Control Theory, Mechanical Engineering Series, DOI 10.1007/978-3-319-07275-3_1, © Springer International Publishing Switzerland 2014

1

2

1  Feedback Control Theory

Fig. 1.1   Equivalent circuit diagram of a DC servo motor

R

L

Vi M

CmWm

dω m (1.5) T=J dt where Kt, J are the torque constant and rotor moment of inertia. Eliminating T, from Eqs. (1.4) and (1.5) and substituting for I in Eq. (1.3) yields  Vi =

RJ dω m LJ d 2ω m + + Cm ω m K t dt K t dt 2

(1.6)

Equation (1.6) now represents a linear differential system, and in control terminology, Vi is called the input variable and ωm is called the output variable. The Eq. (1.6) can be solved for ωm in terms of the input variable. In deriving Eq. (1.6), we ignore the external torque acting on the motor. If we consider the external torque, the governing differential equation would have two input variables and one output variable. For linear systems, the principle of superposition holds. It means that if input x1 causes output y1 and input x2 causes output y2, then input x1 + x2 causes output y1 + y2. This is a powerful principle, and we will use it throughout this book.

1.2  Nonlinear Systems There are different kinds of nonlinearities. For example, on–off control systems are inherently nonlinear. Transport lag, saturation, and transport lag are other kinds of nonlinearities. These kinds of nonlinearities cannot be solved with linear control theory. This is shown in Fig. 1.2. There is complicated theory that covers discontinuous nonlinearities, but they are beyond the scope of this book. Most nonlinearities that exist in servo control systems are shown in Fig. 1.2. For linearized equation, it is better to use Laplace Transform. In this way, the differential equations become algebraic equation in s. Throughout this book, the lower case s represents Laplace Transform. Some nonlinearity is continuous, and they can be solved by the linearization technique. One example of this kind of nonlinearity is (1.7) y = Kx 2

1.3  Linearization Technique

3

y

y

y

x

On_off control

x

x

Saturation of linear system

Transport lag

Fig. 1.2   Some discontinuous nonlinearities

Fig. 1.3   A continuous nonlinearity

Y

y

x

X

This is shown in Fig. 1.3

1.3  Linearization Technique If there is a continuous nonlinearity in the form of 

(1.8)

Y = F(X )

Assuming small perturbation from the equilibrium point, Eq. (1.8) can be linearized as 

Y + y = F(X ) +

dY dx dx

(1.9)

or it can be written as 

y=

dY x dx

(1.10)

4

1  Feedback Control Theory

In Eqs. (1.10) and (1.9) x, y represent small perturbation from the equilibrium point. Equation (1.10) can be written as (1.11) y = Kx where 

K=

dY dX

(1.12)

K is constant at an operating point. Throughout this book, the lower case variable represents small perturbation from equilibrium point. This is shown in Fig. 1.3. Equation (1.8) represents one variable system. For a multivariable system, similar linearized equation can be obtained. The solution of the governing equation simplifies if Laplace Transform is used.

1.4  Laplace Transform By the definition, the Laplace Transform is defined as 



F ( s ) = L [ f (t ) ] = ∫ f (t )e − st dt

(1.13)

0

By taking the Laplace Transform, the variable t is eliminated and the result is only function of s. Equation (1.13) appears to be very complicated, and indeed for complicated transformation, the integral becomes very complex. Fortunately, for control systems only a few functions are needed. Example 2  Constant A. 



L(A) = ∫ Ae − st dt

(1.14)

0

This is a simple integration, and the integral becomes 

L( A) =

A s

(1.15)

The transformation of some common functions that are used in control are shown in Table 1.1. There are a few important Laplace Transform that are often used in defining performance of servo control systems. These are constant values which

1.4  Laplace Transform

5

Table 1.1   Laplace transform of some common functions f( t) F( s)

A s A An! ; s 2 s n +1

A At; Atn

A s+α

Ae−αt

df (t ) dt

( s) − f(0)

d 2 f (t ) dt 2

s 2 F ( s ) − sf (0) −

dn f (t ) with zero initials dt 2 t



n

df (0) dt

F( s)

t  1 1 F ( s ) +  ∫ f (ζ )dζ  s s  −∞  t =0

f (ζ )dζ = f ( −1) (t )

−∞

f  (−n)( t) zero initials f  (−n)( t)

f (s) sn

e−at f(t)

F( s + a)

te−at

1 ( s + a)2 n! ( s + a ) n +1

t  ne−at f(t − td   ), t > td ;0,t  m and n is called the order of transfer function. The principle of superposition may be used for simple multivariable systems. Once the transfer function is obtained, the following performance must be studied. 1. Stability 2. Transient response 3. Steady state error for various standard input 4. The above analysis should be carried out for various input functions 5. Frequency response There are some standard transfer functions that can be solved and exact solution may be obtained. In the following, some standard transfer function is studied.

1.6  First Order Transfer Function First order transfer function in standard form may be written as 

y(s) A = x( s ) τ s + 1

(1.26)

8

1  Feedback Control Theory

Fig. 1.4   Step input response of first order lag

response

1

f(t)

0.5

0

0

2

t time for unity time constant

4

For unit step input of x( t) = 1, the Laplace Transform becomes x( s ) = 1 / s and substituting in Eq. (1.26) gives 

y(s) =

A s (τ s + 1)

(1.27)

Solving Eq. (1.27) by partial fraction yields 

y(s) =

1 τ − s τs +1

(1.28)

Taking inverse Laplace Transform using Table 1.1, the solution becomes 

t

y (t ) = 1 − eτ

(1.29)

The solution graphically is shown in Fig. 1.4. The important points on the graph are t=0 t= τ t := 3τ t = 5τ

y (t ) = 0 y ( τ ) = 0.632 y (3 τ ) := 0.95 y (5 τ ) = 0.99

It shows that after t  = τ, t  = 3τ, t   = 5τ, the output variable reaches its 63, 95, and 99 % of its final value. Similarly, the transient response for a ramp input which is a commonly used test signal can be obtained. For a ramp input of 

x(t ) = t

(1.30)

1.6  First Order Transfer Function

9

Fig. 1.5   Ramp input response of first order lag input and response

10

f (t)

5

g (t)

0

0

5 t time for unity time constant

10

The Laplace Transform is 

1 s2

(1.31)

1 A B C = + + s 2 (τ s + 1) s s 2 τ s + 1

(1.32)

x( s ) =

The output then becomes 

y(s) =

Calculating the coefficients A, B, C, by equating the common factors in s, the output transfer equation becomes 

τ 1 τ2 y(s) = − + 2 + s s τs +1

(1.33)

Taking the inverse of Laplace Transform by referring to Table 1.1, the solution becomes 

y (t ) = t − (τ − τ e

− τt

)

(1.34)

The solution is shown graphically in Fig. 1.5. It should be noted that both for step and ramp inputs, a unity gain was used. If different gain is used, the solution will be multiplied by that factor. For a ramp input, there is a shift between the output and input. This is known as following error. The value of the following error depends on the transfer function, which for first order system described in this section is τ. Later we will describe how to calculate the steady state error without actually solving the differential (transfer function). Throughout this book, the variables x, y are considered as input and output variables. From the equation, it will be clear whether they are in time or Laplace domain.

10

1  Feedback Control Theory

1.7  Frequency Response For harmonic input in the form of x( t) = A sin ωt, the output for linear system will be in the form of y( t) = B sin( ωt − Ψ). The phase angle Ψ, and amplitude ratio M = B / A can be obtained from the transfer function. If s is replaced by iω, then the amplitude ratio and phase angle can be obtained from the resulting complex number in the following manner 

y (iω ) 1 = x(iω ) iτω + 1

(1.35)

Multiplying the numerator and denominator by the conjugate of the denominator yields 

y (iω ) 1 τω i = − x(iω ) τ 2ω 2 + 1 τ 2ω 2 + 1

(1.36)

Then the amplitude ratio and phase angle may be obtained as  

M = realpart 2 + imaginarypart 2  imaginarypart   realpart 

ψ =tan −1 

(1.37) (1.38)

hence,  

M =

1 1 + τ 2ω 2

ψ = − tan −1 (τω )

(1.39) (1.40)

It is a common practice to plot the amplitude ratio in decibel and phase angle in degrees against frequency changing from zero to infinity. The frequency response is usually plotted in db and log of frequency. These diagrams for the first order transfer function are shown in Fig. 1.6. The important points are at ω =1/τ where the amplitude ratio is M = 0.707, M = − 3 db (in decibels; i.e. 20 log(m)) and Φ: = − 45°. This frequency is known as the break frequency. It can be seen from the frequency response curve and Eq. (1.32) that at low frequency, that is, at frequency much lower than ω  1/ τ , the amplitude ratio is approximately 0 db, and at frequency much higher than ω  1/ τ , the amplitude ratio becomes a line with slope of 20 db/decade. These two lines are the asymptotes of the

1.8  Second Order Transfer Function

11

g(ω) –90

–180 0.1

0

amplitude ratio in decibels

phase angel (deg)

0

1

10 ω frequency

f(ω) –20

–40 0.1

100

1

10 ω frequency (rad/sec)

1

Fig. 1.6   Phase angle and amplitude ratio versus frequency for a first order lag

frequency responses. For some mechanical systems, where the response is very slow, the frequency response may be plotted on octave scale instead of logarithmic scale. Therefore, by knowing the time constant τ, the frequency response and the time response are completely known.

1.8  Second Order Transfer Function Standard second order transfer function is written in two ways of y = 1 x

ω n2

1 2ξ s2 + s +1

ωn

or

ω n2 y = 2 x s + 2ξω n s + ω n2 where ωn ξ are the natural frequency and damping ratio, respectively. It will be clear later as to why the coefficients are given such names. For step input x( t) = 1, then x( s ) =

1 s

Substituting in the transfer function and taking inverse of Laplace Transform by referring to Table 1.1, the response for ξ 
Servo Motors and Industrial Control Theory

Related documents

238 Pages • 76,178 Words • PDF • 10.1 MB

960 Pages • 479,883 Words • PDF • 4.5 MB

190 Pages • 61,875 Words • PDF • 6.9 MB

815 Pages • 277,766 Words • PDF • 15.7 MB

134 Pages • 40,250 Words • PDF • 602.8 KB

5 Pages • 1,416 Words • PDF • 20 KB

6 Pages • 4,527 Words • PDF • 119.7 KB

352 Pages • 154,579 Words • PDF • 1.3 MB

203 Pages • 36,163 Words • PDF • 2 MB